JP2855934B2 - Surface emitting semiconductor laser - Google Patents

Surface emitting semiconductor laser

Info

Publication number
JP2855934B2
JP2855934B2 JP4022038A JP2203892A JP2855934B2 JP 2855934 B2 JP2855934 B2 JP 2855934B2 JP 4022038 A JP4022038 A JP 4022038A JP 2203892 A JP2203892 A JP 2203892A JP 2855934 B2 JP2855934 B2 JP 2855934B2
Authority
JP
Japan
Prior art keywords
semiconductor laser
emitting semiconductor
surface emitting
layer
multilayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4022038A
Other languages
Japanese (ja)
Other versions
JPH05190979A (en
Inventor
英男 小坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4022038A priority Critical patent/JP2855934B2/en
Publication of JPH05190979A publication Critical patent/JPH05190979A/en
Application granted granted Critical
Publication of JP2855934B2 publication Critical patent/JP2855934B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18341Intra-cavity contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04254Electrodes, e.g. characterised by the structure characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • H01S5/04257Electrodes, e.g. characterised by the structure characterised by the configuration having positive and negative electrodes on the same side of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18344Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] characterized by the mesa, e.g. dimensions or shape of the mesa
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18358Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] containing spacer layers to adjust the phase of the light wave in the cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2059Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2081Methods of obtaining the confinement using special etching techniques

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は高並列な光伝送や光情報
処理に用いられる垂直共振器型の面発光半導体レーザに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vertical cavity surface emitting semiconductor laser used for highly parallel optical transmission and optical information processing.

【0002】[0002]

【従来の技術】従来の面発光半導体レーザでは、注入電
流がメサ部を通過するため、素子抵抗が高いという問題
点があった。そこで、図4のように上側の誘電体多層膜
反射鏡をエッチングにより除去し、活性層の横方向から
電流注入することによって抵抗低減を図った2段メサ型
面発光半導体レーザが開発された(固体素子コンファレ
ンス抄録,1991年,IOT4,37頁〜38頁)。
2. Description of the Related Art A conventional surface-emitting semiconductor laser has a problem that element resistance is high because an injection current passes through a mesa portion. Therefore, as shown in FIG. 4, a two-stage mesa-type surface emitting semiconductor laser was developed in which the upper dielectric multilayer mirror was removed by etching and current was injected from the lateral direction of the active layer to reduce the resistance (FIG. 4). Abstract of Solid State Device Conference, 1991, IOT 4, pp. 37-38).

【0003】[0003]

【発明が解決しようとする課題】上述した従来の2段メ
サ型面発光半導体レーザでは半導体多層膜の上に誘電体
多層膜を積層させ、この誘電体層をメサ状にエッチング
により除去していくために製造工程が複雑であり、また
エッチング面が第二の多層膜反射鏡の底面に一致してい
るために、素子サイズが小さくなると光閉じ込めが弱く
なり、発振閾値が上昇するという問題点があった。
In the above-described conventional two-step mesa type surface emitting semiconductor laser, a dielectric multilayer film is stacked on a semiconductor multilayer film, and the dielectric layer is removed by etching in a mesa shape. Therefore, the manufacturing process is complicated, and since the etched surface coincides with the bottom surface of the second multilayer mirror, light confinement becomes weaker as the element size becomes smaller, and the oscillation threshold increases. there were.

【0004】本発明の目的は、2段メサ型面発光半導体
レーザ素子の低抵抗という利点を生かしつつ、簡単な製
造工程で小さなサイズにおいても充分な光閉じ込めを実
現することにある。
An object of the present invention is to realize sufficient light confinement even in a small size by a simple manufacturing process while taking advantage of the low resistance of a two-stage mesa type surface emitting semiconductor laser device.

【0005】[0005]

【課題を解決するための手段】第一の発明は、半導体基
板の上に第一導伝型の第一の多層膜反射鏡、第一導伝型
の第一の半導体層、活性層、第二導伝型の第二の半導体
層、第二導伝型の第二の多層膜反射鏡が形成され、成長
面に垂直な方向にレーザ発振光を放出する面発光半導体
レーザにおいて、前記第二多層膜反射鏡の中に第二導伝
型のコンタクト層を形成し、素子周囲がコンタクト層ま
でエッチングにより除去して上部メサを形成し、エッチ
ング面が第二の多層膜反射鏡の底面より下にあることに
よって光の上部メサ部分への進入を引き起こし、横方向
への屈折率分布を作り、より小さなメササイズにおいて
も充分な光閉じ込めを行うものである。
According to a first aspect of the present invention, a first conductive type first multilayer mirror, a first conductive type first semiconductor layer, an active layer, A second semiconductor layer of the second conduction type, a second multilayer reflection mirror of the second conduction type is formed, and the surface emitting semiconductor laser emits laser oscillation light in a direction perpendicular to the growth surface. A second conductive type contact layer is formed in the multilayer reflector, and the periphery of the element is removed by etching to the contact layer to form an upper mesa, and the etched surface is formed from the bottom surface of the second multilayer reflector. Being underneath causes light to enter the upper mesa, creating a lateral refractive index profile and providing sufficient light confinement even in smaller mesas.

【0006】第二の発明は、第一の発明の面発光半導体
レーザにおいて、コンタクト層を活性層から媒質内波長
の4分の1の奇数倍の位置に置くことによって、吸収係
数の大きいコンタクト層を光の定在波の節の位置とし、
発振閾値の上昇を防ごうとするものである。
According to a second aspect of the present invention, in the surface emitting semiconductor laser according to the first aspect, the contact layer is located at an odd multiple of one-fourth of the wavelength in the medium from the active layer so that the contact layer has a large absorption coefficient. Is the position of the node of the standing wave of light,
This is to prevent the oscillation threshold from rising.

【0007】第三の発明は、第一の発明の面発光半導体
レーザにおいて、電流注入に関係のない第二の多層膜反
射鏡を非導電型とすることによって、吸収係数を低減
し、発振閾値の低減を図るものである。
According to a third aspect of the present invention, in the surface emitting semiconductor laser according to the first aspect of the invention, the absorption coefficient is reduced by using a non-conductive type of the second multilayer mirror which is not related to the current injection, thereby reducing the oscillation threshold. Is to be reduced.

【0008】第四の発明は、第一の発明の面発光半導体
レーザにおいて、エッチング面に横方向発振波長に適合
した間隔の同心円状のエッチング溝を彫ることによっ
て、横方向に分布反射型の屈折率分布を付け、よりサイ
ズの小さい活性層でも充分な横方向光閉じ込めを得よう
とするものである。
According to a fourth aspect of the present invention, there is provided a surface emitting semiconductor laser according to the first aspect of the invention, wherein concentric etching grooves having a spacing suitable for the lateral oscillation wavelength are carved on the etched surface to thereby obtain a laterally distributed reflection type refraction. The purpose is to provide a rate distribution so as to obtain sufficient lateral light confinement even with an active layer having a smaller size.

【0009】[0009]

【作用】第一の発明は、メサ部によって横方向の屈折率
分布を生じさせ、光の活性層への閉じ込めを向上しよう
とするものであるが、更に詳述する。図3は、半導体基
板の上にN型のAlAs/GaAs多層膜反射鏡、N型
のAl0.25Gs0.75As、In0.2Ga0.8As活性層、
P型のAl0.25Gs0.75As、P型のAlAs/GaA
s多層膜反射鏡を順に形成した構造で、エッチング面か
ら活性層上部までの深さdをパラメタとした時の、光閉
じ込め係数の上部メサの直径に対する依存性を示す。d
=1000,2000Åではほぼ充分な光閉じ込めが得
られているが、d=3000,4000Åでは不十分で
あることが分かる。また、d=6000Å以上、つまり
第二の多層膜反射鏡の下部が下部メサに含まれている状
況では、屈折率導波による光閉じ込めは殆どないことが
分かる。これは多層膜反射鏡の反射率が高く上部メサに
多層膜が残っている状況では光の上部メサへしみ込みが
少なく、その結果横方向の屈折率分布が生じないためで
ある。したがって、第二の多層膜反射鏡とコンタクト層
との間隔(図1のメサガイド層2)が広いほど光閉じ込
めは強くなる。
The first aspect of the present invention aims to improve the confinement of light in the active layer by generating a lateral refractive index distribution by the mesa portion, which will be described in more detail. FIG. 3 shows an N-type AlAs / GaAs multilayer reflector on a semiconductor substrate, an N-type Al 0.25 Gs 0.75 As, an In 0.2 Ga 0.8 As active layer,
P-type Al 0.25 Gs 0.75 As, P-type AlAs / GaAs
The dependence of the light confinement coefficient on the diameter of the upper mesa when the depth d from the etched surface to the upper portion of the active layer is a parameter in a structure in which s multilayer mirrors are sequentially formed is shown. d
= 1000,2000 °, almost sufficient light confinement is obtained, while d = 3,000,4000 ° is insufficient. In addition, in the situation where d = 6000 ° or more, that is, when the lower part of the second multilayer film reflecting mirror is included in the lower mesa, it is understood that there is almost no light confinement due to the refractive index waveguide. This is because when the multilayer film mirror has a high reflectivity and the multilayer film remains on the upper mesa, light does not seep into the upper mesa, and as a result, there is no lateral refractive index distribution. Therefore, as the distance between the second multilayer mirror and the contact layer (the mesa guide layer 2 in FIG. 1) becomes wider, the light confinement becomes stronger.

【0010】[0010]

【実施例】以下に本発明の実施例について、図面を参照
しながら説明する。図1は、請求項1の発明の面発光半
導体レーザの実施例を示す構造断面図である。半絶縁性
GaAs基板11上にN型の多層膜反射鏡10(λ/4
厚のGaAs/AlAs15対からなる。)、クラッド
層8となるN型のAl0.25Gs0.75As、活性層7とな
るノンドープのIn0.2Ga0.8As(厚さ300Å)、
クラッド層5となるP型のAl0.25Gs0.75As、コン
タクト層4となるP型のGaAs、メサガイド層2とな
るP型のAl0.25Gs0.75As、第二のP型の多層膜反
射鏡1(λ/4厚のGaAs/AlAs15対からな
る。)を順にMBEによって成長する。次に第一の多層
膜反射鏡10の上面までエッチングにより除去し、さら
により小さなサイズでコンタクト層4までエッチングに
より除去する。そして、それぞれのエッチング面にAu
Ge−Niからなる電極9およびCr/Auからなる電
極3を蒸着によって形成する。メサガイド層2、コンタ
クト層4、クラッド層5をあわせた層厚は2λ、クラッ
ド層8の層厚はλ、活性層からコンタクト層までの距離
は2000Åとしてある。ここでλは媒質内発振波長で
真空中で9800Åとしてある。また活性層7の両脇は
水素イオン注入により高抵抗領域層6としてある。この
素子の光閉じ込め係数は、第一メサの大きさが3μmま
で小さくなっても素子径が充分大きい時の80%程度に
しか劣化しない。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a structural sectional view showing an embodiment of the surface emitting semiconductor laser according to the first aspect of the present invention. On a semi-insulating GaAs substrate 11, an N-type multilayer film reflecting mirror 10 (λ / 4
It consists of 15 thick GaAs / AlAs pairs. ), N-type Al 0.25 Gs 0.75 As for the cladding layer 8, non-doped In 0.2 Ga 0.8 As (the thickness of 300 °) for the active layer 7;
P-type Al 0.25 Gs 0.75 As to the cladding layer 5, a contact layer 4 to become P-type GaAs, a Mesagaido layer 2 P-type Al 0.25 Gs 0.75 As, a second P-type multilayer reflector 1 ( GaAs / AlAs 15 pairs having a thickness of λ / 4) are sequentially grown by MBE. Next, the upper surface of the first multilayer film reflecting mirror 10 is removed by etching, and the contact layer 4 is further removed to a smaller size by etching. Then, on each etched surface, Au
An electrode 9 made of Ge-Ni and an electrode 3 made of Cr / Au are formed by vapor deposition. The total thickness of the mesa guide layer 2, the contact layer 4, and the cladding layer 5 is 2λ, the thickness of the cladding layer 8 is λ, and the distance from the active layer to the contact layer is 2000 °. Here, λ is the oscillation wavelength in the medium and is 9800 ° in a vacuum. Both sides of the active layer 7 are formed as high-resistance region layers 6 by hydrogen ion implantation. Even when the size of the first mesa is reduced to 3 μm, the light confinement coefficient of this element is reduced to only about 80% of the value when the element diameter is sufficiently large.

【0011】さらに請求項2にあるように活性層とコン
タクト層の距離を2200Å(媒質内発振波長の5/4
倍で、コンタクト層は光定在波の節に位置する。)とす
れば、発振閾値はコンタクト層が光定在波の腹の位置に
ある場合の9割程度に低減できる。
Further, the distance between the active layer and the contact layer is 2200 ° (5/4 of the oscillation wavelength in the medium).
At times, the contact layer is located at the node of the optical standing wave. ), The oscillation threshold can be reduced to about 90% of the case where the contact layer is at the position of the antinode of the optical standing wave.

【0012】さらに請求項3にあるように第二の多層膜
反射鏡をアンドープとすることによって、発振閾値は多
層膜反射鏡をドーピングし導伝型とする場合に比べて、
さらに9割程度に低減できる。
Further, by undoping the second multilayer reflector, the oscillation threshold value can be set to be lower than that in the case where the multilayer reflector is doped and of a conduction type.
Further, it can be reduced to about 90%.

【0013】図2は、請求項4の発明の面発光半導体レ
ーザの実施例を示した構造断面図である。層構造は図1
と同様である。図1と同様にエッチングしたのちにさら
にコンタクト層4上面からエッチングにより同心円状に
溝を彫る。この上に図1と同様に電極3と第一の多層膜
反射鏡10の上に電極9を形成する。この同心円状の溝
により横方向光閉じ込めは更に強くなる。溝のピッチ
は、発振の横方向媒質内波長の半分にする。例えば、上
部メサのサイズを1μmとすれば、横方向媒質内波長は
1μm程度であるので、溝のピッチを0.5μmとす
る。
FIG. 2 is a structural sectional view showing an embodiment of the surface emitting semiconductor laser according to the present invention. Figure 1 shows the layer structure
Is the same as After etching in the same manner as in FIG. 1, a groove is further concentrically carved from the upper surface of the contact layer 4 by etching. On this, the electrode 9 is formed on the electrode 3 and the first multilayer mirror 10 as in FIG. The concentric grooves further enhance lateral light confinement. The pitch of the grooves should be half the wavelength in the transverse medium of the oscillation. For example, if the size of the upper mesa is 1 μm, the wavelength in the lateral medium is about 1 μm, so the pitch of the grooves is 0.5 μm.

【0014】以上にはGaAs系の実施例を挙げて説明
したが、本発明はInP系など他の材料系の半導体に適
用できる。
Although the GaAs-based embodiment has been described above, the present invention is applicable to other material-based semiconductors such as an InP-based semiconductor.

【0015】[0015]

【発明の効果】本発明を適用するならば、垂直共振器型
の面発光半導体レーザを作製する技術を用いて簡単な層
構造の変更をするだけで、低発振閾値、低抵抗を実現で
きる。
According to the present invention, a low oscillation threshold and a low resistance can be realized only by changing a simple layer structure using a technique for manufacturing a vertical cavity surface emitting semiconductor laser.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1、第2及び第3の発明の実施例を説明する
ための面発光半導体レーザの構造断面図である。
FIG. 1 is a structural sectional view of a surface emitting semiconductor laser for explaining an embodiment of the first, second and third inventions.

【図2】第4の発明の実施例を説明するための面発光半
導体レーザの構造断面図である。
FIG. 2 is a structural sectional view of a surface emitting semiconductor laser for explaining an example of the fourth invention.

【図3】本発明の面発光半導体レーザにおける光閉じ込
め係数のエッチング面から活性層までの距離に対する依
存性を示す図である。
FIG. 3 is a diagram showing the dependence of the light confinement coefficient on the distance from the etched surface to the active layer in the surface emitting semiconductor laser of the present invention.

【図4】従来例を説明するための2段メサ型面発光半導
体レーザの構造断面図である。
FIG. 4 is a structural sectional view of a two-stage mesa surface emitting semiconductor laser for explaining a conventional example.

【符号の説明】[Explanation of symbols]

1 第二の多層膜反射鏡 2 メサガイド層 3 電極 4 コンタクト層 5 クラッド層 6 高抵抗層 7 活性層 8 クラッド層 9 電極 10 第一の多層膜反射鏡 11 基板 DESCRIPTION OF SYMBOLS 1 Second multilayer mirror 2 Mesa guide layer 3 Electrode 4 Contact layer 5 Cladding layer 6 High resistance layer 7 Active layer 8 Cladding layer 9 Electrode 10 First multilayer mirror 11 Substrate

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 半導体基板の上に第一導伝型の第一の多
層膜反射鏡、第一導伝型の第一の半導体層、活性層、第
二導伝型の第二の半導体層、第二導伝型の第二の多層膜
反射鏡が形成され、成長面に垂直な方向にレーザ発振光
を放出する面発光半導体レーザにおいて、前記第二半導
体層の中に第二導伝型のコンタクト層を形成し、素子周
囲がコンタクト層までエッチングにより除去してあり、
エッチング面が第二の多層膜反射鏡の底面より下にある
ことを特徴とする面発光半導体レーザ。
1. A first conductive type first multilayer mirror, a first conductive type first semiconductor layer, an active layer, and a second conductive type second semiconductor layer on a semiconductor substrate. A surface emitting semiconductor laser in which a second multilayer mirror of the second conductivity type is formed and emits laser oscillation light in a direction perpendicular to the growth surface, wherein the second conductivity type is included in the second semiconductor layer. Of the contact layer, the periphery of the element is removed by etching to the contact layer,
A surface emitting semiconductor laser, wherein an etching surface is below a bottom surface of the second multilayer mirror.
【請求項2】 請求項1記載の面発光半導体レーザにお
いて、コンタクト層を活性層から媒質内波長の4分の1
の奇数倍の位置に置いてあることを特徴とする面発光半
導体レーザ。
2. The surface emitting semiconductor laser according to claim 1, wherein the contact layer is separated from the active layer by a quarter of the wavelength in the medium.
A surface emitting semiconductor laser, wherein the surface emitting semiconductor laser is located at a position which is an odd multiple of the above.
【請求項3】 請求項1記載の面発光半導体レーザにお
いて、第二の多層膜反射鏡をアンドープとしてあること
を特徴とする面発光半導体レーザ。
3. The surface emitting semiconductor laser according to claim 1, wherein the second multilayer reflector is undoped.
【請求項4】 請求項1記載の面発光半導体レーザにお
いて、エッチング面に同心円状の溝を彫ってあることを
特徴とする面発光半導体レーザ。
4. The surface emitting semiconductor laser according to claim 1, wherein concentric grooves are formed in the etched surface.
JP4022038A 1992-01-10 1992-01-10 Surface emitting semiconductor laser Expired - Lifetime JP2855934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4022038A JP2855934B2 (en) 1992-01-10 1992-01-10 Surface emitting semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4022038A JP2855934B2 (en) 1992-01-10 1992-01-10 Surface emitting semiconductor laser

Publications (2)

Publication Number Publication Date
JPH05190979A JPH05190979A (en) 1993-07-30
JP2855934B2 true JP2855934B2 (en) 1999-02-10

Family

ID=12071780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4022038A Expired - Lifetime JP2855934B2 (en) 1992-01-10 1992-01-10 Surface emitting semiconductor laser

Country Status (1)

Country Link
JP (1) JP2855934B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3546630B2 (en) * 1997-02-12 2004-07-28 富士ゼロックス株式会社 Surface emitting semiconductor laser device and method of manufacturing the same
DE10313609B4 (en) * 2003-03-26 2005-07-14 Osram Opto Semiconductors Gmbh Semiconductor laser with reduced reaction sensitivity
JP5521478B2 (en) 2008-10-22 2014-06-11 日亜化学工業株式会社 Nitride semiconductor light emitting device manufacturing method and nitride semiconductor light emitting device

Also Published As

Publication number Publication date
JPH05190979A (en) 1993-07-30

Similar Documents

Publication Publication Date Title
JP2534444B2 (en) Integrated short cavity laser
US4943970A (en) Surface emitting laser
JP2598179B2 (en) Semiconductor vertical cavity surface emitting laser
US6618414B1 (en) Hybrid vertical cavity laser with buried interface
US5245622A (en) Vertical-cavity surface-emitting lasers with intra-cavity structures
EP0858137B1 (en) Surface emitting laser device and its method of manufacture
TW531905B (en) Semiconductor light-emitting device with improved electro-optical characteristics and method of manufacturing the same
US5337327A (en) VCSEL with lateral index guide
US6144682A (en) Spatial absorptive and phase shift filter layer to reduce modal reflectivity for higher order modes in a vertical cavity surface emitting laser
JPH0553079B2 (en)
US5159603A (en) Quantum well, beam deflecting surface emitting lasers
JP2001237497A (en) Passive semiconductor structure and manufacturing method therefor
JP2001237410A (en) Optoelectronic integrated circuit and its manufacturing method
JP5029254B2 (en) Surface emitting laser
JPH06314854A (en) Surface light emitting element and its manufacture
US5084892A (en) Wide gain region laser diode
US5432809A (en) VCSEL with Al-free cavity region
US6846685B2 (en) Vertical-cavity surface-emitting semiconductor laser
JP4224981B2 (en) Surface emitting semiconductor laser device and method for manufacturing the same
JP2855934B2 (en) Surface emitting semiconductor laser
JPS63188983A (en) Semiconductor light emitting device
JPH06132608A (en) Semiconductor laser and manufacture thereof
JP2546150B2 (en) Three-dimensional cavity surface emitting laser
JP3470282B2 (en) Surface emitting semiconductor laser and manufacturing method thereof
JPH05145170A (en) Plane emission laser

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981027

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071127

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081127

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081127

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091127

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091127

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101127

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111127

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111127

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 14