JPH07307525A - Surface emission semiconductor laser - Google Patents

Surface emission semiconductor laser

Info

Publication number
JPH07307525A
JPH07307525A JP10106594A JP10106594A JPH07307525A JP H07307525 A JPH07307525 A JP H07307525A JP 10106594 A JP10106594 A JP 10106594A JP 10106594 A JP10106594 A JP 10106594A JP H07307525 A JPH07307525 A JP H07307525A
Authority
JP
Japan
Prior art keywords
layer
semiconductor laser
multilayer film
gaas
surface emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10106594A
Other languages
Japanese (ja)
Inventor
Kazunori Shinoda
和典 篠田
Kazuhisa Uomi
和久 魚見
Kiyohisa Hiramoto
清久 平本
Misuzu Sagawa
みすず 佐川
Tomonobu Tsuchiya
朋信 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10106594A priority Critical patent/JPH07307525A/en
Publication of JPH07307525A publication Critical patent/JPH07307525A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To provide a surface emission semiconductor laser having a strained quantum well active layer of low element resistance and excellent crystallizability. CONSTITUTION:A multilayer structure, in which an active layer 4 is pinched by an n-type semiconductor multilayer film reflecting mirror 2 whereon an n-type InGaP layer and an n-type GaAs layer are alternately formed and a p-type semiconductor multilayer film reflecting mirror 6, whereon a p-type InGaP layer and a p-type GaAs layer are alternately formed, is arranged on an n-type GaAs substrate 1, and an InGaAsP layer having an inhibit band width, which is an intermediate on of an InGaP forbidden band width and GaAs inhibit band width, is provided in the surface emission semiconductor laser. A dielectric multilayer film reflecting mirror may be used as one of the semiconductor multilayer reflecting mirrors.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、面発光半導体レーザに
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface emitting semiconductor laser.

【0002】[0002]

【従来の技術】従来のInGaAs量子井戸活性層を有
する0.98μm帯面発光半導体レーザは、その半導体
多層膜反射鏡がAlAsとGaAsの組み合わせで形成
されていた。しかし、AlAsは酸化、潮解現象により
素子の信頼性に支障をきたす可能性があった。これに対
し、Alを含まないInGaPとGaAsを組み合わせ
た半導体多層膜反射鏡を用い、GaAs基板上へ作製し
た帯面発光半導体レーザが、エレクトロニクス レター
ズ、第29巻 第1854〜1855頁(1993年)
(Electronics Letters,vol.
29,pp.1854〜1855,1993)に報告さ
れている。
2. Description of the Related Art In a conventional 0.98 μm band-emission semiconductor laser having an InGaAs quantum well active layer, its semiconductor multilayer mirror is formed of a combination of AlAs and GaAs. However, AlAs may impair the reliability of the device due to oxidation and deliquescent phenomena. On the other hand, a surface emitting semiconductor laser fabricated on a GaAs substrate by using a semiconductor multi-layered film reflection mirror in which Al-free InGaP and GaAs are combined is described in Electronics Letters, Vol. 29, pp. 1854 to 1855 (1993).
(Electronics Letters, vol.
29, pp. 1854-1855, 1993).

【0003】[0003]

【発明が解決しようとする課題】上記従来のInGaP
とGaAsを組み合わせた半導体多層膜反射鏡を用いた
0.98μm帯面発光半導体レーザは、以下の二つの問
題があった。まず、図2(a)に示すように、半導体多
層膜反射鏡を形成しているInGaPとGaAsの間の
ヘテロ障壁が大きく、かつ、InGaPとGaAsの屈
折率差が0.3であり、AlAsとGaAsのそれが
0.6であるのに比べて低く、高い反射率を得るには半
導体多層膜の周期数が40周期となるため、素子抵抗が
大きくなり、このため、発熱により高出力動作及び高温
連続動作が妨げられる。
[Problems to be Solved by the Invention] The above-mentioned conventional InGaP
The 0.98 μm band surface emitting semiconductor laser using the semiconductor multilayer film reflecting mirror in which GaAs and GaAs are combined has the following two problems. First, as shown in FIG. 2A, the hetero barrier between InGaP and GaAs forming the semiconductor multilayer film reflection mirror is large, and the difference in the refractive index between InGaP and GaAs is 0.3. And that of GaAs are lower than those of 0.6, and in order to obtain a high reflectance, the number of cycles of the semiconductor multilayer film is 40, which increases the element resistance. And high temperature continuous operation is hindered.

【0004】もう一つの問題は、有機金属気相成長法や
ケミカルビームエピタキシー法等により、InGaP層
とGaAs層を組み合わせた半導体多層膜を成長させる
と、両層のV族元素が異なるため、成長表面でAsとP
が置換することにより組成の不均一な歪み層が形成され
る。これに伴い格子欠陥が生成し、InGaAs歪量子
井戸層の結晶性が悪化する。
Another problem is that when a semiconductor multi-layer film in which an InGaP layer and a GaAs layer are combined is grown by a metal organic chemical vapor deposition method, a chemical beam epitaxy method, etc., the group V elements of both layers are different, so that the growth As and P on the surface
Is replaced, a strained layer having a non-uniform composition is formed. Along with this, lattice defects are generated, and the crystallinity of the InGaAs strained quantum well layer is deteriorated.

【0005】本発明の目的は、素子抵抗が小さく、良好
な結晶性の歪量子井戸活性層を有する0.98μm帯面
発光半導体レーザを提供することにある。
An object of the present invention is to provide a 0.98 μm band surface emitting semiconductor laser having a strained quantum well active layer having a small element resistance and good crystallinity.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の面発光半導体レーザは、光を発生する活性
層をn型のInGaP層とn型のGaAs層が交互に積
層された第1の半導体多層膜反射鏡と、p型のInGa
P層とp型のGaAs層が交互に積層された第2の半導
体多層膜反射鏡とで挟んだ積層構造を半導体基板上に配
置し、その第1及び第2の半導体多層膜反射鏡のそれぞ
れのInGaP層とGaAs層との間の少なくとも一つ
に、InGaPの禁止帯幅とGaAsの禁止帯幅の中間
的な禁止帯幅を持つInGaAsP層を設けるようにし
たものである。
In order to achieve the above object, in a surface emitting semiconductor laser of the present invention, an active layer for generating light has an n-type InGaP layer and an n-type GaAs layer alternately laminated. First semiconductor multilayer film reflecting mirror and p-type InGa
A laminated structure sandwiched by a second semiconductor multilayer film reflecting mirror in which P layers and p-type GaAs layers are alternately laminated is arranged on a semiconductor substrate, and each of the first and second semiconductor multilayer film reflecting mirrors is arranged. The InGaAsP layer having an intermediate band gap between the band gap of InGaP and the band gap of GaAs is provided in at least one of the InGaP layer and the GaAs layer.

【0007】さらに上記目的を達成するために、本発明
の面発光半導体レーザは、光を発生する活性層を、In
GaP層とGaAs層が交互に積層された半導体多層膜
反射鏡と、誘電体多層膜反射鏡とで挟んだ積層構造を半
導体基板上に配置し、その半導体多層膜反射鏡のInG
aP層とGaAs層との間の少なくとも一つに、InG
aPの禁止帯幅とGaAsの禁止帯幅の中間的な禁止帯
幅を持つInGaAsP層を設けるようにしたものであ
る。
Further, in order to achieve the above object, the surface emitting semiconductor laser of the present invention has an active layer for generating light
A laminated structure sandwiched between a semiconductor multilayer film reflecting mirror in which GaP layers and GaAs layers are alternately laminated and a dielectric multilayer film reflecting mirror is arranged on a semiconductor substrate, and InG of the semiconductor multilayer film reflecting mirror is arranged.
InG is formed on at least one of the aP layer and the GaAs layer.
An InGaAsP layer having a bandgap intermediate between the bandgap of aP and the bandgap of GaAs is provided.

【0008】この半導体多層膜反射鏡は、屈折率の異な
る少なくとも2層の半導体層を、例えば、30周期から
50周期積層して構成する。また、InGaP層やIn
GaAsP層の組成は、その格子定数が半導体基板の格
子定数の±0.2%以内の値となるような組成とするこ
とが好ましい。例えば、半導体基板がGaAsであると
き、In0.45Ga0.552PからIn0.52Ga0.48Pの組
成範囲の化合物の格子定数は、GaAs基板の格子定数
の±0.2%以内であり、このような組成とすることが
好ましい。
This semiconductor multilayer film reflecting mirror is constructed by laminating at least two semiconductor layers having different refractive indexes, for example, 30 to 50 cycles. In addition, InGaP layer and In
The composition of the GaAsP layer is preferably such that its lattice constant is within ± 0.2% of the lattice constant of the semiconductor substrate. For example, when the semiconductor substrate is GaAs, the lattice constant of the compound in the composition range of In 0.45 Ga 0.552 P to In 0.52 Ga 0.48 P is within ± 0.2% of the lattice constant of the GaAs substrate. It is preferable that

【0009】[0009]

【作用】以下、本発明の作用について、図2(b)を用
いて説明する。n型の半導体多層膜反射鏡を形成するI
nGaP層とGaAs層との間に、両層の禁止帯幅の中
間的な禁止帯幅を持つn型のInGaAsP層を形成す
ると、伝導帯側バンド端不連続エネルギー値は小さくな
り、図2(b)の如く、電子に対するヘテロ障壁の高さ
は低減し、その結果、n型の半導体多層膜反射鏡部での
抵抗を大幅に低減できる。一方、p型の半導体多層膜反
射鏡を形成するInGaP層とGaAs層との間に、両
層の禁止帯幅の中間的な禁止帯幅を持つp型のInGa
AsP層を形成すると、上記と同様な理由で価電子帯側
バンド端不連続エネルギー値は小さくなり、p型の半導
体多層膜反射鏡部での抵抗を大幅に低減できる。
The operation of the present invention will be described below with reference to FIG. Forming an n-type semiconductor multilayer film reflector I
When an n-type InGaAsP layer having a forbidden band width intermediate between the forbidden band widths of the both layers is formed between the nGaP layer and the GaAs layer, the band edge discontinuity energy value on the conduction band side becomes small, as shown in FIG. As in the case of b), the height of the hetero barrier against electrons is reduced, and as a result, the resistance in the n-type semiconductor multilayer film reflection mirror section can be significantly reduced. On the other hand, between the InGaP layer and the GaAs layer forming the p-type semiconductor multilayer film reflection mirror, a p-type InGa having a forbidden band width intermediate between the forbidden band widths of both layers is formed.
When the AsP layer is formed, the band edge discontinuity energy value on the valence band side is reduced for the same reason as above, and the resistance in the p-type semiconductor multilayer film reflection mirror portion can be significantly reduced.

【0010】また、V族元素がPであるInGaP層と
V族元素がAsであるGaAs層との間に、両方のV族
元素を含むInGaAsP層を挟むことで、有機金属気
相成長法による結晶成長の際に成長表面でAsとPが置
換することによる歪み層の形成を低減することができ
る。
Further, by interposing an InGaAsP layer containing both V group elements between an InGaP layer in which the V group element is P and a GaAs layer in which the V group element is As, the metal organic chemical vapor deposition method is used. It is possible to reduce the formation of a strained layer due to the substitution of As and P on the growth surface during crystal growth.

【0011】ところが、InGaAsP層を挟む場合で
も、成長温度を650℃とし、InGaAsP層の組成
波長を760nm未満にした場合は、非混和性の影響を
受けて均質な結晶を得ることが困難である。また、In
GaAsP層の組成波長が790nmを越える場合は、
ヘテロ障壁の高さを低減する効果が弱くなる。従って、
InGaAsP層の組成波長を760から790nmと
すると、直列抵抗の低い良質な半導体多層膜反射鏡が実
現できる。これは、この層をIn1-xGaxAsy1-y
表すとき、x=0.79〜0.92に相当する。
However, even when sandwiching the InGaAsP layer, if the growth temperature is 650 ° C. and the composition wavelength of the InGaAsP layer is less than 760 nm, it is difficult to obtain a homogeneous crystal due to the influence of immiscibility. . Also, In
When the composition wavelength of the GaAsP layer exceeds 790 nm,
The effect of reducing the height of the hetero barrier is weakened. Therefore,
When the composition wavelength of the InGaAsP layer is 760 to 790 nm, a high-quality semiconductor multilayer film reflecting mirror with low series resistance can be realized. This corresponds to x = 0.79 to 0.92 when this layer is represented by In 1-x Ga x As y P 1-y .

【0012】また、InGaP層の光学的厚さn11
InGaAsP層の光学的厚さn22の和及びGaAs
層の光学的厚さn33とInGaAsP層の光学的厚さ
22の和を、それぞれL/4(L:発振波長、n1
3:各層の屈折率、d1〜d3:各層の膜厚)とした周
期構造を構成することで、半導体多層膜反射鏡の反射率
は高く設定でき、レーザ発振に対する共振器として有効
に作用させることができる。
Further, the sum of the optical thickness n 1 d 1 of the InGaP layer and the optical thickness n 2 d 2 of the InGaAsP layer and GaAs
The sum of the optical thickness n 3 d 3 of the layer and the optical thickness n 2 d 2 of the InGaAsP layer is L / 4 (L: oscillation wavelength, n 1 ~
By forming a periodic structure in which n 3 is the refractive index of each layer and d 1 to d 3 is the thickness of each layer), the reflectance of the semiconductor multilayer film reflecting mirror can be set high, and it is effective as a resonator for laser oscillation. Can be operated.

【0013】[0013]

【実施例】以下、本発明の実施例を図1、3、4を用い
て説明する。 〈実施例1〉図1は本発明のInGaAs歪単一量子井
戸活性層を有する0.98μm帯面発光半導体レーザの
模式的断面図である。n型GaAs基板1上に、GaA
sに格子整合した層厚56nmのn−In0.48Ga0.52
Pと層厚20nmのn−InGaAsP(組成波長76
0nm)の組合せと、層厚50nmのn−GaAsと層
厚20nmのn−InGaAsP(組成波長760n
m)の組合せを交互に積層した周期構造(40周期)か
らなるn型半導体多層膜反射鏡2、n−InGaAsP
スペーサ層3、In0.2Ga0.8As活性層4、p−In
GaAsPスペーサ層5、GaAsに格子整合した層厚
56nmのp−In0.48Ga0.52Pと層厚20nmのp
−InGaAsP(組成波長760nm)の組合せと、
層厚50nmのp−GaAsと層厚20nmのp−In
GaAsP(組成波長760nm)の組合せを交互に積
層した周期構造(30周期)からなるp型半導体多層膜
反射鏡6を有機金属気相成長法により順次形成する。な
お、組成波長760nmのInGaAsPの組成は、I
0.18Ga0.82As0.640.36であり、GaAsに±
0.2%の範囲で格子整合している。
Embodiments of the present invention will be described below with reference to FIGS. Example 1 FIG. 1 is a schematic cross-sectional view of a 0.98 μm band surface emitting semiconductor laser having an InGaAs strained single quantum well active layer of the present invention. GaA on the n-type GaAs substrate 1
n-In 0.48 Ga 0.52 with a layer thickness of 56 nm lattice-matched to s
P and n-InGaAsP with a layer thickness of 20 nm (composition wavelength: 76
0 nm), a layer thickness of 50 nm n-GaAs and a layer thickness of 20 nm n-InGaAsP (composition wavelength 760 n
m) n-type semiconductor multilayer film reflecting mirror 2 having a periodic structure (40 periods) in which combinations of layers are alternately laminated, n-InGaAsP
Spacer layer 3, In 0.2 Ga 0.8 As active layer 4, p-In
The GaAsP spacer layer 5, p-In 0.48 Ga 0.52 P having a layer thickness of 56 nm lattice-matched to GaAs and the p layer having a layer thickness of 20 nm.
-InGaAsP (composition wavelength 760 nm) combination,
P-GaAs with a layer thickness of 50 nm and p-In with a layer thickness of 20 nm
A p-type semiconductor multilayer film reflecting mirror 6 having a periodic structure (30 periods) in which a combination of GaAsP (composition wavelength 760 nm) is alternately laminated is sequentially formed by a metal organic chemical vapor deposition method. The composition of InGaAsP having a composition wavelength of 760 nm is I
n 0.18 Ga 0.82 As 0.64 P 0.36, which is ±
Lattice matching is performed in the range of 0.2%.

【0014】次に、p側電極7を形成し、マスクを用い
て周囲をエッチングして直径10μmにその領域を制限
した後、これをマスクにして300keVのプロトン照
射により高抵抗の電流狭窄層8を形成する。さらに、p
側電極9を形成し、上記と同様にして、直径30μmに
その領域を制限した後、これをマスクにして50、10
0、200keVのプロトン照射により高抵抗の電流狭
窄層10を形成する。最後に、基板側からレーザ光28
を取り出すための窓領域を有するn側電極11を形成し
た。
Next, the p-side electrode 7 is formed, the periphery is etched by using a mask to limit the area to a diameter of 10 μm, and then the mask is used as a mask to irradiate 300 keV of protons, and the high-resistance current confinement layer 8 is formed. To form. Furthermore, p
After forming the side electrode 9 and limiting the region to a diameter of 30 μm in the same manner as described above, 50, 10 is used as a mask.
The current confinement layer 10 of high resistance is formed by irradiation with protons of 0,200 keV. Finally, the laser light 28
An n-side electrode 11 having a window region for taking out was formed.

【0015】試作した素子は、n型の半導体多層膜反射
鏡に低抵抗化した構造を導入したことにより、素子抵抗
が約20オームであり、従来のInGaAsP層を用い
ない0.98μm帯面発光半導体レーザの素子抵抗の約
1/30に低減することができた。その結果、室温連続
動作において閾値電流0.5mAで発振すると共に、1
00℃以上での連続動作を確認し、90℃において最大
光出力2mWを得た。なお、InGaAsP層は、Ga
AsとInGaPの間のすべてに設けたが、少なくとも
1つに設けてあれば、ある程度の効果は認められる。
The prototype device has a device resistance of about 20 ohms due to the introduction of a low resistance structure into the n-type semiconductor multilayer film reflecting mirror, and a 0.98 μm band surface emission without using the conventional InGaAsP layer. The device resistance of the semiconductor laser could be reduced to about 1/30. As a result, it oscillates with a threshold current of 0.5 mA in continuous operation at room temperature and
The continuous operation at 00 ° C or higher was confirmed, and the maximum optical output of 2 mW was obtained at 90 ° C. The InGaAsP layer is Ga
Although it is provided in all between As and InGaP, if it is provided in at least one, some effect is recognized.

【0016】〈実施例2〉図3は、本発明の整合利得構
造の0.98μm帯面発光半導体レーザの模式的断面図
である。n型GaAs基板12上に、GaAsに格子整
合した層厚60nmのn−In0.48Ga0.52Pと層厚1
6nmのn−InGaAsP(組成波長780nm)の
組合せと、層厚60nmのn−GaAsと層厚16nm
のn−InGaAsP(組成波長780nm)の組合せ
を交互に積層した周期構造(35周期)からなるn型半
導体多層膜反射鏡13、中心から中心までがInGaA
sP層により、媒質内の発振波長の1/2倍の厚さだけ
分離されたIn0.2Ga0.8Asの3周期からなる活性層
14をガスソースMBE法(分子線ビーム成長法)によ
り順次形成する。なお、組成波長780nmのInGa
AsPの組成は、In0.14Ga0.86As0.720.28であ
り、GaAsに±0.2%の範囲で格子整合している。
Example 2 FIG. 3 is a schematic sectional view of a 0.98 μm band surface emitting semiconductor laser having a matching gain structure of the present invention. On the n-type GaAs substrate 12, n-In 0.48 Ga 0.52 P having a layer thickness of 60 nm lattice-matched to GaAs and a layer thickness of 1 are formed.
Combination of 6 nm n-InGaAsP (composition wavelength 780 nm), n-GaAs layer thickness 60 nm and layer thickness 16 nm
N-InGaAsP (composition wavelength of 780 nm) is alternately laminated to form an n-type semiconductor multilayer film reflecting mirror 13 having a periodic structure (35 periods).
The active layer 14 consisting of three periods of In 0.2 Ga 0.8 As separated by the sP layer by a thickness of ½ the oscillation wavelength in the medium is sequentially formed by the gas source MBE method (molecular beam growth method). . InGa with a composition wavelength of 780 nm
The composition of AsP is In 0.14 Ga 0.86 As 0.72 P 0.28, which is lattice-matched with GaAs within a range of ± 0.2%.

【0017】次に、マスクを用い、反応性イオンビーム
エッチングにより、n型半導体多層膜反射鏡13の途中
までエッチングし、凸状の発光領域(直径5μm)を形
成する。この後、ポリイミド埋め込み層15を形成した
後、リング状のp側電極16を形成した。その後、Si
2膜とa−Si膜をそれぞれの媒質内における発振波
長の1/4倍の厚さで交互に積層した周期構造(5周
期)からなる誘電体多層膜反射鏡17を形成し、基板の
下部にn側電極18を形成した。レーザ光28は誘電体
多層膜反射鏡17側から取り出す。
Next, using a mask, the n-type semiconductor multilayer film reflecting mirror 13 is partially etched by reactive ion beam etching to form a convex light emitting region (diameter 5 μm). Then, after forming the polyimide embedding layer 15, the ring-shaped p-side electrode 16 was formed. Then Si
A dielectric multilayer film reflection mirror 17 having a periodic structure (5 periods) in which an O 2 film and an a-Si film are alternately laminated with a thickness of ¼ times the oscillation wavelength in each medium is formed. An n-side electrode 18 was formed on the bottom. The laser light 28 is extracted from the dielectric multilayer film reflection mirror 17 side.

【0018】試作した素子は、室温連続動作において、
閾値電流0.2mAで発振し、最大光出力10mWを得
た。さらに、n型の半導体多層膜反射鏡に低抵抗化した
構造を導入したことにより、素子抵抗は約30オームで
あり、従来のInGaAsP層を用いない0.98μm
帯面発光半導体レーザの素子抵抗の約1/30に低減す
ることができた。
The prototype device is
It oscillated with a threshold current of 0.2 mA, and a maximum optical output of 10 mW was obtained. Furthermore, by introducing a low resistance structure into the n-type semiconductor multilayer film reflecting mirror, the device resistance is about 30 ohms, which is 0.98 μm without using the conventional InGaAsP layer.
The device resistance of the surface emitting semiconductor laser can be reduced to about 1/30.

【0019】〈実施例3〉図4は、p型基板上に形成さ
れた本発明の0.98μm帯面発光半導体レーザの模式
的断面図である。p型GaAs基板19上に、GaAs
に格子整合した層厚65nmのp−In0.48Ga0.52
と層厚11nmのp−InGaAsP(組成波長790
nm)の組合せと、層厚65nmのp−GaAsと層厚
11nmのp−InGaAsP(組成波長790nm)
の組合せを交互に積層した周期構造(45周期)からな
るp型半導体多層膜反射鏡20、p−InGaAsPス
ペーサ層21、In0.2Ga0.8As歪量子井戸型活性層
22、n−InGaAsPスペーサ層23をケミカルビ
ームエピタキシー法により順次形成する。なお、組成波
長790nmのInGaAsPの組成は、In0.12Ga
0.88As0.760.24であり、GaAsに±0.2%の範
囲で格子整合している。
Example 3 FIG. 4 is a schematic sectional view of a 0.98 μm band surface emitting semiconductor laser of the present invention formed on a p-type substrate. GaAs on the p-type GaAs substrate 19
P-In 0.48 Ga 0.52 P with a layer thickness of 65 nm lattice-matched to
And p-InGaAsP with a layer thickness of 11 nm (composition wavelength 790
nm) and p-GaAs with a layer thickness of 65 nm and p-InGaAsP with a layer thickness of 11 nm (composition wavelength 790 nm)
P-type semiconductor multilayer film reflecting mirror 20 having a periodic structure (45 periods) in which the above combinations are alternately laminated, a p-InGaAsP spacer layer 21, an In 0.2 Ga 0.8 As strained quantum well active layer 22, and an n-InGaAsP spacer layer 23. Are sequentially formed by a chemical beam epitaxy method. The composition of InGaAsP having a composition wavelength of 790 nm is In 0.12 Ga.
0.88 As 0.76 P 0.24, which is lattice-matched with GaAs within a range of ± 0.2%.

【0020】次に、前記実施例と同様にして、反応性イ
オンビームエッチングにより、p型半導体多層膜反射鏡
20の途中までエッチングし、凸状の発光領域(7μm
角)を形成する。この後、SiO2埋め込み層24を形
成した後、リング状のn側電極25を形成した。その
後、SiO2膜とSiN膜をそれぞれの媒質内における
発振波長の1/4倍の厚さを交互に積層した周期構造
(10周期)からなる誘電体多層膜反射鏡26を形成
し、基板の下部にp側電極27を形成した。レーザ光2
8は誘電体多層膜反射鏡側から取り出す。
Then, in the same manner as in the above-mentioned embodiment, the p-type semiconductor multilayer film reflecting mirror 20 was etched to the middle of the p-type semiconductor multilayer film reflecting mirror 20 by reactive ion beam etching to form a convex light emitting region (7 μm).
Forming a corner). After that, the SiO 2 burying layer 24 was formed, and then the ring-shaped n-side electrode 25 was formed. After that, a dielectric multilayer film reflecting mirror 26 having a periodic structure (10 cycles) in which SiO 2 films and SiN films are alternately laminated with a thickness of ¼ times the oscillation wavelength in each medium is formed. The p-side electrode 27 was formed on the lower part. Laser light 2
8 is taken out from the side of the dielectric multilayer film reflecting mirror.

【0021】試作した素子は、室温連続動作において、
閾値電流1mAで発振した。さらに、n型の半導体多層
膜反射鏡に低抵抗化した構造を導入したことにより、素
子抵抗は約30オームであり、従来のInGaAsP層
を用いない0.98μm帯面発光半導体レーザの素子抵
抗の約1/50に低減することができた。
The prototype device was tested at room temperature for continuous operation.
It oscillated with a threshold current of 1 mA. Furthermore, by introducing a low resistance structure into the n-type semiconductor multilayer film reflecting mirror, the device resistance is about 30 ohms, which is the same as that of the conventional 0.98 μm band surface emitting semiconductor laser without using the InGaAsP layer. It could be reduced to about 1/50.

【0022】以上の実施例2、3では、誘電体多層膜反
射鏡として、SiNとSiO2の組合せを用いた場合と
a−SiとSiO2の組合せを用いた場合について説明
したが、TiO2とSiO2の組合せやCaF2とSiO2
の組合せ、そしてMgO2とSiO2の組合せを用いた場
合のレーザ素子でもほぼ同様の特性が得られた。また、
以上の実施例では、単体の面発光半導体レーザへの適用
について説明したが、本発明は、光インタコネクト等に
使用する2次元レーザアレイについても適用可能である
ことは自明である。
[0022] In the above embodiments 2 and 3, a dielectric multilayer film reflective mirror has been described for the case of using a combination of SiN and when SiO 2 is used in combination with a-Si and SiO 2, TiO 2 And SiO 2 or CaF 2 and SiO 2
Almost the same characteristics were obtained with the laser device using the combination of No. 2 and the combination of MgO 2 and SiO 2 . Also,
In the above embodiments, application to a single surface emitting semiconductor laser has been described, but it is obvious that the present invention can also be applied to a two-dimensional laser array used for an optical interconnect or the like.

【0023】[0023]

【発明の効果】以上述べたように、半導体多層膜反射鏡
を形成するInGaP層とGaAs層との間に、それぞ
れの層の禁止帯幅の中間的な禁止帯幅を持ち、それぞれ
の層を構成するV族元素の両方を含むInGaAsP層
を形成することにより、半導体多層膜形成時に成長表面
でAsとPが置換することによる歪み層の形成を低減
し、かつ、素子抵抗の小さい、Alフリーの面発光半導
体レーザが得られた。この面発光半導体レーザは、しき
い値が低く、高出力であり、高温連続動作させることが
できた。
As described above, between the InGaP layer and the GaAs layer forming the semiconductor multi-layer film reflective mirror, the forbidden band width which is intermediate between the forbidden band widths of the respective layers is provided. By forming the InGaAsP layer containing both the constituent V group elements, the formation of a strained layer due to the substitution of As and P on the growth surface during the formation of the semiconductor multilayer film is reduced, and the element resistance is small and the Al-free The surface emitting semiconductor laser of was obtained. This surface emitting semiconductor laser has a low threshold value, high output, and can be continuously operated at high temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の面発光半導体レーザの模式
的断面図。
FIG. 1 is a schematic sectional view of a surface emitting semiconductor laser according to a first embodiment of the present invention.

【図2】従来例及び本発明の作用を説明するための原理
図。
FIG. 2 is a principle diagram for explaining the operation of a conventional example and the present invention.

【図3】本発明の実施例2の面発光半導体レーザの模式
的断面図。
FIG. 3 is a schematic sectional view of a surface emitting semiconductor laser according to a second embodiment of the present invention.

【図4】本発明の実施例3の面発光半導体レーザの模式
的断面図。
FIG. 4 is a schematic sectional view of a surface emitting semiconductor laser according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1、12…n型GaAs基板 2、13…n型半導体多層膜反射鏡 3、23…n−InGaAsPスペーサ層 4、14、22…活性層 5、21…p−InGaAsPスペーサ層 6、20…p型半導体多層膜反射鏡 7、9、16、27…p側電極 8、10…電流狭窄層 11、18、25…n側電極 15…ポリイミド埋め込み層 17、26…誘電体多層膜反射鏡 19…p型GaAs基板 24…SiO2埋め込み層 28…レーザ光1, 12 ... N-type GaAs substrate 2, 13 ... N-type semiconductor multilayer film reflecting mirror 3, 23 ... N-InGaAsP spacer layer 4, 14, 22 ... Active layer 5, 21 ... P-InGaAsP spacer layer 6, 20 ... P Type semiconductor multilayer film reflecting mirror 7, 9, 16, 27 ... P-side electrode 8, 10 ... Current constricting layer 11, 18, 25 ... N-side electrode 15 ... Polyimide burying layer 17, 26 ... Dielectric multilayer film reflecting mirror 19 ... p-type GaAs substrate 24 ... SiO 2 burying layer 28 ... laser light

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐川 みすず 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 土屋 朋信 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Misuzu Sagawa 1-280, Higashi Koikeku, Kokubunji, Tokyo (Inside Central Research Laboratory, Hitachi, Ltd.) Central Research Laboratory

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】半導体基板上に、光を発生する活性層をn
型のInGaP層とn型のGaAs層が交互に積層され
た第1の半導体多層膜反射鏡と、p型のInGaP層と
p型のGaAs層が交互に積層された第2の半導体多層
膜反射鏡とで挟んだ積層構造が形成された面発光半導体
レーザにおいて、上記第1及び第2の半導体多層膜反射
鏡のそれぞれのInGaP層とGaAs層の間の少なく
とも一つに、InGaPの禁止帯幅とGaAsの禁止帯
幅の中間的な禁止帯幅を持つInGaAsP層が設けら
れたことを特徴とする面発光半導体レーザ。
1. An active layer for generating light is formed on a semiconductor substrate.
-Type InGaP layers and n-type GaAs layers are alternately laminated to form a first semiconductor multilayer-film reflective mirror, and p-type InGaP layers and p-type GaAs layers are alternately laminated to form a second semiconductor multilayer-film reflective mirror In a surface emitting semiconductor laser in which a laminated structure sandwiched between mirrors is formed, an InGaP bandgap is formed in at least one of the InGaP layer and the GaAs layer of each of the first and second semiconductor multilayer film reflecting mirrors. 2. A surface emitting semiconductor laser having an InGaAsP layer having a bandgap intermediate between the bandgap of GaAs and that of GaAs.
【請求項2】半導体基板上に、光を発生する活性層を、
InGaP層とGaAs層が交互に積層された半導体多
層膜反射鏡と、誘電体多層膜反射鏡とで挟んだ積層構造
が形成された面発光半導体レーザにおいて、上記半導体
多層膜反射鏡のInGaP層とGaAs層との間の少な
くとも一つに、InGaPの禁止帯幅とGaAsの禁止
帯幅の中間的な禁止帯幅を持つInGaAsP層が設け
られたことを特徴とする面発光半導体レーザ。
2. An active layer for generating light is provided on a semiconductor substrate.
In a surface emitting semiconductor laser in which a laminated structure sandwiched between a semiconductor multilayer film reflecting mirror in which InGaP layers and GaAs layers are alternately laminated and a dielectric multilayer film reflecting mirror are formed, an InGaP layer of the semiconductor multilayer film reflecting mirror is formed. A surface emitting semiconductor laser, wherein an InGaAsP layer having a bandgap intermediate between the bandgap of InGaP and the bandgap of GaAs is provided in at least one of the GaAs layers.
【請求項3】請求項1又は2記載の面発光半導体レーザ
において、上記半導体基板は、GaAsであり、上記活
性層は、少なくとも一層のInGaAs歪量子井戸層か
ら構成されたことを特徴とする面発光半導体レーザ。
3. The surface emitting semiconductor laser according to claim 1, wherein the semiconductor substrate is GaAs, and the active layer is composed of at least one InGaAs strained quantum well layer. Light emitting semiconductor laser.
【請求項4】請求項1、2又は3記載の面発光半導体レ
ーザにおいて、上記InGaP層の格子定数は、上記半
導体基板の格子定数の±0.2%以内の値であることを
特徴とする面発光半導体レーザ。
4. The surface emitting semiconductor laser according to claim 1, 2 or 3, wherein the lattice constant of the InGaP layer is a value within ± 0.2% of the lattice constant of the semiconductor substrate. Surface emitting semiconductor laser.
【請求項5】請求項1から4のいずれか一に記載の面発
光半導体レーザにおいて、上記InGaAsP層の格子
定数は、上記半導体基板の格子定数の±0.2%以内の
値であることを特徴とする面発光半導体レーザ。
5. The surface emitting semiconductor laser according to claim 1, wherein the lattice constant of the InGaAsP layer is a value within ± 0.2% of the lattice constant of the semiconductor substrate. A characteristic surface emitting semiconductor laser.
【請求項6】請求項1から5のいずれか一に記載の面発
光半導体レーザにおいて、上記InGaAsP層の組成
波長は、室温において760〜790nmの範囲である
ことを特徴とする面発光半導体レーザ。
6. The surface emitting semiconductor laser according to claim 1, wherein the composition wavelength of the InGaAsP layer is in the range of 760 to 790 nm at room temperature.
【請求項7】請求項1から5のいずれか一に記載の面発
光半導体レーザにおいて、上記InGaAsP層の組成
は、In1-xGaxAsy1-yと表すとき、x=0.79
から0.92の範囲の組成であることを特徴とする面発
光半導体レーザ。
7. The surface emitting semiconductor laser according to claim 1, wherein the composition of the InGaAsP layer is In 1-x Ga x As y P 1-y , where x = 0. 79
To a surface-emitting semiconductor laser having a composition in the range of 0.92.
【請求項8】請求項2記載の面発光半導体レーザにおい
て、上記誘電体多層膜反射鏡は、SiO2膜と非晶質S
i膜が交互に積層された多層膜、SiO2膜とSiN膜
が交互に積層された多層膜、TiO2膜とSiO2膜が交
互に積層された多層膜、CaF2膜とSiO2膜が交互に
積層された多層膜又はMgO2膜とSiO2膜が交互に積
層された多層膜からなることを特徴とする面発光半導体
レーザ。
8. The surface emitting semiconductor laser according to claim 2, wherein the dielectric multilayer film reflecting mirror comprises a SiO 2 film and an amorphous S film.
a multilayer film in which i films are alternately stacked, a multilayer film in which SiO 2 films and SiN films are alternately stacked, a multilayer film in which TiO 2 films and SiO 2 films are alternately stacked, and a CaF 2 film and SiO 2 film. 1. A surface emitting semiconductor laser, comprising a multilayer film which is alternately stacked or a multilayer film which is a stack of MgO 2 films and SiO 2 films.
JP10106594A 1994-05-16 1994-05-16 Surface emission semiconductor laser Pending JPH07307525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10106594A JPH07307525A (en) 1994-05-16 1994-05-16 Surface emission semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10106594A JPH07307525A (en) 1994-05-16 1994-05-16 Surface emission semiconductor laser

Publications (1)

Publication Number Publication Date
JPH07307525A true JPH07307525A (en) 1995-11-21

Family

ID=14290711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10106594A Pending JPH07307525A (en) 1994-05-16 1994-05-16 Surface emission semiconductor laser

Country Status (1)

Country Link
JP (1) JPH07307525A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09237936A (en) * 1995-12-26 1997-09-09 Nippon Telegr & Teleph Corp <Ntt> Surface light-emitting semiconductor laser and manufacture thereof
JP2003101140A (en) * 2000-09-21 2003-04-04 Ricoh Co Ltd Surface emitting semiconductor laser element, its manufacturing method, surface emitting semiconductor laser array, light transmitting module, light transmitting and receiving module and optical communication system
US6674785B2 (en) 2000-09-21 2004-01-06 Ricoh Company, Ltd. Vertical-cavity, surface-emission type laser diode and fabrication process thereof
JP2004039717A (en) * 2002-07-01 2004-02-05 Ricoh Co Ltd Semiconductor distribution bragg reflector, surface luminescence type semiconductor laser, surface luminescence type semiconductor laser array, optical communication system, optical write-in system, and optical pick-up system
JP2005051124A (en) * 2003-07-30 2005-02-24 Sumitomo Electric Ind Ltd Plane light emitting semiconductor element
US7684456B2 (en) 1999-08-04 2010-03-23 Ricoh Company, Ltd. Laser diode and semiconductor light-emitting device producing visible-wavelength radiation
JP2011244007A (en) * 2004-06-11 2011-12-01 Ricoh Co Ltd Surface-emitting semiconductor laser, surface-emitting semiconductor laser array, image forming apparatus, optical pickup, optical transmitter module, optical transmitter/receiver module, and optical communication system
JP2013243329A (en) * 2011-07-07 2013-12-05 Ricoh Co Ltd Surface emitting laser element and atomic oscillator
WO2024014140A1 (en) * 2022-07-14 2024-01-18 ソニーセミコンダクタソリューションズ株式会社 Surface emitting laser and method for manufacturing surface emitting laser

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09237936A (en) * 1995-12-26 1997-09-09 Nippon Telegr & Teleph Corp <Ntt> Surface light-emitting semiconductor laser and manufacture thereof
US8537870B2 (en) 1999-08-04 2013-09-17 Ricoh Company, Limited Laser diode and semiconductor light-emitting device producing visible-wavelength radiation
US7684456B2 (en) 1999-08-04 2010-03-23 Ricoh Company, Ltd. Laser diode and semiconductor light-emitting device producing visible-wavelength radiation
US8009714B2 (en) 1999-08-04 2011-08-30 Ricoh Company, Ltd. Laser diode and semiconductor light-emitting device producing visible-wavelength radiation
JP2003101140A (en) * 2000-09-21 2003-04-04 Ricoh Co Ltd Surface emitting semiconductor laser element, its manufacturing method, surface emitting semiconductor laser array, light transmitting module, light transmitting and receiving module and optical communication system
US6674785B2 (en) 2000-09-21 2004-01-06 Ricoh Company, Ltd. Vertical-cavity, surface-emission type laser diode and fabrication process thereof
US7022539B2 (en) 2000-09-21 2006-04-04 Ricoh Company, Ltd. Vertical-cavity, surface-emission type laser diode and fabrication process thereof
US7260137B2 (en) 2000-09-21 2007-08-21 Ricoh Company, Ltd. Vertical-cavity surface-emission type laser diode and fabrication process thereof
US7519095B2 (en) 2000-09-21 2009-04-14 Ricoh Company, Ltd Vertical-cavity, surface-emission type laser diode and fabrication process thereof
US7940827B2 (en) 2000-09-21 2011-05-10 Ricoh Company, Ltd. Vertical-cavity, surface-emission type laser diode and fabrication process thereof
JP2004039717A (en) * 2002-07-01 2004-02-05 Ricoh Co Ltd Semiconductor distribution bragg reflector, surface luminescence type semiconductor laser, surface luminescence type semiconductor laser array, optical communication system, optical write-in system, and optical pick-up system
JP4497796B2 (en) * 2002-07-01 2010-07-07 株式会社リコー Surface emitting semiconductor laser, surface emitting semiconductor laser array, optical communication system, optical writing system, and optical pickup system
JP2005051124A (en) * 2003-07-30 2005-02-24 Sumitomo Electric Ind Ltd Plane light emitting semiconductor element
JP2011244007A (en) * 2004-06-11 2011-12-01 Ricoh Co Ltd Surface-emitting semiconductor laser, surface-emitting semiconductor laser array, image forming apparatus, optical pickup, optical transmitter module, optical transmitter/receiver module, and optical communication system
JP2013243329A (en) * 2011-07-07 2013-12-05 Ricoh Co Ltd Surface emitting laser element and atomic oscillator
WO2024014140A1 (en) * 2022-07-14 2024-01-18 ソニーセミコンダクタソリューションズ株式会社 Surface emitting laser and method for manufacturing surface emitting laser

Similar Documents

Publication Publication Date Title
JP2598179B2 (en) Semiconductor vertical cavity surface emitting laser
US5637511A (en) Vertical-to-surface transmission electro-photonic device and method for fabricating the same
JPH0669585A (en) Surface emitting semiconductor laser and its manufacture
JP3052552B2 (en) Surface emitting semiconductor laser
JPH06326406A (en) Semiconductor laser device
JP2874442B2 (en) Surface input / output photoelectric fusion device
JPH06291406A (en) Surface emitting semiconductor laser
JPH10233557A (en) Semiconductor light emitting element
JP3189791B2 (en) Semiconductor laser
JPH07307525A (en) Surface emission semiconductor laser
US20140227007A1 (en) Surface-emitting laser and image forming apparatus using the same
US6728283B2 (en) Semiconductor laser and photo module using the same
JP4134366B2 (en) Surface emitting laser
JP2000353858A (en) Surface-emitting laser and manufacture thereof
JP2002158406A (en) Surface light-emitting semiconductor laser
JPH05152674A (en) Surface light emitting semiconductor laser with outer modulator
JPH07193325A (en) Semiconductor light emitting device
JP5392087B2 (en) Surface emitting laser
JP2003037335A (en) Surface emission semiconductor laser element
JPH06196804A (en) Surface emitting type semiconductor laser element
JPH0697598A (en) Semiconductor light-emitting device
JP3132445B2 (en) Long wavelength band surface emitting semiconductor laser and method of manufacturing the same
JP3053955B2 (en) AlGaAsP semiconductor laser device
JPH07249835A (en) Semiconductor optical element
JPH04273492A (en) Semiconductor laser device