JP2699661B2 - Semiconductor multilayer reflective film - Google Patents

Semiconductor multilayer reflective film

Info

Publication number
JP2699661B2
JP2699661B2 JP64491A JP64491A JP2699661B2 JP 2699661 B2 JP2699661 B2 JP 2699661B2 JP 64491 A JP64491 A JP 64491A JP 64491 A JP64491 A JP 64491A JP 2699661 B2 JP2699661 B2 JP 2699661B2
Authority
JP
Japan
Prior art keywords
semiconductor
semiconductor multilayer
type
bias voltage
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP64491A
Other languages
Japanese (ja)
Other versions
JPH06140721A (en
Inventor
香 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP64491A priority Critical patent/JP2699661B2/en
Priority to US07/791,264 priority patent/US5237581A/en
Priority to US07/817,620 priority patent/US5208820A/en
Publication of JPH06140721A publication Critical patent/JPH06140721A/en
Application granted granted Critical
Publication of JP2699661B2 publication Critical patent/JP2699661B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は抵抗の小さい半導体多層
反射膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor multilayer reflective film having a low resistance.

【0002】[0002]

【従来の技術】並列光情報処理、並列光通信に適した発
光デバイスの1つとして面型に並列可能な垂直共振器型
面発光レーザがある。一般的な垂直共振器型面発光レー
ザの断面図を図5に示す。n型GaAs基板1の上へ順
に、n型半導体多層反射膜13、を形成する。その上に
n型Al0.3 Ga0.7 Asクラッド層4、i−In0.2
Ga0.8 As活性層5、p型Al0.3 Ga0.7 Asクラ
ッド層6、p形半導体多層反射膜14を順次成長する。
その後上部にAu電極9を、下部に光を取り出すための
窓をあけたAuGeNi電極10を形成して、円筒状に
エッチングを行う。電流は反射膜13と14、クラッド
層4と6を介して流れ、活性層5に注入される。
2. Description of the Related Art As a light emitting device suitable for parallel optical information processing and parallel optical communication, there is a vertical cavity surface emitting laser which can be parallelly arranged in a plane. FIG. 5 is a sectional view of a general vertical cavity surface emitting laser. An n-type semiconductor multilayer reflective film 13 is formed on the n-type GaAs substrate 1 in order. An n-type Al 0.3 Ga 0.7 As clad layer 4 and an i-In 0.2
A Ga 0.8 As active layer 5, a p-type Al 0.3 Ga 0.7 As clad layer 6, and a p-type semiconductor multilayer reflective film 14 are sequentially grown.
Thereafter, an Au electrode 9 is formed on an upper portion, and an AuGeNi electrode 10 having a window for extracting light is formed on a lower portion, and etching is performed in a cylindrical shape. The current flows through the reflection films 13 and 14 and the cladding layers 4 and 6, and is injected into the active layer 5.

【0003】このような垂直共振器型レーザは水平共振
器型レーザと異なり、活性層が薄いため、光を増幅発振
させるためには反射層の反射率を高精度で高める必要が
ある。そのため屈折率差の大きい2種類の物質、例えば
GaAsとAlAsを媒質内波長の4分の1の厚さで交
互に成長させたものが半導体多層反射膜13と14とし
て用いられる。
[0003] Unlike the vertical cavity type laser, such a vertical cavity type laser has a thin active layer. Therefore, in order to amplify and oscillate light, it is necessary to increase the reflectivity of the reflective layer with high accuracy. Therefore, two kinds of substances having a large difference in the refractive index, for example, GaAs and AlAs, which are alternately grown with a thickness of 4 of the wavelength in the medium, are used as the semiconductor multilayer reflective films 13 and 14.

【0004】[0004]

【発明が解決しようとする課題】上述したような構造の
半導体多層反射膜では、屈折率差の大きい物質を交互に
積み上げる必要があったために、バンドギャップの大き
く異なる物質を選ぶ必要があった。しかし、バンドギャ
ップの異なる物質を交互に成長させた場合、ヘテロ界面
でのバンドの不連続により、バンドにスパイクが生じ、
キャリヤーに対する障壁となる。そのため半導体多層膜
部分での電気抵抗が非常に高くなり、電流注入が困難で
ある。
In the semiconductor multilayer reflective film having the above-described structure, it is necessary to alternately stack materials having a large difference in refractive index, and therefore, it is necessary to select materials having greatly different band gaps. However, when substances with different band gaps are grown alternately, spikes occur in the bands due to discontinuity of the bands at the hetero interface,
It is a barrier to carriers. For this reason, the electric resistance in the semiconductor multilayer film portion becomes extremely high, and current injection is difficult.

【0005】このときのn−GaAs、n−AlAs半
導体多層膜部分におけるバンド図(バイアス電圧=O
V)を図3に示す。フェルミレベル18は半導体内で一
定であるので、ヘテロ接合部分で伝導帯15にスパイク
19が生じる。これにバイアス電圧(右側を+とする)
を印加した時のバンド図を図4に示す。ここではワイド
ギャップ半導体(AlAs)に対してナローギャップ半
導体(GaAs)が−側にある部分のヘテロ界面で逆バ
イアスとなり、そこでのスパイク17が大きくなってし
まう。このスパイクが電子に対する障壁となり、抵抗値
が上昇する。順バイアス側でもスパイク20が残るがそ
れは逆バイアス側に較べて非常に小さい。スパイクの高
さは主としてGaAsとAlAs電子親和力の差、そし
て、バイアス電圧Vの大きさで決まる。スパイクの幅は
ドーピング濃度と両側の半導体の誘電率εに依存する。
全体に1.5×1017cm-3のドーピングを施したと
き、バイアス電圧がOVのときのスパイク幅は約200
A(オングストローム)である。
At this time, a band diagram (bias voltage = O) in the n-GaAs, n-AlAs semiconductor multilayer film portion
V) is shown in FIG. Since the Fermi level 18 is constant in the semiconductor, a spike 19 occurs in the conduction band 15 at the heterojunction. Bias voltage (+ on right side)
FIG. 4 shows a band diagram when is applied. Here, the narrow gap semiconductor (GaAs) is reverse-biased at the hetero interface on the minus side with respect to the wide gap semiconductor (AlAs), and the spike 17 there is increased. This spike serves as a barrier to electrons, and the resistance value increases. Although the spike 20 remains on the forward bias side, it is much smaller than that on the reverse bias side. The height of the spike is mainly determined by the difference between the electron affinity of GaAs and AlAs and the magnitude of the bias voltage V. The width of the spike depends on the doping concentration and the dielectric constant ε of the semiconductor on both sides.
When the entire body is doped with 1.5 × 10 17 cm −3 , the spike width when the bias voltage is OV is about 200.
A (angstrom).

【0006】またp型半導体多層膜部においても同様の
ことが言え、バイアス電圧を印加したときにスパイクが
生じるのはワイドギャップ半導体部分の+側でナローギ
ャップ半導体と接合している部分である。
The same can be said for a p-type semiconductor multilayer film portion. When a bias voltage is applied, a spike occurs in a portion which is joined to a narrow gap semiconductor on the + side of a wide gap semiconductor portion.

【0007】そこでバンドスパイクを制御して抵抗を低
減させるには、多層膜部に高濃度ドーピングを行い、ト
ンネル電流の増加を図ることが有効である。しかし、結
晶成長時に高濃度ドーピングを行うには、結晶性、表面
モホロジーの問題があって、濃度に限界があり、特にバ
ルクのAlAsについては高濃度ドーピングは難しく、
n型で5×1017cm-3程度が限界であった。
In order to reduce the resistance by controlling the band spike, it is effective to dope the multi-layered film with a high concentration to increase the tunnel current. However, high-concentration doping at the time of crystal growth has problems of crystallinity and surface morphology, and there is a limit to the concentration. Particularly, high-concentration doping is difficult for bulk AlAs.
The limit was about 5 × 10 17 cm -3 for n-type.

【0008】また、抵抗を下げる別の方法として、ヘテ
ロ界面の組成の変化をグレーディッドにしてバンドのス
パイクを減らし、抵抗を下げる方法も考えられる。しか
し、成長時にグレーディッド層を作製するためには成長
温度を非常に小さいサイクルで変えなければならず、工
程の大幅な増加を招いたり、歩留りが低下するという問
題があった。
As another method of lowering the resistance, a method of grading the change in the composition of the hetero interface to reduce the spikes of the band and lower the resistance is also conceivable. However, in order to produce a graded layer at the time of growth, the growth temperature must be changed in a very small cycle, resulting in a problem that the number of steps is significantly increased and the yield is reduced.

【0009】本発明の目的は従来のかかる問題点を解決
し、低抵抗で反射率の大きい半導体多層反射膜を提供す
ることにある。
An object of the present invention is to solve the conventional problems and to provide a semiconductor multilayer reflective film having low resistance and high reflectivity.

【0010】[0010]

【課題を解決するための手段】本発明の半導体多層反射
膜は、屈折率とバンドギャップエネルギーが異なる同一
導電型の2種類の半導体を、媒質内波長の4分の1の厚
さで交互に形成した半導体多層膜と、該半導体多層膜に
バイアス電圧印加する電極部とを備え、前記導電型がn
型の場合は前記半導体のワイドバンドギャップ半導体の
中のバイアス電圧の−側のヘテロ界面近傍に、前記導電
型がp型の場合は前記半導体のワイドギャップ半導体の
中のバイアス電圧の+側のヘテロ界面近傍に、数原子層
程度の幅のδ関数的な高濃度不純物ドーピング領域を有
することを特徴とする。
According to the present invention, there is provided a semiconductor multilayer reflective film comprising two kinds of semiconductors of the same conductivity type having different refractive indices and band gap energies alternately having a thickness of a quarter of the wavelength in a medium. A semiconductor multilayer film formed; and an electrode portion for applying a bias voltage to the semiconductor multilayer film, wherein the conductivity type is n.
If the conductivity type is p-type, it is near the hetero interface on the negative side of the bias voltage in the wide band gap semiconductor of the semiconductor. It is characterized by having a δ-function high-concentration impurity doping region having a width of about several atomic layers near the interface.

【0011】あるいは、垂直キャビティ型の面発光半導
体レーザや面発光型LEDあるいはスーパーラディアン
トLEDなどの面発光素子の半導体多層反射膜であっ
て、屈折率とバンドギャップエネルギーが異なる同一導
電型の2種類の半導体を媒質内波長の4分の1の厚さで
交互に形成した、活性層をはさむ一対の半導体多層膜
と、該半導体多層膜にバイアス電圧印加する電極部とを
備え、前記一対の半導体多層膜は導電型が異なり、導電
型がn型の半導体多層膜のワイドバンドギャップ半導体
の中のバイアス電圧の−側のヘテロ界面近傍に、または
前記導電型がp型の半導体多層膜のワイドギャップ半導
体の中のバイアス電圧の+側のヘテロ界面近傍に、また
はその両方に、数原子層程度の幅のδ関数的な高濃度不
純物ドーピング領域を有することを特徴とする。
Alternatively, a semiconductor multilayer reflective film of a surface emitting device such as a vertical cavity type surface emitting semiconductor laser, a surface emitting type LED, or a super radiant LED, which has the same conductivity type but different refractive index and band gap energy. And a pair of semiconductor multilayer films sandwiching an active layer, and an electrode section for applying a bias voltage to the semiconductor multilayer film, wherein the semiconductor layers are formed alternately with a thickness of a quarter of the wavelength in the medium. The semiconductor multilayer film has a different conductivity type, and is near the hetero-interface of the negative side of the bias voltage in the wide band gap semiconductor of the semiconductor multilayer film of the n-type conductivity or the wide width of the semiconductor multilayer film of the p-type conductivity. In the gap semiconductor, near the hetero-interface on the + side of the bias voltage, or both, a δ-functional high-concentration impurity-doped region having a width of several atomic layers is provided. Characterized in that it.

【0012】[0012]

【作用】本発明の半導体多層反射膜によれば、ヘテロ界
面の近傍で高濃度ドーピングすることにより、キャリヤ
を供給し、スパイクの幅を減らすことが出来る。さら
に、δ関数的に狭い幅で高濃度ドーピングを行うので結
晶性の劣化を小さくすることができる。しかも膜厚を制
御すれば光学的反射率の劣化は招かない。これにより低
抵抗で高反射率の半導体多層反射膜が得られる。
According to the semiconductor multilayer reflective film of the present invention, the carrier is supplied and the width of the spike can be reduced by performing high concentration doping near the hetero interface. Further, since high-concentration doping is performed with a narrow width in the δ function, deterioration in crystallinity can be reduced. Moreover, if the film thickness is controlled, the optical reflectance does not deteriorate. As a result, a semiconductor multilayer reflective film having low resistance and high reflectivity can be obtained.

【0013】[0013]

【実施例】次に本発明の実施例について図面を参照して
詳細に説明する。図1は本発明の一実施例を説明するた
めに本発明の半導体多層反射膜を適用した面発光レーザ
の断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a sectional view of a surface emitting laser to which an embodiment of the present invention is applied to which a semiconductor multilayer reflective film of the present invention is applied.

【0014】この面発光レーザの製作方法を以下に述べ
る。n型GaAs基板1上にn型多層反射膜13として
n−GaAs2、n−AlAs3を交互に20層積層す
る。その際、n−AlAs内の下部(バイアス電圧の−
側)のn−GaAsとの界面から20Aの部分に、1×
1013cm-2の濃度でδ関数的に原子層数層程度の幅
(ここでは20A)のn型高濃度ドーピング領域11を
形成する。n型多層反射膜13の上に位相制御層として
n型Al0.3 Ga0.7 Asクラッド層4を成長する。さ
らに活性層として、100Aの厚さでi−In0.2 Ga
0.8 As層5を成長させる。その後さらに位相制御層と
してp型Al0.3 Ga0.7 Asクラッド層6を成長し、
その上に、p型半導体多層反射膜14としてp−AlA
s7、p−GaAs8を交互に15層積層する。その
際、p−AlAs内の上部(バイアス電圧の+側)の界
面から20Aの部分に、1×1013cm-2の濃度でδ関
数的に、p型高濃度ドーピング領域12を20Aの幅で
形成する。以上の結晶成長は分子線エピタキシー(MB
E)法を用いて行った。上部にAu電極9、下部に光を
とり出すための窓をあけたAuGeNi電極10を形成
する。こうして本実施例の素子が完成した。
A method for manufacturing this surface emitting laser will be described below. On the n-type GaAs substrate 1, 20 layers of n-GaAs2 and n-AlAs3 are alternately stacked as the n-type multilayer reflection film 13. At this time, the lower portion of the n-AlAs (the bias voltage −
1) from the interface with n-GaAs on the side of 20A
An n-type high-concentration doping region 11 is formed at a concentration of 10 13 cm -2 and having a width of about several atomic layers (here, 20 A) in terms of a δ function. An n-type Al 0.3 Ga 0.7 As clad layer 4 is grown as a phase control layer on the n-type multilayer reflective film 13. Further, as an active layer, i-In 0.2 Ga having a thickness of 100 A is used.
A 0.8 As layer 5 is grown. Thereafter, a p-type Al 0.3 Ga 0.7 As clad layer 6 is further grown as a phase control layer,
On top of that, a p-AlA
15 layers of s7 and p-GaAs8 are alternately laminated. At this time, the p-type high-concentration doping region 12 is formed to have a width of 20 A in a δ function at a concentration of 1 × 10 13 cm −2 at a portion of 20 A from the upper interface (+ side of the bias voltage) in p-AlAs. Formed. The above crystal growth is based on molecular beam epitaxy (MB
This was performed using the E) method. An Au electrode 9 is formed on an upper portion, and an AuGeNi electrode 10 having a window for extracting light is formed on a lower portion. Thus, the device of this example was completed.

【0015】このような構造におけるn型半導体多層反
射膜部分でのエネルギーバンド図の、バイアスを印加し
ない場合を図2(a)に、バイアスを印加した場合を図
2(b)に示す。n型高濃度不純物ドーピング領域11
を形成したため、伝導帯15上のスパイク16の幅を非
常に狭く、ほぼ20Aに小さくすることが出来る。その
結果、δ関数的高濃度ドーピングをしない場合のスパイ
ク17(図4)に較べてトンネル電流が増えて抵抗が低
減し、電流注入が容易になる。
FIG. 2A shows an energy band diagram of the n-type semiconductor multilayer reflective film portion having such a structure when no bias is applied, and FIG. 2B shows a case where a bias is applied. n-type high concentration impurity doping region 11
Is formed, the width of the spike 16 on the conduction band 15 can be made very narrow, that is, about 20A. As a result, the tunnel current is increased and the resistance is reduced as compared with the spike 17 (FIG. 4) in the case where the δ-functional high-concentration doping is not performed, and the current injection becomes easy.

【0016】本実施例では高濃度ドーピング領域をヘテ
ロ界面から20Aの所に入れたが、0〜100Aの範囲
であれば、従来より抵抗が低減できる。更に本実施例で
は高濃度ドーピング領域をp、n両側の反射膜に入れた
が一方の反射膜だけでも効果がある。また、反射膜の全
体に入れたが、一部分に入れただけでも抵抗の低減の効
果はある。
In this embodiment, the high-concentration doping region is placed at 20 A from the hetero interface, but if it is within the range of 0 to 100 A, the resistance can be reduced as compared with the conventional case. Further, in this embodiment, the high-concentration doping regions are provided in the reflection films on both sides of p and n, but only one of the reflection films is effective. In addition, although it is placed in the entire reflection film, even if it is placed in only a part, the effect of reducing the resistance is obtained.

【0017】上記実施例において半導体多層膜は面発光
レーザにおける反射膜としたがこれに限らず他の電流注
入を要する素子の半導体多層反射膜にも本発明は適用で
きる。例えば、反射膜の反射率を変えてスーパーラディ
アント型LEDとした面発光素子や、反射膜を光のとり
出し面と反対側に形成して光のとり出し効率を上げた面
発光LED、更にpnpn型面発光素子やスイッチング
素子にも適用できる。
In the above embodiment, the semiconductor multilayer film is a reflection film in a surface emitting laser. However, the present invention is not limited to this, and the present invention can be applied to other semiconductor multilayer reflection films of devices requiring current injection. For example, a surface-emitting device in which the reflectance of a reflective film is changed to a super-radiant type LED, or a surface-emitting LED in which a reflective film is formed on a side opposite to a light extraction surface to increase light extraction efficiency, The present invention can also be applied to a pnpn-type surface emitting element and a switching element.

【0018】[0018]

【発明の効果】以上説明したように、本発明によれば光
学的特性の劣化を招くことなく、多層反射膜部分の直列
抵抗の低減をはかることができ、例えば低い電圧で駆動
可能な面発光レーザ等の面型光素子に有用な半導体多層
反射膜が得られる。
As described above, according to the present invention, it is possible to reduce the series resistance of the multilayer reflective film portion without deteriorating the optical characteristics. A semiconductor multilayer reflective film useful for a surface optical device such as a laser can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の1実施例を示すための面発光レーザの
断面図である。
FIG. 1 is a cross-sectional view of a surface emitting laser according to an embodiment of the present invention.

【図2】本発明の1実施例の多層膜におけるエネルギー
バンド図である。
FIG. 2 is an energy band diagram of a multilayer film according to one embodiment of the present invention.

【図3】通常のGaAs、AlAs多層膜部分でのバン
ド図である。
FIG. 3 is a band diagram of a normal GaAs and AlAs multilayer film portion.

【図4】図3の多層膜にバイアス電圧を印加したときの
バンド図である。
FIG. 4 is a band diagram when a bias voltage is applied to the multilayer film of FIG.

【図5】従来の面発光レーザの断面図である。FIG. 5 is a sectional view of a conventional surface emitting laser.

【符号の説明】[Explanation of symbols]

1 n型GaAs基板 2 n−GaAs 3 n−AlAs 4 n型Al0.3 Ga0.7 Asクラッド層 5 In0.2 Ga0.8 As活性層 6 p型Al0.3 Ga0.7 Asクラッド層 7 p−AlAs 8 p−GaAs 9 Au電極 10 AuGeNi電極 11 n型高濃度ドーピング領域 12 p型高濃度ドーピング領域 13 n型半導体多層反射膜 14 p型半導体多層反射膜 15 伝導帯 16 n型高濃度ドーピングを行ったときのスパイク 17 通常のヘテロ接合における逆バイアス側スパイク 18 フェルミレベル 19 通常のヘテロ接合におけるバイアスが0のときの
スパイク 20 通常のヘテロ接合における順バイアス側スパイク 21 価電子帯
Reference Signs List 1 n-type GaAs substrate 2 n-GaAs 3 n-AlAs 4 n-type Al 0.3 Ga 0.7 As clad layer 5 In 0.2 Ga 0.8 As active layer 6 p-type Al 0.3 Ga 0.7 As clad layer 7 p-AlAs 8 p-GaAs 9 Au electrode 10 AuGeNi electrode 11 n-type high concentration doping region 12 p-type high concentration doping region 13 n-type semiconductor multilayer reflection film 14 p-type semiconductor multilayer reflection film 15 conduction band 16 spike when n-type high concentration doping 17 normal Reverse spike in the heterojunction of 18 Fermi level 19 Spike when the bias in the normal heterojunction is 0 20 Spike in the forward bias in the normal heterojunction 21 Valence band

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 屈折率とバンドギャップエネルギーが異
なる同一導電型の2種類の半導体を、媒質内波長の4分
の1の厚さで交互に形成した半導体多層膜と、該半導体
多層膜にバイアス電圧印加する電極部とを備え、前記導
電型がn型の場合は前記半導体のワイドバンドギャップ
半導体の中のバイアス電圧の−(マイナス)側のヘテロ
界面近傍に、前記導電型がp型の場合は前記半導体のワ
イドギャップ半導体の中のバイアス電圧の+(プラス)
側のヘテロ界面近傍に、数原子層程度の幅のδ(デル
タ)関数的な高濃度不純物ドーピング領域を有すること
を特徴とする半導体多層反射膜。
1. A semiconductor multilayer film in which two types of semiconductors of the same conductivity type having different refractive indices and band gap energies are alternately formed with a thickness of a quarter of the wavelength in a medium, and a bias is applied to the semiconductor multilayer film. An electrode portion for applying a voltage, wherein the conductivity type is n-type, near the hetero-interface on the negative side of the bias voltage in the wide band gap semiconductor of the semiconductor, and when the conductivity type is p-type. Is + (plus) of the bias voltage in the wide gap semiconductor of the semiconductor.
Characterized in that it has a δ (delta) function high-concentration impurity doping region having a width of about several atomic layers near the hetero interface on the side of the semiconductor multilayer reflection film.
【請求項2】 面発光素子の半導体多層反射膜であっ
て、屈折率とバンドギャップエネルギーが異なる同一導
電型の2種類の半導体を媒質内波長の4分の1の厚さで
交互に形成した、活性層をはさむ一対の半導体多層膜
と、該半導体多層膜にバイアス電圧印加する電極部とを
備え、前記一対の半導体多層膜は導電型が異なり、導電
型がn型の半導体多層膜のワイドバンドギャップ半導体
の中のバイアス電圧の−側のヘテロ界面近傍に、または
前記導電型がp型の半導体多層膜のワイドギャップ半導
体の中のバイアス電圧の+側のヘテロ界面近傍に、また
はその両方に、数原子層程度の幅のδ関数的な高濃度不
純物ドーピング領域を有すること特徴とする半導体多層
反射膜。
2. A semiconductor multilayer reflective film of a surface emitting device, wherein two types of semiconductors of the same conductivity type having different refractive indices and band gap energies are alternately formed with a thickness of 分 の of the wavelength in the medium. A pair of semiconductor multilayer films sandwiching an active layer, and an electrode portion for applying a bias voltage to the semiconductor multilayer films, wherein the pair of semiconductor multilayer films have different conductivity types, and a wide type of n-type semiconductor multilayer film. In the vicinity of the hetero interface on the negative side of the bias voltage in the bandgap semiconductor, or near the hetero interface on the positive side of the bias voltage in the wide gap semiconductor of the p-type semiconductor multilayer film, or both. A semiconductor multi-layer reflective film having a δ-function high-concentration impurity-doped region having a width of about several atomic layers.
JP64491A 1990-11-14 1991-01-08 Semiconductor multilayer reflective film Expired - Lifetime JP2699661B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP64491A JP2699661B2 (en) 1991-01-08 1991-01-08 Semiconductor multilayer reflective film
US07/791,264 US5237581A (en) 1990-11-14 1991-11-13 Semiconductor multilayer reflector and light emitting device with the same
US07/817,620 US5208820A (en) 1991-01-08 1992-01-07 Optical device with low-resistive multi-level reflecting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP64491A JP2699661B2 (en) 1991-01-08 1991-01-08 Semiconductor multilayer reflective film

Publications (2)

Publication Number Publication Date
JPH06140721A JPH06140721A (en) 1994-05-20
JP2699661B2 true JP2699661B2 (en) 1998-01-19

Family

ID=11479415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP64491A Expired - Lifetime JP2699661B2 (en) 1990-11-14 1991-01-08 Semiconductor multilayer reflective film

Country Status (1)

Country Link
JP (1) JP2699661B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19523181A1 (en) * 1994-07-05 1996-01-11 Motorola Inc Controlling selected carbon@ doping concn.
JP2914309B2 (en) * 1996-08-20 1999-06-28 日本電気株式会社 Distributed Bragg reflector and method of manufacturing the same
DE19723677A1 (en) 1997-06-05 1998-12-10 Siemens Ag Optoelectronic semiconductor component
JP4188750B2 (en) * 2003-05-12 2008-11-26 豊田合成株式会社 Light emitting element
JP6490334B2 (en) * 2013-06-28 2019-03-27 日亜化学工業株式会社 Semiconductor laser element
CN104022199B (en) * 2014-05-30 2017-05-03 华灿光电(苏州)有限公司 Epitaxial structure of light emitting diode
JP6820146B2 (en) * 2015-12-25 2021-01-27 スタンレー電気株式会社 Vertical resonator type light emitting element
WO2023171150A1 (en) * 2022-03-11 2023-09-14 ソニーセミコンダクタソリューションズ株式会社 Vertical resonator surface emission laser

Also Published As

Publication number Publication date
JPH06140721A (en) 1994-05-20

Similar Documents

Publication Publication Date Title
US5237581A (en) Semiconductor multilayer reflector and light emitting device with the same
US5892787A (en) N-drive, p-common light-emitting devices fabricated on an n-type substrate and method of making same
US5724376A (en) Transparent substrate vertical cavity surface emitting lasers fabricated by semiconductor wafer bonding
KR100523484B1 (en) Method for fabricating semiconductor optical devices having current-confined structure
US5392307A (en) Vertical optoelectronic semiconductor device
JPH0418476B2 (en)
JPS6384186A (en) Transverse junction stripe laser
WO2002045223A1 (en) Nitride compound semiconductor vertical-cavity surface-emitting laser
US5208820A (en) Optical device with low-resistive multi-level reflecting structure
JP2699661B2 (en) Semiconductor multilayer reflective film
JPH05283808A (en) Surface light-emitting layser having low-resistance bragg reflection layer
US20040245536A1 (en) Laminated semiconductor substrate and optical semiconductor element
US5475700A (en) Laser diode with electron and hole confinement and barrier layers
JP2940644B2 (en) Surface light emitting device
US7058112B2 (en) Indium free vertical cavity surface emitting laser
JP2757633B2 (en) Surface emitting semiconductor laser
EP0791990A1 (en) Low resistance p-down top emitting ridge VCSEL and method of fabrication
JP2812024B2 (en) Manufacturing method of surface emitting element
JPH05327121A (en) Surface emitting type semiconductor laser
JP2591333B2 (en) Semiconductor light emitting device
JP2855934B2 (en) Surface emitting semiconductor laser
JP2893990B2 (en) Semiconductor laser and manufacturing method thereof
JPH06196804A (en) Surface emitting type semiconductor laser element
JPH05343796A (en) Surface emission-type semiconductor laser
JP2001168462A (en) Semiconductor multilayer film reflecting mirror and semiconductor light-emitting element using the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970826

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080926

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090926

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100926

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 14