JPH06196804A - Surface emitting type semiconductor laser element - Google Patents

Surface emitting type semiconductor laser element

Info

Publication number
JPH06196804A
JPH06196804A JP34246892A JP34246892A JPH06196804A JP H06196804 A JPH06196804 A JP H06196804A JP 34246892 A JP34246892 A JP 34246892A JP 34246892 A JP34246892 A JP 34246892A JP H06196804 A JPH06196804 A JP H06196804A
Authority
JP
Japan
Prior art keywords
semiconductor
layer
type
semiconductor layer
reflecting mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34246892A
Other languages
Japanese (ja)
Other versions
JP3123846B2 (en
Inventor
Teruaki Miyake
輝明 三宅
Akira Ibaraki
晃 茨木
Kotaro Furusawa
浩太郎 古沢
Toru Ishikawa
徹 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP04342468A priority Critical patent/JP3123846B2/en
Publication of JPH06196804A publication Critical patent/JPH06196804A/en
Application granted granted Critical
Publication of JP3123846B2 publication Critical patent/JP3123846B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18322Position of the structure
    • H01S5/18327Structure being part of a DBR
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2222Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties
    • H01S5/2224Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties semi-insulating semiconductors

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To provide a surface emitting type semiconductor laser element with a semiconductor multilayer-film reflecting mirror film having low resistance and enabling high reflectivity. CONSTITUTION:A double hetero-structure section consisting of an n-type Ga0.6Al0.4As first clad layer, a p-type GaAs active layer formed onto said first clad layer and a p-type Ga0.6Al0.4As second clad layer 5 formed onto said active layer is provided, and a second semiconductor multilayer-film reflecting mirror 7, in which p-type AlAs first semiconductor layers 7a and a p-type Ga0.85Al0.15As second semiconductor layer 7b are laminated alternately through i-type Ga0.85 Al0.15As second semiconductor layer 7c, is formed onto the double hetero-structure section.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は面発光型半導体レーザ素
子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface emitting semiconductor laser device.

【0002】[0002]

【従来の技術】近年、半導体レーザ素子は光情報機器や
光通信機器等の光エレクトロニクスにおける光源として
利用されており、活発に研究開発されている。最近、電
子デバイスの集積化等の要求に伴って、基板上に半導体
層をエピタキシャル成長させ、この基板面に対して垂直
な方向からレーザ光を取り出す面発光型半導体レーザ素
子が開発されている。斯る半導体レーザ素子は、例えば
オーム社発行の「面発光レーザ」(1990年9月25日発
行)に記載されている。
2. Description of the Related Art In recent years, semiconductor laser devices have been used as light sources in optical electronics such as optical information devices and optical communication devices, and have been actively researched and developed. Recently, with the demand for integration of electronic devices, etc., a surface-emitting type semiconductor laser device has been developed in which a semiconductor layer is epitaxially grown on a substrate and laser light is extracted from a direction perpendicular to the substrate surface. Such a semiconductor laser device is described, for example, in "Surface emitting laser" (published September 25, 1990) published by Ohmsha.

【0003】斯る面発光半導体レーザ素子は、光共振器
を構成するために活性層の上下方向にそれぞれ反射鏡を
有している。この反射鏡としては、例えば発振波長に対
応するエネルギー(ここで、発振波長に対応するエネル
ギーとは発振波長をエネルギーに換算したそのエネルギ
ーのことである)より大きなバンドギャップエネルギー
(大きなエネルギーのバンドギャップ)を有する半導体
層からなる半導体多層膜反射鏡が用いられており、第1
半導体層と該第1半導体層に比べてバンドギャップエネ
ルギーが小さい第2半導体層、即ち屈折率差がある第1
半導体層と第2半導体層とが交互に積層されて構成され
ている。
Such a surface-emitting semiconductor laser device has reflecting mirrors above and below the active layer in order to form an optical resonator. As this reflecting mirror, for example, the energy corresponding to the oscillation wavelength (here, the energy corresponding to the oscillation wavelength is the energy obtained by converting the oscillation wavelength into energy) is larger than the bandgap energy (the bandgap of large energy). ) Is used to form a semiconductor multilayer film reflecting mirror, and
The second semiconductor layer having a smaller bandgap energy than the semiconductor layer and the first semiconductor layer, that is, the first semiconductor layer having a refractive index difference.
The semiconductor layers and the second semiconductor layers are alternately stacked.

【0004】図4に従来のAlGaAs系面発光半導体
レーザ素子の断面図を示す。
FIG. 4 is a sectional view of a conventional AlGaAs surface emitting semiconductor laser device.

【0005】21はn型GaAs基板であり、該n型G
aAs基板21上にはn型半導体多層膜反射鏡(n型G
0.85Al0.15As第2半導体層/n型AlAs第1半
導体層の30ペア)22、n型Ga0.6Al0.4Asクラ
ッド層23、p型GaAs活性層24、p型Ga0.6
0.4Asクラッド層25からなるヘテロ接合部26が
形成されている。このヘテロ接合部26上にはp型半導
体多層膜反射鏡(p型Ga0.85Al0.15As第2半導体
層/p型AlAs第1半導体層の25ペア)27、p型
Ga0.85Al0.15Asコンタクト層28がこの順序に構
成されている。
Reference numeral 21 is an n-type GaAs substrate.
An n-type semiconductor multilayer film reflecting mirror (n-type G
a 0.85 Al 0.15 As second semiconductor layer / n-type AlAs first semiconductor layer 30 pair) 22, n-type Ga 0.6 Al 0.4 As clad layer 23, p-type GaAs active layer 24, p-type Ga 0.6 A
A heterojunction portion 26 made of 0.4 As cladding layer 25 is formed. On this heterojunction 26, a p-type semiconductor multilayer film reflecting mirror (25 pairs of p-type Ga 0.85 Al 0.15 As second semiconductor layer / p-type AlAs first semiconductor layer) 27, p-type Ga 0.85 Al 0.15 As contact layer 28 are arranged in this order.

【0006】前記p型半導体多層膜反射鏡27には、そ
の中央部と上部側を除いてH+イオン(水素イオン)が
注入されてなるH+イオン注入電流ブロック部29が形
成されている。前記p型コンタクト層28の上面には光
取り出し口となる中央部を除いてp型側オーミック電極
30が形成され、前記n型GaAs基板21の下面全域
にはn型側オーミック電極31が形成されている。
The p-type semiconductor multilayer film reflecting mirror 27 is provided with an H + ion implantation current block portion 29 into which H + ions (hydrogen ions) are implanted except for the central portion and the upper side thereof. A p-type ohmic electrode 30 is formed on the upper surface of the p-type contact layer 28 except for a central portion serving as a light extraction port, and an n-type ohmic electrode 31 is formed on the entire lower surface of the n-type GaAs substrate 21. ing.

【0007】[0007]

【発明が解決しようとする課題】ところで、斯る半導体
多層膜反射鏡は、高屈折率化を図るために、屈折率差が
大きい、即ちバンドギャップのエネルギーEgの差が大
きい第1半導体層と第2半導体層とが選択される。しか
しながら、図5にp型AlAs第1半導体層とp型Ga
0.85Al0.15As第2半導体層の接合のバンドエネルギ
ー図を示すように、バンドギャップのエネルギーEg
差が大きい第1半導体層と第2半導体層では、その接合
部で生じるヘテロ障壁幅Wが大きくなるので、該ヘテロ
障壁をトンネル効果により透過する電流(p型の場合は
ホール)の確率が小さくなり、抵抗が非常に高くなると
いった問題があった。この結果、特に上記p型半導体多
層膜反射鏡27で電流が殆ど流れず、また電流が流れる
場合でも発振閾値電流の増大、又熱による素子特性の劣
化を招いていた。
By the way, in order to increase the refractive index, such a semiconductor multilayer film reflecting mirror has a large refractive index difference, that is, a large difference in bandgap energy E g. And the second semiconductor layer are selected. However, the p-type AlAs first semiconductor layer and the p-type Ga are shown in FIG.
As shown in the band energy diagram of the junction of the 0.85 Al 0.15 As second semiconductor layer, in the first semiconductor layer and the second semiconductor layer having a large difference in band gap energy E g , the hetero barrier width W generated at the junction is Since it becomes large, there is a problem that the probability of a current (hole in the case of p-type) passing through the hetero barrier due to the tunnel effect becomes small and the resistance becomes extremely high. As a result, in particular, almost no current flows through the p-type semiconductor multilayer film reflecting mirror 27, and even when a current flows, the oscillation threshold current increases and the element characteristics deteriorate due to heat.

【0008】この問題を解決するために、半導体多層膜
反射鏡のキャリア濃度を高める方法があるが、斯る方法
では光の吸収損失が増加するため反射率が低下するとい
った問題があった。また、組成比に勾配を持たせた半導
体多層膜反射鏡膜でも、同様に反射率が低下するといっ
た新たな問題があった。
In order to solve this problem, there is a method of increasing the carrier concentration of the semiconductor multilayer film reflecting mirror, but such a method has a problem that the reflectance is lowered because the absorption loss of light increases. In addition, even in the semiconductor multilayer film reflecting mirror film having a gradient in the composition ratio, there is a new problem that the reflectance is similarly reduced.

【0009】本発明は上述の種々の問題点を鑑み成され
たものであり、低抵抗で且つ高反射率可能な半導体多層
膜反射鏡膜を有する半導体レーザ素子を提供することを
目的とする。
The present invention has been made in view of the above-mentioned various problems, and an object of the present invention is to provide a semiconductor laser device having a semiconductor multilayer film reflecting mirror film having a low resistance and a high reflectance.

【0010】[0010]

【課題を解決するための手段】本発明の面発光型半導体
レーザ素子は、第1クラッド層と、該第1クラッド層上
に形成された活性層と、該活性層上に形成された第2ク
ラッド層と、からなるダブルヘテロ構造部を備え、該ダ
ブルヘテロ構造部の上下少なくとも一方側に発振波長に
対応するエネルギーより大きなバンドギャップエネルギ
ーを有する半導体層からなる半導体多層膜反射鏡を設け
た面発光型半導体レーザ素子において、前記半導体多層
膜反射鏡は、第1導電型の第1半導体層と、該第1半導
体層と同一導電型で且つ第1半導体層に比べてバンドギ
ャップが小さい第2半導体層とが、該第2半導体層と同
一組成で且つ層厚の小さいノンドープの第3半導体層を
介して交互に構成されたことを特徴とする。
A surface emitting semiconductor laser device of the present invention comprises a first clad layer, an active layer formed on the first clad layer, and a second layer formed on the active layer. A surface provided with a double heterostructure part composed of a clad layer and a semiconductor multilayer film reflecting mirror composed of a semiconductor layer having a bandgap energy larger than the energy corresponding to the oscillation wavelength on at least one of the upper and lower sides of the double heterostructure part. In the light emitting semiconductor laser device, the semiconductor multilayer film reflecting mirror includes a first semiconductor layer of a first conductivity type and a second semiconductor layer of the same conductivity type as the first semiconductor layer and having a smaller bandgap than the first semiconductor layer. The semiconductor layer and the second semiconductor layer are alternately arranged via the non-doped third semiconductor layer having the same composition as the second semiconductor layer and having a small layer thickness.

【0011】[0011]

【作用】本発明の構成のように、半導体多層膜反射鏡
が、第1導電型の第1半導体層と、該第1半導体層と同
一導電型で且つ第1半導体層に比べてバンドギャップが
小さい第2半導体層とが、該第2半導体層と同一組成で
且つ層厚の小さいノンドープの第3半導体層を介して交
互に構成される場合、第2半導体層と第3半導体層の接
合はホモ接合となると共に第1半導体層と第3半導体層
のヘテロ接合部のヘテロ障壁の幅を小さくでき、且つノ
ンドープの第3半導体層はその層厚が小さいので、半導
体多層膜反射鏡の高反射率化並びに低抵抗化が可能とな
る。
According to the configuration of the present invention, the semiconductor multilayer film reflecting mirror has the first semiconductor layer of the first conductivity type and the band gap which is the same conductivity type as the first semiconductor layer and which is larger than that of the first semiconductor layer. When the small second semiconductor layers are alternately formed via the non-doped third semiconductor layers having the same composition as the second semiconductor layers and the small thickness, the junction between the second semiconductor layers and the third semiconductor layers is Since the width of the hetero barrier at the hetero junction between the first semiconductor layer and the third semiconductor layer can be reduced and the non-doped third semiconductor layer has a small thickness, the high reflection of the semiconductor multilayer film reflecting mirror can be achieved. It is possible to reduce the resistance and the resistance.

【0012】[0012]

【実施例】以下、本発明に係る一実施例の面発光型半導
体レーザ素子について図1を参照しつつ説明する。尚、
図2(a)及び図2(b)はそれぞれ図1中の第1、第
2半導体多層膜反射鏡の要部拡大図である。
EXAMPLE A surface-emitting type semiconductor laser device according to an example of the present invention will be described below with reference to FIG. still,
2 (a) and 2 (b) are enlarged views of essential parts of the first and second semiconductor multilayer film reflecting mirrors in FIG. 1, respectively.

【0013】図中、1は600μm角のn型GaAs基
板である。この基板1面上には{発振波長λ/(4
1)}Å厚のn型AlAs第1半導体層(計31層)
2a、2a、・・・と{発振波長λ/(4n2)}Å厚
のn型Ga0.85Al0.15As第2半導体層(計30層)
2b、2b、・・・が交互に積層されてなる第1半導体
多層膜反射鏡2が作成されている。ここで、n1、n2
それぞれ第1、第2半導体層2a、2bの屈折率であ
る。
In the figure, 1 is a 600 μm square n-type GaAs substrate. On the surface of this substrate 1, {oscillation wavelength λ / (4
n 1 )} Å thick n-type AlAs first semiconductor layer (31 layers in total)
2a, 2a, ... and {oscillation wavelength λ / (4n 2 )} Åthick n-type Ga 0.85 Al 0.15 As second semiconductor layer (30 layers in total)
The first semiconductor multilayer film reflecting mirror 2 is formed by alternately stacking 2b, 2b, .... Here, n 1 and n 2 are the refractive indices of the first and second semiconductor layers 2a and 2b, respectively.

【0014】前記反射鏡2上には層厚1.5μmのn型
Ga0.6Al0.4As第1クラッド層3、層厚1μmのp
型GaAs活性層4、層厚1μmのp型Ga0.6Al0.4
As第2クラッド層5がこの順に積層されてダブルヘテ
ロ構造部6が形成されている。
An n-type Ga 0.6 Al 0.4 As first cladding layer 3 having a layer thickness of 1.5 μm and a p layer having a layer thickness of 1 μm are formed on the reflecting mirror 2.
-Type GaAs active layer 4, p-type Ga 0.6 Al 0.4 with a layer thickness of 1 μm
The As second cladding layer 5 is laminated in this order to form the double hetero structure portion 6.

【0015】前記第2クラッド層5上には、{発振波長
λ/(4n3)}Å厚のp型AlAs第1半導体層(キ
ャリア濃度2×1018cm-3、計26層)7a、7a、
・・・、{発振波長λ/(4n4)−2×t}Å厚のn
型Ga0.85Al0.15As第2半導体層(キャリア濃度2
×1018cm-3、計25層)7b、7b、・・・が層厚
tÅ厚のノンドープのi型Ga0.85Al0.15As第3半
導体層7c、7c、・・・を介して交互に積層されてな
る第2半導体多層膜反射鏡7が作成されている。ここ
で、n3、n4はそれぞれ第1、第2半導体層7a、7b
の屈折率であり、前記層厚tは本実施例では30Åであ
る。
On the second clad layer 5, a p-type AlAs first semiconductor layer (carrier concentration 2 × 10 18 cm -3 , total 26 layers) 7a having {oscillation wavelength λ / (4n 3 )} Å thickness, 7a,
..., {oscillation wavelength λ / (4n 4 ) -2 × t} Å thickness n
Type Ga 0.85 Al 0.15 As second semiconductor layer (carrier concentration 2
X10 18 cm -3 , 25 layers in total) 7b, 7b, ... are alternately laminated with non-doped i-type Ga 0.85 Al 0.15 As third semiconductor layers 7c, 7c, ... Having a layer thickness tÅ. The second semiconductor multilayer film reflecting mirror 7 thus obtained is created. Here, n 3 and n 4 are the first and second semiconductor layers 7a and 7b, respectively.
And the layer thickness t is 30Å in this embodiment.

【0016】前記第2半導体多層膜反射鏡7は、その中
央部の直径10μmの範囲を除いて第2クラッド層5か
ら0.5μm厚の範囲の導電型がn型となるH+ イオン
(水素イオン)注入電流ブロック部8が形成されてい
る。この第2半導体多層膜反射鏡7上には層厚0.5μ
mのp型Ga0.85As0.15Asコンタクト層9が形成さ
れている。前記コンタクト層9上にはその中央部の直径
10μmの範囲を除いてAu−Crからなるp型オーミ
ック電極10が形成され、前記n型GaAs基板1の下
面にはAu−Cr−Snからなるn型オーミック電極1
1が形成されている。
The second semiconductor multilayer film reflecting mirror 7 has H + ions (hydrogen) whose conductivity type is n-type in the range of 0.5 μm thickness from the second cladding layer 5 except for the diameter range of 10 μm in the central portion. (Ion) injection current block portion 8 is formed. A layer thickness of 0.5 μm is formed on the second semiconductor multilayer film reflecting mirror 7.
The m-type p-type Ga 0.85 As 0.15 As contact layer 9 is formed. A p-type ohmic electrode 10 made of Au-Cr is formed on the contact layer 9 except for a central portion having a diameter of 10 μm, and an n-type Au-Cr-Sn layer is formed on the lower surface of the n-type GaAs substrate 1. Ohmic electrode 1
1 is formed.

【0017】斯る半導体レーザ素子は、n型GaAs基
板1上に第1半導体多層膜反射鏡2、第1クラッド層
3、活性層4、第2クラッド層5、第2半導体多層膜反
射鏡7、コンタクト層9をMBE法(分子線エピタキシ
ャル成長法)又はMOCVD法(有機金属化学気相堆積
法)等により連続成長した後、H+イオンをマスクを介
して前記コンタクト層9側から第2半導体多層膜反射鏡
7の所定の範囲に注入して該範囲をn型導電性に変えて
+イオン注入電流ブロック部8を形成して作成する。
In such a semiconductor laser device, a first semiconductor multilayer film reflecting mirror 2, a first cladding layer 3, an active layer 4, a second cladding layer 5 and a second semiconductor multilayer film reflecting mirror 7 are provided on an n-type GaAs substrate 1. , The contact layer 9 is continuously grown by the MBE method (molecular beam epitaxial growth method) or the MOCVD method (metalorganic chemical vapor deposition method), and then H + ions are applied from the contact layer 9 side through the mask to the second semiconductor multilayer. It is formed by implanting into a predetermined range of the film reflecting mirror 7 and changing the range to n-type conductivity to form an H + ion implantation current block section 8.

【0018】斯る半導体レーザ素子は、前記第2半導体
多層膜反射鏡7が、第1半導体層7aと、該第1半導体
層7aと同一導電型で且つ第1半導体層7aに比べてバ
ンドギャップエネルギーが小さい第2半導体層7bと
が、該第2半導体層7bと等しい組成比、即ち等しいバ
ンドギャップエネルギーを有し且つ膜厚の小さいノンド
ープの第3半導体層7cを介して交互に構成されてい
る。
In such a semiconductor laser device, the second semiconductor multilayer film reflecting mirror 7 has the first semiconductor layer 7a, the same conductivity type as that of the first semiconductor layer 7a, and a band gap larger than that of the first semiconductor layer 7a. The second semiconductor layer 7b having a small energy is alternately formed via the non-doped third semiconductor layer 7c having the same composition ratio as the second semiconductor layer 7b, that is, the same bandgap energy and a small film thickness. There is.

【0019】この構成では、上述のようにバンドギャッ
プエネルギー差の大きい、即ち屈折率差が大きい第1、
第2半導体層7a、7bを選択できるので、この第2半
導体多層膜反射鏡7は従来と同等の98%以上の高反射
率となった。
In this structure, as described above, the band gap energy difference is large, that is, the refractive index difference is large.
Since the second semiconductor layers 7a and 7b can be selected, the second semiconductor multilayer film reflecting mirror 7 has a high reflectance of 98% or more, which is equivalent to the conventional one.

【0020】尚、Ga1-xAlxAs系ではAl組成比x
が大きい程バンドギャップのエネルギーEgが大きくな
るので、上述のように第1半導体層7aとして大きいA
l組成比xを有するGa1-xAlxAsを、第2半導体層
7bとして小さなAl組成比のGa1-xAlxAsを、そ
れぞれが発振波長の光を吸収しないように発振波長に対
応するエネルギーよりバンドギャップエネルギーが大き
くなる範囲内で該Al組成比の差が大きくなるように選
択して高屈折率化を図れる。
In the Ga 1 -x Al x As system, the Al composition ratio x
Is larger, the band gap energy E g is larger. Therefore, as described above, the larger A is used as the first semiconductor layer 7a.
The Ga 1-x Al x As with l composition ratio x, corresponding to Ga 1-x Al x As small Al composition ratio as the second semiconductor layer 7b, the oscillation wavelength such that each does not absorb light of the oscillation wavelength It is possible to increase the refractive index by selecting such that the difference in the Al composition ratio is large within a range in which the band gap energy is larger than the energy.

【0021】また、第2半導体多層膜反射鏡7の抵抗値
は2〜3Ωと小さい値となるので、該反射鏡7での発熱
を抑えられ、半導体レーザ素子の劣化を抑制できると共
にレーザ光発振閾値電流を小さくできた。
Further, since the resistance value of the second semiconductor multilayer film reflecting mirror 7 is as small as 2-3Ω, heat generation in the reflecting mirror 7 can be suppressed, and deterioration of the semiconductor laser element can be suppressed and laser light oscillation can be suppressed. The threshold current could be reduced.

【0022】このように第2半導体多層膜反射鏡7の抵
抗値を小さくできた理由を図3に示す第2半導体多層膜
反射鏡7のバンドエネルギー図を用いて説明する。図
中、E cは伝導帯の端のエネルギ準位、EVは価電子帯の
端のエネルギ準位、EFはフェルミ準位を示している。
Thus, the resistance of the second semiconductor multilayer film reflecting mirror 7 is
The reason why the resistance value can be reduced is shown in FIG.
This will be described with reference to the band energy diagram of the reflecting mirror 7. Figure
Medium, E cIs the energy level at the edge of the conduction band, EVIs the valence band
Edge energy level, EFIndicates the Fermi level.

【0023】前記第3半導体層7cがノンドープであっ
てそのフェルミ準位EFが、前記第1半導体層7aのフ
ェルミ準位EFに比べて高くなるため、該第1半導体層
7aのEVとEFのエネルギー差Epと、第3半導体層7
cのEVとEFのエネルギー差Eiとに大きなエネルギー
差が生じる。従って、第1、第3半導体層7a、7c間
のヘテロ接合部におけるヘテロ障壁の幅Xが、図5に示
す従来の第1、第2半導体層間ヘテロ接合部におけるヘ
テロ障壁の幅Wに比べて小さくなる。この結果、電流が
ヘテロ障壁をトンネル透過するトンネル確率が大きくな
るので、第2半導体多層膜反射鏡7は該ヘテロ障壁に起
因する抵抗が従来に比べて小さくなる。尚、前記第2半
導体層7bと第3半導体層7cは同一組成であるので、
これら層間はホモ接合になる。斯るホモ接合による障壁
は、エネルギー幅が小さいので、この障壁に起因する抵
抗の増加は殆どなく。更に前記第3半導体層7cは上述
のようにその層厚を十分小さくできるので、ノンドープ
であることに起因する抵抗の増加も無視できる。
Since the third semiconductor layer 7c is non-doped and its Fermi level E F is higher than the Fermi level E F of the first semiconductor layer 7a, E V of the first semiconductor layer 7a is increased. And the energy difference E p between E F and the third semiconductor layer 7
large energy difference and the energy difference E i of E V and E F of c occurs. Therefore, the width X of the heterobarrier in the heterojunction between the first and third semiconductor layers 7a and 7c is smaller than the width W of the heterobarrier in the conventional first and second semiconductor interlayer heterojunctions shown in FIG. Get smaller. As a result, the tunnel probability that the current tunnels through the hetero barrier increases, so that the resistance due to the hetero barrier in the second semiconductor multilayer film reflecting mirror 7 becomes smaller than in the conventional case. Since the second semiconductor layer 7b and the third semiconductor layer 7c have the same composition,
A homojunction is formed between these layers. Since the barrier formed by such a homojunction has a small energy width, there is almost no increase in resistance due to this barrier. Further, the thickness of the third semiconductor layer 7c can be made sufficiently small as described above, so that the increase in resistance due to being non-doped can be ignored.

【0024】従って、上述したように第2半導体多層膜
反射鏡7は、第1、第2半導体層7a、7bに係る反射
率を殆ど低減することなく、抵抗値を小さくできる。
Therefore, as described above, the second semiconductor multilayer film reflecting mirror 7 can reduce the resistance value without substantially reducing the reflectance of the first and second semiconductor layers 7a and 7b.

【0025】尚、前記第1半導体多層膜反射鏡2にも第
2半導体多層膜反射鏡7と同様に第1、第2半導体層2
a2b間に該第2半導体層2bと同じ組成で且つノンド
ープの第3半導体層を設けることにより、該第1半導体
多層膜反射鏡2の反射率を殆ど低下することなく低抵抗
化できる。
The first semiconductor multilayer film reflecting mirror 2 has the first and second semiconductor layers 2 similarly to the second semiconductor multilayer film reflecting mirror 7.
By providing a non-doped third semiconductor layer having the same composition as the second semiconductor layer 2b between a2b, it is possible to reduce the resistance of the first semiconductor multilayer film reflecting mirror 2 with almost no decrease.

【0026】尚、n型半導体多層膜反射鏡では移動度の
高い電子がキャリアとなり、p型半導体多層膜反射鏡で
は移動度の低いホールがキャリアとなるので、p型半導
体多層膜反射鏡に上述のようなi型層を設ける場合によ
り好ましい効果が得られる。
In the n-type semiconductor multilayer film reflecting mirror, electrons having high mobility serve as carriers, and in the p-type semiconductor multilayer film reflecting mirror, holes having low mobility serve as carriers. A more preferable effect can be obtained by providing such an i-type layer.

【0027】[0027]

【発明の効果】本発明の面発光型半導体レーザ素子は、
半導体多層膜反射鏡が第1導電型の第1半導体層と、該
第1半導体層と同一導電型で且つ第1半導体層に比べて
バンドギャップエネルギーが小さい第2半導体層とが、
該第2半導体層と等しいバンドギャップエネルギーを有
し且つ膜厚の小さいノンドープの第3半導体層を介して
交互に構成されるので、第2半導体層と第3半導体層の
接合部にはホモ接合になると共に第1半導体層と第2半
導体層の接合部のヘテロ障壁の幅を小さくでき、且つノ
ンドープの第3半導体層はその膜厚が小さいので、この
半導体多層膜反射鏡は半導体多層膜反射鏡の高反射率並
びに低抵抗となる。従って、レーザ素子の閾値電流の低
減が図れ、また熱による特性劣化を抑制できる。
The surface-emitting type semiconductor laser device of the present invention comprises:
The semiconductor multilayer film reflecting mirror includes a first semiconductor layer of a first conductivity type, and a second semiconductor layer of the same conductivity type as the first semiconductor layer and having a bandgap energy smaller than that of the first semiconductor layer.
Since the second semiconductor layer and the third semiconductor layer are alternately arranged with the non-doped third semiconductor layer having the same bandgap energy and the small film thickness, a homojunction is formed at the junction of the second semiconductor layer and the third semiconductor layer. In addition, since the width of the hetero barrier at the junction between the first semiconductor layer and the second semiconductor layer can be reduced, and the thickness of the non-doped third semiconductor layer is small, this semiconductor multilayer film reflection mirror High reflectance and low resistance of the mirror. Therefore, the threshold current of the laser element can be reduced, and the characteristic deterioration due to heat can be suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る一実施例の面発型半導体レーザ素
子の断面図である。
FIG. 1 is a sectional view of a surface emitting semiconductor laser device according to an embodiment of the present invention.

【図2】上記実施例に用いられる半導体多層膜反射鏡の
要部断面図である。
FIG. 2 is a cross-sectional view of a main part of a semiconductor multilayer film reflecting mirror used in the above-mentioned embodiment.

【図3】上記実施例に係る第2半導体多層膜反射鏡層の
エネルギーバンド構造の一部模式図である。
FIG. 3 is a partial schematic view of an energy band structure of a second semiconductor multilayer-film reflective mirror layer according to the above-mentioned embodiment.

【図4】従来例の面発光型半導体レーザ素子の断面図で
ある。
FIG. 4 is a cross-sectional view of a conventional surface emitting semiconductor laser device.

【図5】上記実施例の半導体多層膜反射鏡層のエネルギ
ーバンドの一部模式図である。
FIG. 5 is a partial schematic view of energy bands of the semiconductor multilayer-film reflective mirror layer of the above-mentioned embodiment.

【符号の説明】[Explanation of symbols]

1 n型GaAs基板 3 n型GaAlAs第1クラッド層 4 p型GaAs活性層 5 p型GaAlAs第2クラッド層 6 ダブルヘテロ構造部 7 第2半導体多層膜反射鏡 7a p型AlAs第1半導体層 7b p型GaAlAs第2半導体層 7c i型GaAlAs第2半導体層 1 n-type GaAs substrate 3 n-type GaAlAs first clad layer 4 p-type GaAs active layer 5 p-type GaAlAs second clad layer 6 double heterostructure part 7 second semiconductor multilayer film reflector 7a p-type AlAs first semiconductor layer 7b p -Type GaAlAs second semiconductor layer 7c i-type GaAlAs second semiconductor layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石川 徹 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Toru Ishikawa 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 第1クラッド層と、該第1クラッド層上
に形成された活性層と、該活性層上に形成された第2ク
ラッド層と、からなるダブルヘテロ構造部を備え、該ダ
ブルヘテロ構造部の上下少なくとも一方側に発振波長に
対応するエネルギーより大きなバンドギャップエネルギ
ーを有する半導体層からなる半導体多層膜反射鏡を設け
た面発光型半導体レーザ素子において、 前記半導体多層膜反射鏡は、第1導電型の第1半導体層
と、該第1半導体層と同一導電型で且つ第1半導体層に
比べてバンドギャップが小さい第2半導体層とが、該第
2半導体層と同一組成で且つ層厚の小さいノンドープの
第3半導体層を介して交互に構成されたことを特徴とす
る面発光型半導体レーザ素子。
1. A double heterostructure part comprising a first cladding layer, an active layer formed on the first cladding layer, and a second cladding layer formed on the active layer, the double heterostructure portion comprising: In a surface emitting semiconductor laser device provided with a semiconductor multilayer film reflecting mirror made of a semiconductor layer having a bandgap energy larger than the energy corresponding to the oscillation wavelength on at least one side of the heterostructure part, the semiconductor multilayer film reflecting mirror is The first semiconductor layer of the first conductivity type and the second semiconductor layer of the same conductivity type as the first semiconductor layer and having a smaller band gap than the first semiconductor layer have the same composition as the second semiconductor layer, and A surface-emitting type semiconductor laser device, wherein the surface-emitting type semiconductor laser device is configured by alternately interposing a non-doped third semiconductor layer having a small layer thickness.
JP04342468A 1992-12-22 1992-12-22 Surface emitting semiconductor laser device Expired - Fee Related JP3123846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04342468A JP3123846B2 (en) 1992-12-22 1992-12-22 Surface emitting semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04342468A JP3123846B2 (en) 1992-12-22 1992-12-22 Surface emitting semiconductor laser device

Publications (2)

Publication Number Publication Date
JPH06196804A true JPH06196804A (en) 1994-07-15
JP3123846B2 JP3123846B2 (en) 2001-01-15

Family

ID=18353977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04342468A Expired - Fee Related JP3123846B2 (en) 1992-12-22 1992-12-22 Surface emitting semiconductor laser device

Country Status (1)

Country Link
JP (1) JP3123846B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0748007A2 (en) * 1995-06-08 1996-12-11 Hewlett-Packard Company Surface-emitting lasers
WO1997018581A1 (en) * 1995-11-13 1997-05-22 Board Of Regents, The University Of Texas System Low threshold microcavity light emitter
US6370179B1 (en) 1996-11-12 2002-04-09 Board Of Regents, The University Of Texas System Low threshold microcavity light emitter
JP2002329928A (en) * 2001-02-27 2002-11-15 Ricoh Co Ltd Optical communication system
US10593831B2 (en) 2013-04-08 2020-03-17 Meijo University Nitride semiconductor multilayer film reflector and light-emitting device using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0748007A2 (en) * 1995-06-08 1996-12-11 Hewlett-Packard Company Surface-emitting lasers
EP0748007A3 (en) * 1995-06-08 1997-12-17 Hewlett-Packard Company Surface-emitting lasers
WO1997018581A1 (en) * 1995-11-13 1997-05-22 Board Of Regents, The University Of Texas System Low threshold microcavity light emitter
US6370179B1 (en) 1996-11-12 2002-04-09 Board Of Regents, The University Of Texas System Low threshold microcavity light emitter
JP2002329928A (en) * 2001-02-27 2002-11-15 Ricoh Co Ltd Optical communication system
US10593831B2 (en) 2013-04-08 2020-03-17 Meijo University Nitride semiconductor multilayer film reflector and light-emitting device using the same

Also Published As

Publication number Publication date
JP3123846B2 (en) 2001-01-15

Similar Documents

Publication Publication Date Title
US5513202A (en) Vertical-cavity surface-emitting semiconductor laser
US5724376A (en) Transparent substrate vertical cavity surface emitting lasers fabricated by semiconductor wafer bonding
US7522647B2 (en) Semiconductor laser and method of fabricating the same
US5637511A (en) Vertical-to-surface transmission electro-photonic device and method for fabricating the same
JPH03236295A (en) Vertical cavity semiconductor laser device
EP1459417B1 (en) Asymmetric distributed bragg reflector for vertical cavity surface emitting lasers
JP2863773B2 (en) Surface-emitting type semiconductor laser device
JP2980435B2 (en) Semiconductor device
JPH05283791A (en) Surface emission type semiconductor laser
JP2000196189A (en) Surface-emission semiconductor laser
JPH04225588A (en) Semiconductor laser structure
JP2618610B2 (en) Vertical cavity surface emitting semiconductor laser
EP0501246B1 (en) Opto-electronic switch device
JP3123846B2 (en) Surface emitting semiconductor laser device
JPH08181384A (en) Surface emitting laser and its forming method
JP2757633B2 (en) Surface emitting semiconductor laser
JPH07307525A (en) Surface emission semiconductor laser
GB2347559A (en) Wafer bonded vertical cavity surface emitting lasers
JP2901921B2 (en) Semiconductor laser device
JPH04252083A (en) Semiconductor light-emitting element
JP3223969B2 (en) Semiconductor laser
JP2555984B2 (en) Semiconductor laser and manufacturing method thereof
JPH0685385A (en) Semiconductor laser
JPH0513872A (en) Hetero junction type semiconductor laser
CN115036789A (en) GaAs-based high-speed vertical cavity surface emitting laser based on type-II tunnel junction

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071027

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20081027

LAPS Cancellation because of no payment of annual fees