JPH03163882A - Light-emitting diode with optical reflection layer - Google Patents

Light-emitting diode with optical reflection layer

Info

Publication number
JPH03163882A
JPH03163882A JP1303538A JP30353889A JPH03163882A JP H03163882 A JPH03163882 A JP H03163882A JP 1303538 A JP1303538 A JP 1303538A JP 30353889 A JP30353889 A JP 30353889A JP H03163882 A JPH03163882 A JP H03163882A
Authority
JP
Japan
Prior art keywords
light
layer
active layer
emitting diode
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1303538A
Other languages
Japanese (ja)
Other versions
JP2720554B2 (en
Inventor
Toshihiro Kato
加藤 俊宏
Hiromoto Suwa
諏澤 寛源
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP30353889A priority Critical patent/JP2720554B2/en
Priority to EP90122202A priority patent/EP0430041B1/en
Priority to DE69025273T priority patent/DE69025273T2/en
Priority to CA002030368A priority patent/CA2030368C/en
Priority to US07/616,092 priority patent/US5132750A/en
Publication of JPH03163882A publication Critical patent/JPH03163882A/en
Application granted granted Critical
Publication of JP2720554B2 publication Critical patent/JP2720554B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PURPOSE:To improve liminous power conversion efficiency by composing an optical reflection layer of plural kinds of light-wave interference type reflection layers including light-wave interference type reflection layers having wavelength selection characteristics centering around a wavelength longer than the central wavelength of light generated from an active layer. CONSTITUTION:A light-emitting diode is constituted of a substrate 12, a buffer layer 14, an optical reflection layer 16, an N-type clad layer 18, an active layer 20, a P-type clad layer 22, a contact layer 24, an N-type ohmic electrode 26 and a P-type ohmic electrode 28. Since the optical reflection layer 16 is organized of plural kinds of reflection layers 30, 32, 34 including light-wave interference type reflection layers 30, 34 having wavelength selection characteristics centering around light having a wavelength longer than the central wavelength of light generated from the active layer 20, even light oblique to the optical reflection layer 16 formed on the side reverse to the optical extracting surface of the active layer 20 is reflected efficiently. Accordingly, luminous power conversion efficiency is improved.

Description

【発明の詳細な説明】 技術分野 本発明は光反射層を備えた発光ダイオードの改良に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION TECHNICAL FIELD The present invention relates to improvements in light emitting diodes with light reflective layers.

従来の技術 光通信や表示器などに発光ダイオードが多用されている
。かかる発光ダイオードは一般に、半導体基板の上に液
相エピタキシー(LPE;Liquid PhaseE
pitaxy)法などのエビタキシャル或長法によりp
n接合を形成したダイオードを用いて構成される。また
、このような発光ダイオードの一種に、光取出面から放
射するための光を発生させる活性層と、その活性層の光
取出面と反対側に形成されて活性層からの光を活性層に
向かって反射させる光反射層とを備え、光反射層により
反射された光も光取出面から放射されるようにして発光
効率を高めたものがある。たとえば、特開平]−200
678号公報に記載されたものがそれである。上記のよ
うに光反射層を備えた発光ダイオード番こおいては、活
性層内で発生した光のうち、光取出面と反対側へ向かう
光が光反射層によって活性層へ向かって反射されるので
、光取出効率、即ち発光効率が改善されるという特徴が
ある。
BACKGROUND OF THE INVENTION Light emitting diodes are widely used in optical communications and displays. Such light emitting diodes are generally manufactured using liquid phase epitaxy (LPE) on a semiconductor substrate.
p by an evitaxial or longitudinal method such as the pitaxy method
It is constructed using a diode that forms an n-junction. In addition, one type of light emitting diode has an active layer that generates light to be emitted from a light extraction surface, and a layer that is formed on the opposite side of the active layer to the light extraction surface and that emits light from the active layer to the active layer. Some devices are equipped with a light reflection layer that reflects the light toward the light source, and the light reflected by the light reflection layer is also emitted from the light extraction surface to improve luminous efficiency. For example, JP-A-H]-200
This is what is described in Publication No. 678. In a light-emitting diode equipped with a light-reflecting layer as described above, among the light generated within the active layer, the light directed toward the side opposite to the light extraction surface is reflected toward the active layer by the light-reflecting layer. Therefore, the light extraction efficiency, that is, the luminous efficiency is improved.

発明が解決しようとする課題 ところで、上記従来の発光ダイオードに備えられている
光反射層は、光波干渉型の反則構造であることから、特
定の波長を中心として反射する波長選択特性を備えてお
り、通常、活性層から発生ずる光の波長付近において最
も反射率が高くなるように構成される。しかし、上記の
ように構成された従来の発光ダイオードによれば、当初
に意図したほどの発光効率の増加が得られないという問
題があった。
Problems to be Solved by the Invention By the way, the light reflecting layer provided in the above-mentioned conventional light emitting diode has a light wave interference type anti-conventional structure, so it has a wavelength selection characteristic that reflects mainly a specific wavelength. Generally, the reflectance is highest near the wavelength of light emitted from the active layer. However, the conventional light emitting diode configured as described above has a problem in that the light emitting efficiency cannot be increased to the extent originally intended.

本発明は以上の事情を背景として為されたものであり、
その目的とするところは、高い発光効率を有する光反射
層を備えた発光ダイオードを提供することにある。
The present invention has been made against the background of the above circumstances,
The aim is to provide a light emitting diode with a light reflective layer having high luminous efficiency.

課題を解決するための手段 本発明者等は、以上の事情を背景として種々検討を重ね
た結果、発光ダイオード内に設けられた光反射層は、そ
れに対して直角の光を反射するだけでなく、光反射層に
対して斜めの光も効率良く反射させることが、反射効率
を高める上で望まれるのであるが、光反射層に対して斜
めの光は、光反射層の波長選択特性によって充分に反射
されることができず、これが発光ダイオードの発光効率
が充分に得られないという原因の一つであることを見出
した。
Means for Solving the Problems The inventors of the present invention have conducted various studies based on the above circumstances, and have found that the light reflecting layer provided in the light emitting diode not only reflects light at right angles to it but also In order to increase the reflection efficiency, it is desirable to efficiently reflect light that is oblique to the light reflective layer. It has been found that this is one of the reasons why light emitting diodes cannot achieve sufficient luminous efficiency.

本発明は斯る知見に基づいて為されたものであり、その
要旨とするところは、光取出面から放射するための光を
発生させる活性層と、その活性層のその光取出面と反対
側に形成されてその活性層からの光をその活性層に向か
って反射させる光反射層とを備え、その光反射層により
反射された光も前記光取出面から放射されるようにした
形式の光反射層を備えた発光ダイオードにおいて、前記
光反射層を、前記活性層から発生する光の中心波長より
も長い波長の光を中心とする波長選択特性を備えた光波
干渉型反射層を含む複数種類の光波干渉型反射層から構
成したことにある。
The present invention has been made based on this knowledge, and its gist consists of an active layer that generates light to be emitted from a light extraction surface, and a side of the active layer opposite to the light extraction surface. a light reflecting layer formed on the active layer to reflect light from the active layer toward the active layer, and the light reflected by the light reflecting layer is also radiated from the light extraction surface. In the light emitting diode equipped with a reflective layer, the light reflective layer may be of multiple types including a light wave interference type reflective layer having a wavelength selection characteristic centered on light having a longer wavelength than the center wavelength of light generated from the active layer. The reason is that it is composed of a light wave interference type reflective layer.

作用および発明の効果 このようにすれば、光反射層が、前記活性層から発生す
る光の中心波長よりも長い波長の光を中心とする波長選
択特性を備えた光波干渉型反射層を含む複数種類の反射
層から構成されているので、活性層の光取出面と反対側
に形成された光反射層に対して斜めの光でも効率良く反
射され、発光ダイオードの発光効率が大幅に高められる
のである。
Operation and Effect of the Invention In this way, the light reflection layer includes a plurality of light wave interference type reflection layers having a wavelength selection characteristic centered on light having a longer wavelength than the center wavelength of the light generated from the active layer. Since it is composed of different types of reflective layers, even oblique light is efficiently reflected from the light reflective layer formed on the opposite side of the light extraction surface of the active layer, greatly increasing the light emitting efficiency of the light emitting diode. be.

実施例 以下、本発明の一実施例を図面に基づいて詳細に説明す
る。
EXAMPLE Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図は本発明の一実施例である発光ダイオードlOの
斜視図であり、第2図はその積層構成を説明するための
図である。それらの図において、発光ダイオード10は
、ダブルへテロ構造の面発光型発光ダイオードであり、
n−GaAs単結晶の基板12上には、n  G a 
+−o. ssA !!.O−0. 45A S緩衝層
14、光反射層16、n  Gao.ssAI!.o.
asAs層l8、p−GaAs活性層20、p−GaO
.SSA E o. a,A S層22、およびP” 
 GaAs:lンタクト層24が、0.01乃至数μm
のオーダの膜厚でそれぞれ設けられている。そして、上
記基板12の底面にはAu−Geのn型オーξツク電極
26が設けられる一方、上記コンタクト層24の上には
Au−Znのp型オーミック電極28が設けられている
FIG. 1 is a perspective view of a light-emitting diode IO which is an embodiment of the present invention, and FIG. 2 is a diagram for explaining its laminated structure. In those figures, the light emitting diode 10 is a double heterostructure surface emitting type light emitting diode,
On the n-GaAs single crystal substrate 12, n Ga
+-o. ssA! ! .. O-0. 45A S buffer layer 14, light reflective layer 16, n Gao. ssAI! .. o.
asAs layer 18, p-GaAs active layer 20, p-GaO
.. SSA E o. a, A S layer 22, and P”
The GaAs:l contact layer 24 has a thickness of 0.01 to several μm.
They are each provided with a film thickness on the order of . An n-type ξ ohmic electrode 26 made of Au--Ge is provided on the bottom surface of the substrate 12, while a p-type ohmic electrode 28 made of Au--Zn is provided on the contact layer 24.

上記緩衝層14、光反射層16、n型クラッド層l8、
活性層20、P型クラッド層22、およびコンタクト層
24は、たとえば、有機金属化学気相戒長法、分子線エ
ピタキシ法、或いは気相エピタキシ法などによって、基
板12上に単結晶の状態で順次戒長させられることによ
り形成されている。
The buffer layer 14, the light reflection layer 16, the n-type cladding layer l8,
The active layer 20, the P-type cladding layer 22, and the contact layer 24 are sequentially formed in a single crystal state on the substrate 12 by, for example, a metal organic chemical vapor deposition method, a molecular beam epitaxy method, or a vapor phase epitaxy method. It is formed by being made a preceptor.

上記光反射層16は、光波干渉によって光を反射し且つ
波長選択特性が相互に異なる3種類の第1反射層30、
第2反射層32、第3反射層34から構成されたもので
ある。第3図に拡大して示されているように、第1反射
層30は、光波干渉作用により光を反射するために、6
2nmの厚みのGaAs層と68nmの厚みのA1o.
asGao.5,As層とが14対積層されることによ
り所謂超格子に構成されおり、光反射N16に対して垂
直な方向で入射する8 9 5 nmの波長の光が最大
反射率となるような波長選択特性を備えている。また、
上記第1反射層30の基板12側に設けられた第2反射
層32は、光波干渉作用により光を反射するために、6
0nmの厚みのGaAs層と65nmの厚みのA 1 
o. asG a o. ssA s層とが7対積層さ
れることにより所謂超格子に構成されており、光反射層
16に対して垂直な方向で入射する860nmの波長の
光が最大反射率となるような波長選択特性を備えている
。そして、上記第2反射層32の基板12側に設けられ
た第3反射層34は、光波干渉作用により光を反射する
ために、67nmの厚みのGaAs層と74nmの厚み
のAffio.4sG a o. ssA S層とが1
2対積層されることにより所謂超格子に構成されており
、光反射層16に対して垂直な方向で入射する9 6 
8 nmの波長の光が最大反射率となるような波長選択
特性を備えている。
The light reflecting layer 16 includes three types of first reflecting layers 30 that reflect light by light wave interference and have mutually different wavelength selection characteristics;
It is composed of a second reflective layer 32 and a third reflective layer 34. As shown in an enlarged view in FIG. 3, the first reflective layer 30 has 6
A 2 nm thick GaAs layer and a 68 nm thick Alo.
asGao. 5. 14 pairs of As layers are laminated to form a so-called superlattice, and the wavelength is such that light with a wavelength of 895 nm that is incident in a direction perpendicular to the light reflection N16 has a maximum reflectance. It has selective properties. Also,
The second reflective layer 32 provided on the substrate 12 side of the first reflective layer 30 has six
0 nm thick GaAs layer and 65 nm thick A1
o. asG ao. Seven pairs of ssA and s layers are laminated to form a so-called superlattice, and the wavelength selection characteristic is such that light with a wavelength of 860 nm that is incident in a direction perpendicular to the light reflection layer 16 has a maximum reflectance. It is equipped with The third reflective layer 34 provided on the substrate 12 side of the second reflective layer 32 includes a 67 nm thick GaAs layer and a 74 nm thick Afio. 4sGao. ssA S layer and 1
By stacking two pairs, it forms a so-called superlattice, and the light enters the light reflecting layer 16 in a direction perpendicular to the light reflecting layer 16.
It has wavelength selection characteristics such that light with a wavelength of 8 nm has a maximum reflectance.

上記光反射層1Gを構或するGaAs層とAI!。.4
5G a o. ssA S層とは、チャンバ内の基板
12の温度を850゜Cに維持した状態で、弁の操作に
よって原料ガスを切り替えることにより交互に重ねられ
、また、その原料ガスを流す時間を制御して所望の厚み
を得る。たとえば、GaAs層を形戒する場合には、T
MGガスの流量を2.2X10−’mole/min、
10%希釈AsH,lガスの流量を5 1 0cc/m
in, 10ppm希釈H2Seガスの流量を2 8 
. 3 cc/minとする。また、A l o1sG
 a o. ssA S層を形成する場合には、TMG
ガスの流量を2.2X10−5mole/IIlin,
 T M Aガスの流量を7.8X10−bmole/
min,10%希釈AsHsガスの流量を5 1 1c
c/min、10ppm希釈H.S eガスの流量を2
 8 . 3 cc/minとする。そして、上記Ga
As層を形或する期間とAI!。, 45G a o.
 ssA S層を形戒する期間との間にはAsH3ガス
をlO秒間流すようにする。
The GaAs layer constituting the light reflecting layer 1G and AI! . .. 4
5G ao. The ssA S layer is layered alternately by switching the raw material gas by operating a valve while maintaining the temperature of the substrate 12 in the chamber at 850°C, and by controlling the flow time of the raw material gas. Obtain the desired thickness. For example, when disciplining the GaAs layer, T
The flow rate of MG gas is 2.2×10-'mole/min,
The flow rate of 10% diluted AsH,l gas was 510cc/m.
in, 10 ppm diluted H2Se gas flow rate 2 8
.. 3 cc/min. Also, A l o1sG
a o. When forming the ssA S layer, TMG
The gas flow rate is 2.2X10-5mole/IIlin,
TMA gas flow rate 7.8X10-bmole/
min, the flow rate of 10% diluted AsHs gas is 5 1 1c
c/min, 10 ppm dilution H. Se gas flow rate 2
8. 3 cc/min. And the above Ga
The period and AI that form the As layer! . , 45G ao.
AsH3 gas is allowed to flow for 10 seconds between the period of forming the ssA S layer.

以上のように構成された発光ダイオード10においては
、オーミック電極26と28との間に駆動電流が流され
ることにより活性層20からは880nmの波長の光が
発生させられる。活性層20から光取出面36側へ向か
う光は光取出面36から放射される一方、活性層20か
ら基板12側へ向かう光は光反射層l6により活性層2
0へ向かって反射され、活性層20を通して光取出面3
6から放射される。このとき、活性層20から基板12
側へ向かう光は光反射層16に対して垂直方向のものだ
けでなく、光反射層16に対して斜め方向のものも多い
。光反射層l6は、前述のように、活性層20から生じ
る光の波長880nmよりも長い波長を中心波長とする
波長選択特性を備えた第1反射層30および第3反射層
34を有しているので、上記の光反射層1Gに対して斜
め方向の光でも光反射層16によって効率良く反射され
る。したがって、本実施例の発光ダイオード10によれ
ば、光反射層16に垂直な光の波長に対して効率良く反
射す.る単一の波長選択特性を有する光波干渉型反射層
を備えた従来の発光ダイオードに比較して発光効率が数
十%高くなるのである。
In the light emitting diode 10 configured as described above, light having a wavelength of 880 nm is generated from the active layer 20 by passing a driving current between the ohmic electrodes 26 and 28. Light traveling from the active layer 20 toward the light extraction surface 36 is emitted from the light extraction surface 36, while light traveling from the active layer 20 toward the substrate 12 is reflected by the light reflecting layer l6 into the active layer 2.
0 and passes through the active layer 20 to the light extraction surface 3.
Emitted from 6. At this time, from the active layer 20 to the substrate 12
The light directed to the side is not only perpendicular to the light reflecting layer 16 but also often obliquely to the light reflecting layer 16. As described above, the light reflective layer l6 includes the first reflective layer 30 and the third reflective layer 34, which have a wavelength selection characteristic having a center wavelength longer than the wavelength of 880 nm of the light generated from the active layer 20. Therefore, even light oblique to the light reflecting layer 1G is efficiently reflected by the light reflecting layer 16. Therefore, according to the light emitting diode 10 of this embodiment, the wavelength of light perpendicular to the light reflecting layer 16 is efficiently reflected. The light emitting efficiency is several tens of percent higher than that of a conventional light emitting diode equipped with a light wave interference type reflective layer having a single wavelength selection characteristic.

また、本実施例の発光ダイオード10によれば、チャン
バ内に基板12を入れたままで基板l2上に、緩衝層1
4、光反射層16、n型クラッド層18,活性層20、
p型クラッド層22,およびコンタクト層24を順次エ
ビタキシャル戒長させれば良いため、その製造が容易で
発光ダイオード10が安価となる利点がある。それらの
エビタキシャル威長手段としては、例えば有機金属化学
気相或長(MOCVD;Metal Organic 
Chemical Vapor Deposi tio
n)法や分子線エビタキシー(MBHHMolecul
ar Beam Epitaxy)法、或いは気相エビ
タキシー(VPEHVapor Phase Epit
axy)法等が好適に用いられ、中でも有機金属化学気
相戒長法は精密で且つ均一な薄膜を容易に形或できるた
め、良質なGaAs/ A I G a A s超格子
層を形成する上で特に望ましい。
Further, according to the light emitting diode 10 of this embodiment, the buffer layer 1 is placed on the substrate 12 while the substrate 12 is placed in the chamber.
4, light reflective layer 16, n-type cladding layer 18, active layer 20,
Since the p-type cladding layer 22 and the contact layer 24 need only be epitaxially grown in sequence, there is an advantage that manufacturing is easy and the light emitting diode 10 is inexpensive. For example, metal organic chemical vapor deposition (MOCVD) is a method for evitaxial enhancement.
Chemical Vapor Depositio
n) method and molecular beam epitaxy (MBHHMolecul)
ar Beam Epitaxy) method, or vapor phase epitaxy (VPEHVapor Phase Epitaxy) method.
axy) method, etc. are preferably used, and among them, the organometallic chemical vapor phase method can easily form a precise and uniform thin film, so it forms a high-quality GaAs/AIGaAs superlattice layer. Particularly desirable above.

また、上記光反射層16はGaAs/Aj2GaAs超
格子層にて構成されているため、n−GaAs基板l2
やn  A l. 0. 3SG a 0. 6SA 
Sクラッド層l4との間で格子不整合を生じることがな
く、良質の発光ダイオード10が得られる。
Furthermore, since the light reflecting layer 16 is composed of a GaAs/Aj2GaAs superlattice layer, the n-GaAs substrate l2
Ya n A l. 0. 3SG a 0. 6SA
A high-quality light emitting diode 10 can be obtained without causing lattice mismatch with the S cladding layer l4.

以上、本発明の一実施例を図面に基づいて詳細に説明し
たが、本発明は他の態様で実施することもできる。
Although one embodiment of the present invention has been described above in detail based on the drawings, the present invention can also be implemented in other embodiments.

10 例えば、前記実施例の発光ダイオードlOはGaA s
 / A f! G a A sダブルへテロ構造を威
しているが、GaP,InP,InGaAsPなど他の
化合物半導体から或る発光ダイオードや単一へテロ構造
、あるいはホモ構造の発光ダイオードにも本発明は同様
に適用され得る。
10 For example, the light emitting diode lO of the above embodiment is made of GaAs
/ A f! Although the GaAs double heterostructure is used, the present invention is also applicable to light emitting diodes made from other compound semiconductors such as GaP, InP, and InGaAsP, and to light emitting diodes with a single heterostructure or homostructure. may be applied.

また、前記実施例では光反射層16としてGaA s 
/ A E G a A s超格子層が設けられている
が、屈折率などを考慮して他の半導体材料から威る光反
射層を用いることも可能である。
Further, in the above embodiment, the light reflecting layer 16 is made of GaAs.
/ AE Ga As superlattice layer is provided, but it is also possible to use a light reflecting layer made of other semiconductor materials in consideration of refractive index and the like.

また、前記実施例では活性層20と光反射層16とが平
行に設けられていたが、必ずしも平行でなくてもよく、
また、活性層20が一部に設けられていてもよい。
Further, in the above embodiment, the active layer 20 and the light reflecting layer 16 were provided in parallel, but they do not necessarily have to be parallel.
Moreover, the active layer 20 may be provided in a part.

また、前述の実施例の光反射層16は、第1反射層30
、第2反射層32、第3反射層34が順次積層されて構
成されているが、その積層の順番はミ上記と異なってい
ても差支えない。
Further, the light reflecting layer 16 of the above-mentioned embodiment is similar to the first reflecting layer 30.
, the second reflective layer 32, and the third reflective layer 34 are sequentially laminated, but the lamination order may be different from that described above.

その他一々例示はしないが、本発明は当業者の知識に基
づいて種々の変更,改良を加えた態様で11 実施することができる。
Although no other examples are given, the present invention can be implemented with various modifications and improvements based on the knowledge of those skilled in the art.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である発光ダイオードの斜視
図である。第2図は第1図の積層構造を説明する断面図
である。第3図は第1図の発光ダイオードの光反射層を
拡大して示す図である。 10:発光ダイオード 16:光反射層 20:活性層 30:第1反射層(光波干渉型反射層)32:第2反射
層(光波干渉型反射層)34:第3反射層(光波干渉型
反射層)36:光取出面
FIG. 1 is a perspective view of a light emitting diode which is an embodiment of the present invention. FIG. 2 is a sectional view illustrating the laminated structure of FIG. 1. FIG. 3 is an enlarged view of the light reflecting layer of the light emitting diode shown in FIG. 1. 10: Light emitting diode 16: Light reflective layer 20: Active layer 30: First reflective layer (light wave interference type reflective layer) 32: Second reflective layer (light wave interference type reflective layer) 34: Third reflective layer (light wave interference type reflective layer) Layer) 36: Light extraction surface

Claims (1)

【特許請求の範囲】 光取出面から放射するための光を発生させる活性層と、
該活性層の該光取出面と反対側に形成されて該活性層か
らの光を該活性層に向かって反射させる光反射層とを備
え、該光反射層により反射された光も前記光取出面から
放射されるようにした形式の光反射層を備えた発光ダイ
オードにおいて、 前記光反射層を、前記活性層から発生する光の中心波長
よりも長い波長の光を中心とする波長選択特性を備えた
光波干渉型反射層を含む複数種類の光波干渉型反射層か
ら構成したことを特徴とする光反射層を備えた発光ダイ
オード。
[Claims] An active layer that generates light to be emitted from a light extraction surface;
a light reflection layer formed on the opposite side of the light extraction surface of the active layer to reflect light from the active layer toward the active layer, and the light reflected by the light reflection layer also reflects the light from the light extraction surface. In a light-emitting diode equipped with a light-reflecting layer that emits light from a surface, the light-reflecting layer has wavelength-selective characteristics that center on light having a longer wavelength than the center wavelength of light emitted from the active layer. 1. A light-emitting diode comprising a light-reflecting layer, the light-emitting diode comprising a plurality of types of light-wave interference-type reflective layers, including a light-wave interference-type reflective layer.
JP30353889A 1989-11-22 1989-11-22 Light emitting diode with light reflecting layer Expired - Fee Related JP2720554B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP30353889A JP2720554B2 (en) 1989-11-22 1989-11-22 Light emitting diode with light reflecting layer
EP90122202A EP0430041B1 (en) 1989-11-22 1990-11-20 Light-emitting diode having light reflecting layer
DE69025273T DE69025273T2 (en) 1989-11-22 1990-11-20 Light emitting diode with light reflecting layer
CA002030368A CA2030368C (en) 1989-11-22 1990-11-20 Light-emitting diode having light reflecting layer
US07/616,092 US5132750A (en) 1989-11-22 1990-11-20 Light-emitting diode having light reflecting layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30353889A JP2720554B2 (en) 1989-11-22 1989-11-22 Light emitting diode with light reflecting layer

Publications (2)

Publication Number Publication Date
JPH03163882A true JPH03163882A (en) 1991-07-15
JP2720554B2 JP2720554B2 (en) 1998-03-04

Family

ID=17922202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30353889A Expired - Fee Related JP2720554B2 (en) 1989-11-22 1989-11-22 Light emitting diode with light reflecting layer

Country Status (1)

Country Link
JP (1) JP2720554B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5537433A (en) * 1993-07-22 1996-07-16 Sharp Kabushiki Kaisha Semiconductor light emitter
JPH09180883A (en) * 1995-10-27 1997-07-11 Toyota Central Res & Dev Lab Inc Micro-light resonating organic electroluminescent element
US7400090B1 (en) 1998-12-08 2008-07-15 Cambridge Display Technology Ltd. Display devices with reflectivity-influencing electrode
JP2015084391A (en) * 2013-10-25 2015-04-30 富士ゼロックス株式会社 Semiconductor light-emitting element, light source head, and image forming apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5306589B2 (en) 2006-11-17 2013-10-02 シャープ株式会社 Semiconductor light emitting device and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077473A (en) * 1983-10-04 1985-05-02 Rohm Co Ltd Semiconductor light emitting element and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077473A (en) * 1983-10-04 1985-05-02 Rohm Co Ltd Semiconductor light emitting element and manufacture thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5537433A (en) * 1993-07-22 1996-07-16 Sharp Kabushiki Kaisha Semiconductor light emitter
JPH09180883A (en) * 1995-10-27 1997-07-11 Toyota Central Res & Dev Lab Inc Micro-light resonating organic electroluminescent element
US7400090B1 (en) 1998-12-08 2008-07-15 Cambridge Display Technology Ltd. Display devices with reflectivity-influencing electrode
US8018148B2 (en) 1998-12-08 2011-09-13 Cambridge Display Technology Limited Light-emissive device having co-evaporated cathode
JP2015084391A (en) * 2013-10-25 2015-04-30 富士ゼロックス株式会社 Semiconductor light-emitting element, light source head, and image forming apparatus

Also Published As

Publication number Publication date
JP2720554B2 (en) 1998-03-04

Similar Documents

Publication Publication Date Title
US5132750A (en) Light-emitting diode having light reflecting layer
US5317167A (en) Semiconductor light-emitting device with InGaAlp
JP3717196B2 (en) Light emitting element
US20200313040A1 (en) Light Emitting Device And Projector
JP2001223384A (en) Semiconductor light-emitting element
US6097041A (en) Light-emitting diode with anti-reflector
JP2002222989A (en) Semiconductor light-emitting device
JP2006216772A (en) Optically integrated semiconductor light emitting element
JPH06334215A (en) Surface emission led
JP5187525B2 (en) Light emitting device
JP4952883B2 (en) Semiconductor light emitting device
US20050152420A1 (en) Semiconductor device having quantum well structure including dual barrier layers, semiconductor laser employing the semiconductor device, and methods of manufacturing the semiconductor device and the semiconductor laser
US20050104078A1 (en) Light-emitting diode having chemical compound based reflective structure
JPH03163882A (en) Light-emitting diode with optical reflection layer
JP2009070929A (en) Surface emitting diode
JPH06151955A (en) Semiconductor light emitting element
US5235194A (en) Semiconductor light-emitting device with InGaAlP
JPH08139414A (en) Semiconductor laser
JP2010034221A (en) Edge-emitting semiconductor laser and manufacturing method thereof
JP2010278136A (en) Semiconductor laser
JPH01200678A (en) Light-emitting diode
JP2006270073A (en) Light-emitting diode and method of manufacturing it
JP3134382B2 (en) Semiconductor device having a chirped light reflecting layer
JP3496745B2 (en) Light emitting diode
JP2006253180A (en) Semiconductor light emitting element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071121

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees