JP2006270073A - Light-emitting diode and method of manufacturing it - Google Patents

Light-emitting diode and method of manufacturing it Download PDF

Info

Publication number
JP2006270073A
JP2006270073A JP2006044339A JP2006044339A JP2006270073A JP 2006270073 A JP2006270073 A JP 2006270073A JP 2006044339 A JP2006044339 A JP 2006044339A JP 2006044339 A JP2006044339 A JP 2006044339A JP 2006270073 A JP2006270073 A JP 2006270073A
Authority
JP
Japan
Prior art keywords
layer
light
conductivity type
refractive index
emitting diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006044339A
Other languages
Japanese (ja)
Inventor
Manabu Kako
学 加古
Takehiko Tani
毅彦 谷
Taiichiro Konno
泰一郎 今野
Masahiro Arai
優洋 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2006044339A priority Critical patent/JP2006270073A/en
Publication of JP2006270073A publication Critical patent/JP2006270073A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-luminance light-emitting diode which reduces the emission of infrared light in a distributed Bragg reflector to a negligible level and further reduces the absorptivity of light in the distributed Bragg reflector. <P>SOLUTION: A combination of an AlGaAs layer and an AlInP layer is used for the distributed Bragg reflector in an AlGaInP light-emitting diode. The thicknesses of the layers are set as expressed in the following equations: equation (1) (the thickness of the AlGaAs layer [nm])=äλ<SB>0</SB>/(4×n<SB>1</SB>)}×α, equation (2) (the thickness of the AlInP layer [nm])=äλ<SB>0</SB>/(4×n<SB>2</SB>)}×(2-α) (λ<SB>0</SB>represents the wavelength [nm] of light to be reflected, n<SB>1</SB>represents the index of refraction of the AlGaAs layer relative to the wavelength of light to be reflected, and n<SB>2</SB>represents the index of refraction of the AlInP layer relative to the wavelength of light to be reflected), equation (3): 0.5<α<0.9. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、分布ブラッグ反射器での近赤外光の発光を無視し得るレベルまで低減し、赤外光を利用している光センサー類の誤動作を防止した高輝度の発光ダイオード及びその製造方法に関するものである。   The present invention relates to a high-intensity light-emitting diode in which near-infrared light emission in a distributed Bragg reflector is reduced to a negligible level and malfunction of optical sensors using infrared light is prevented, and a method for manufacturing the same It is about.

最近、AlGaInP系エピタキシャルウェハを用いて製造する高輝度の赤色から緑色の発光ダイオードの需要が大幅に伸びている。主な需要は、携帯電話の液晶用バックライト、表示灯、交通用信号灯、自動車のブレーキランプなどである。AlGaInPは、窒化物を除くIII/V族化合物半導体の中で最大のバンドギャップを有する直接遷移型半導体であり、従来のGaPや、AlGaAsなどの間接遷移型半導体を用いた発光ダイオードと比較して、赤色から緑色に相当する可視波長域において高輝度の発光が可能である。また一般に製造販売されている高輝度発光ダイオードの内部量子効率は極めて高い値にあり、これまで以上の高輝度化を求めるには、内部量子効率を向上させるよりも外部量子効率を向上させた方が効果的であり、その方法として、分布ブラッグ反射器(DBR)を挿入した構造の発光ダイオードがある。   Recently, the demand for high-brightness red to green light-emitting diodes manufactured using AlGaInP-based epitaxial wafers has greatly increased. Main demands are LCD backlights for mobile phones, indicator lights, traffic signal lights, and automobile brake lamps. AlGaInP is a direct transition type semiconductor having the largest band gap among III / V group compound semiconductors excluding nitride, and is compared with a conventional light emitting diode using an indirect transition type semiconductor such as GaP or AlGaAs. High-luminance light emission is possible in the visible wavelength range corresponding to red to green. In addition, the internal quantum efficiency of high-brightness light-emitting diodes that are generally manufactured and sold is extremely high, and in order to achieve higher brightness than before, it is necessary to improve external quantum efficiency rather than improving internal quantum efficiency. As an effective method, there is a light emitting diode having a structure in which a distributed Bragg reflector (DBR) is inserted.

この従来例として、図6に発光波長630nmのAlGaInP系発光ダイオード(特許文献1参照)の構造を示す。   As a conventional example, FIG. 6 shows the structure of an AlGaInP light emitting diode (see Patent Document 1) having an emission wavelength of 630 nm.

このAlGaInP系発光ダイオードは、図6に示すように、n型GaAs基板22上に、有機金属気相成長法(以下、「MOVPE法」と称する。)によって、高屈折率膜と低屈折率膜を交互に積層した多層膜から成る分布ブラッグ反射器(DBR)23、n型AlGaInP下クラッド層24、アンドープAlGaInP活性層25、p型AlGaInP上クラッド層26、p型GaP電流拡散層27を順次積層し、n型GaAs基板22の裏面全面に裏面電極(n側共通電極)21を、p型電流分散層27表面の一部に表面電極(p側オーミック接触電極)28を設けた構造となっている。24〜26がAlGaInP4元ダブルヘテロ構造部分(発光部)をなす。   As shown in FIG. 6, this AlGaInP-based light-emitting diode has a high refractive index film and a low refractive index film formed on an n-type GaAs substrate 22 by metal organic vapor phase epitaxy (hereinafter referred to as “MOVPE method”). A distributed Bragg reflector (DBR) 23 comprising a multilayer film in which layers are alternately stacked, an n-type AlGaInP lower cladding layer 24, an undoped AlGaInP active layer 25, a p-type AlGaInP upper cladding layer 26, and a p-type GaP current diffusion layer 27 are sequentially stacked. The back electrode (n-side common electrode) 21 is provided on the entire back surface of the n-type GaAs substrate 22, and the surface electrode (p-side ohmic contact electrode) 28 is provided on a part of the surface of the p-type current spreading layer 27. Yes. 24 to 26 form an AlGaInP quaternary double heterostructure part (light emitting part).

分布ブラッグ反射器23は、LEDの発光波長をλ、屈折率をnとしたときに、高屈折率膜のλ/4n膜と低屈折率膜のλ/4n膜を交互に積層した多層膜で構成され、活性層から発生した光のうち下向き(GaAs基板方向)に進む光を上向き(光取出し面方向)に反射させ、光取り出し効率を向上させる機能を有する。この効果により、それを具備しない場合に比べて50%以上(場合によっては100%程度)の輝度向上が実現できる。 Distributed Bragg reflector 23, the emission wavelength of the LED lambda, the refractive index is n, alternately laminated lambda / 4n b membranes lambda / 4n a film and a low refractive index film of the high refractive index film multilayer It is composed of a film and has a function of improving light extraction efficiency by reflecting light traveling downward (toward the GaAs substrate) from light generated from the active layer upward (toward the light extraction surface). With this effect, it is possible to realize a luminance improvement of 50% or more (in some cases, about 100%) as compared with the case where it is not provided.

AlGaInP混晶を発光層とするLEDにおいて、上記分布ブラッグ反射器23を構成する材料には、一般にGaAs層とAlGa1−xAs(0≦x≦1)層の組合せ、GaAs層と(AlGa1−x1−yInP(0≦x、y≦1)層の組合せ等が用いられている。また、上記ブラッグ反射器23を構成する材料として、より屈折率差が大きく高反射率なAlAs層とAlGaAs層の組み合わせが知られている。 In an LED having an AlGaInP mixed crystal as a light emitting layer, the material constituting the distributed Bragg reflector 23 is generally a combination of a GaAs layer and an Al x Ga 1-x As (0 ≦ x ≦ 1) layer, a GaAs layer, Combinations of Al x Ga 1-x ) 1-y In y P (0 ≦ x, y ≦ 1) layers and the like are used. Further, as a material constituting the Bragg reflector 23, a combination of an AlAs layer and an AlGaAs layer having a large refractive index difference and a high reflectance is known.

一方、上記特許文献1の場合には、GaAs層とAlInP層の組合せからなる分布ブラッグ反射器が用いられている。その理由として、前記AlAs層とAlGaAs層の組合せからなる分布ブラッグ反射器においては、AlAs層の作製条件が非常に難しく、酸素(O)が混入し易く、その上に成長する発光層の結晶性を著しく悪化させ、輝度の低下を引き起こすという問題、また、酸素混入を防ぐためにV族原料とIII族原料との供給量比、いわゆるV/III比を高くする方法を採用すると、製造装置に多大な負荷が掛かり、排気配管がAs屑により閉塞し易いと言う問題があったからである。   On the other hand, in the case of Patent Document 1, a distributed Bragg reflector composed of a combination of a GaAs layer and an AlInP layer is used. The reason for this is that, in the distributed Bragg reflector composed of a combination of the AlAs layer and the AlGaAs layer, the AlAs layer preparation conditions are very difficult, oxygen (O) is easily mixed, and the crystallinity of the light emitting layer grown thereon If the method of increasing the supply ratio of the group V raw material and the group III raw material, the so-called V / III ratio, is used in order to prevent the mixing of oxygen. This is because there is a problem that a large load is applied and the exhaust pipe is easily blocked by As waste.

そこで特許文献1の場合、GaAs層とAlInP層の組合せによる分布ブラッグ反射器において、GaAs層で吸収される光を減らし、より高反射率なものとするため、GaAs層はできる限り薄くし、AlInP層は反射させたい波長の光を反射できるように厚くした構成とすることを提案している。   Therefore, in the case of Patent Document 1, in a distributed Bragg reflector using a combination of a GaAs layer and an AlInP layer, the light absorbed by the GaAs layer is reduced and the reflectance is made higher. Therefore, the GaAs layer is made as thin as possible, and AlInP It has been proposed that the layer be made thick so that it can reflect light of the desired wavelength.

この高反射率な分布ブラッグ反射器を作製するのに必要なGaAs層、及びAlInP層の膜厚は、下記の式で求められる。   The film thicknesses of the GaAs layer and the AlInP layer necessary for producing this highly reflective distributed Bragg reflector can be obtained by the following equation.

(GaAs層の膜厚[nm])={λ/(4×n)}×α
(AlInP層の膜厚[nm])={λ/(4×n)}×(2−α)
λ:反射させたい光の波長[nm]
:反射させたい光の波長に対するGaAs層の屈折率
:反射させたい光の波長に対するAlInP層の屈折率
0.5<α<0.9
このようにして求められた膜厚のGaAs層、AlInP層を交互に数十回組み合わせて分布ブラッグ反射器を作製する。
(Film thickness of GaAs layer [nm]) = {λ 0 / (4 × n a )} × α
(AlInP layer thickness [nm]) = {λ 0 / (4 × n b )} × (2-α)
λ 0 : wavelength of light to be reflected [nm]
n a : refractive index of the GaAs layer with respect to the wavelength of light to be reflected n b : refractive index of the AlInP layer with respect to the wavelength of light to be reflected 0.5 <α <0.9
A distributed Bragg reflector is produced by alternately combining the GaAs layers and AlInP layers thus obtained several tens of times.

なお分布ブラッグ反射器23を構成する材料としては、上記の他に、高屈折率膜および低屈折率膜の双方にAlGaAsを用いたものも知られている(例えば、特許文献2参照)。
特開2003−218386号公報 特開2000−174332号公報
In addition to the above, a material using AlGaAs for both the high refractive index film and the low refractive index film is known as a material constituting the distributed Bragg reflector 23 (see, for example, Patent Document 2).
JP 2003-218386 A JP 2000-174332 A

しかしながら、特許文献1のAlInP層とGaAs層の組合せから成る分布ブラッグ反射器を用いたLEDにおいては、大きな問題がある。それは、活性層で発光した波長(630nm)の光が図7に示すようなメインの光(LED発光)として発生するだけでなく、活性層から分布ブラッグ反射器に向かった光によってGaAs層で意図していない近赤外光(発光波長860nm)の発光が起こり、その近赤外光が無視できない強度で、活性層で発光したメインの光と合わせて外部に出てしまうという問題である。   However, the LED using the distributed Bragg reflector composed of a combination of the AlInP layer and the GaAs layer in Patent Document 1 has a big problem. It is not only that the light of the wavelength (630 nm) emitted from the active layer is generated as the main light (LED emission) as shown in FIG. 7, but also the light from the active layer toward the distributed Bragg reflector. This is a problem that near infrared light (emission wavelength: 860 nm) is emitted, and the near infrared light is emitted to the outside together with the main light emitted from the active layer with an intensity that cannot be ignored.

近赤外光(発光波長860nm)の強度は、メインの光(発光波長630nm)の約1/10である。この近赤外光は、世の中に普及している赤外光を利用しているセンサーに対して誤動作を促す可能性がある。   The intensity of near-infrared light (emission wavelength 860 nm) is about 1/10 of the main light (emission wavelength 630 nm). This near-infrared light may cause a malfunction to a sensor using infrared light that is widely used in the world.

また特許文献1のAlInP層とGaAs層の組合せから成る分布ブラッグ反射器においては、GaAs層によって一部の光が反射されずに吸収されてしまい、その分暗くなるという問題があった。   In the distributed Bragg reflector composed of a combination of an AlInP layer and a GaAs layer in Patent Document 1, a part of light is absorbed without being reflected by the GaAs layer, resulting in a darkness.

そこで、本発明の目的は、分布ブラッグ反射器での近赤外光の発光を無視し得るレベルまで低減し、更には分布ブラッグ反射器での光の吸収率を低くした高輝度の発光ダイオード及びその製造方法を提供することにある。   Accordingly, an object of the present invention is to reduce the near-infrared light emission in the distributed Bragg reflector to a level that can be ignored, and further to provide a high-intensity light-emitting diode in which the light absorptance in the distributed Bragg reflector is lowered and It is in providing the manufacturing method.

上記目的を達成するため、本発明は、次のように構成したものである。   In order to achieve the above object, the present invention is configured as follows.

請求項1の発明に係る発光ダイオードは、第一導電型基板の上に、活性層を第一導電型下クラッド層と第二導電型上クラッド層で挟んだ発光部を形成し、第一導電型下クラッド層と基板との間に、高屈折率膜と低屈折率膜を交互に積層した多層膜から成る第一導電型の分布ブラッグ反射器を挿入した構造の発光ダイオードにおいて、上記分布ブラッグ反射器を構成する高屈折率膜と低屈折率膜の材質としてAlGaAs層とAlInP層を用いたことを特徴とする。   According to a first aspect of the present invention, a light emitting diode is formed on a first conductivity type substrate by forming a light emitting portion sandwiching an active layer between a first conductivity type lower cladding layer and a second conductivity type upper cladding layer. In a light emitting diode having a structure in which a distributed Bragg reflector of the first conductivity type composed of a multilayer film in which a high refractive index film and a low refractive index film are alternately laminated is inserted between an undermold cladding layer and a substrate, the above distributed Bragg An AlGaAs layer and an AlInP layer are used as materials for the high refractive index film and the low refractive index film constituting the reflector.

請求項2の発明に係る発光ダイオードは、第一導電型基板の上に、活性層を第一導電型下クラッド層と第二導電型上クラッド層で挟んだ発光部を形成し、その上に第二導電型電流分散層を形成し、第一導電型下クラッド層と基板との間に、高屈折率膜と低屈折率膜を交互に積層した多層膜から成る第一導電型の分布ブラッグ反射器を挿入した構造の発光ダイオードにおいて、上記分布ブラッグ反射器を構成する高屈折率膜と低屈折率膜の材質としてAlGaAs層とAlInP層を用いたことを特徴とする。   According to a second aspect of the present invention, there is provided a light emitting diode comprising: a light emitting portion having an active layer sandwiched between a first conductive type lower cladding layer and a second conductive type upper cladding layer on a first conductive type substrate; A first conductivity type distributed Bragg consisting of a multilayer film in which a second conductivity type current spreading layer is formed and a high refractive index film and a low refractive index film are alternately laminated between the first conductivity type lower cladding layer and the substrate. In a light emitting diode having a structure in which a reflector is inserted, an AlGaAs layer and an AlInP layer are used as materials of the high refractive index film and the low refractive index film constituting the distributed Bragg reflector.

請求項3の発明は、請求項1又は2記載の発光ダイオードにおいて、上記分布ブラッグ反射器に用いられるAlGaAs層とAlInP層の膜厚を、下記(1)(2)(3)式の関係
(AlGaAs層の膜厚[nm])={λ/(4×n)}×α ・・・(1)
(AlInP層の膜厚[nm])={λ/(4×n)}×(2−α) ・・・(2)
λ:反射させたい光の波長[nm]
:反射させたい光の波長に対するAlGaAs層の屈折率
:反射させたい光の波長に対するAlInP層の屈折率
0.5<α<0.9 ・・・(3)
としたことを特徴とする。
The invention of claim 3 is the light-emitting diode according to claim 1 or 2, wherein the film thicknesses of the AlGaAs layer and the AlInP layer used in the distributed Bragg reflector are expressed by the following equations (1), (2), and (3). AlGaAs layer thickness [nm]) = {λ 0 / (4 × n 1 )} × α (1)
(AlInP layer thickness [nm]) = {λ 0 / (4 × n 2 )} × (2-α) (2)
λ 0 : wavelength of light to be reflected [nm]
n 1 : Refractive index of the AlGaAs layer with respect to the wavelength of the light to be reflected n 2 : Refractive index of the AlInP layer with respect to the wavelength of the light to be reflected 0.5 <α <0.9 (3)
It is characterized by that.

請求項4の発明は、請求項1〜3のいずれかに記載の発光ダイオードにおいて、上記高屈折率膜の材質を一般式AlGa1−xAs層として表示したとき、そのAl混晶比xを0<x<0.6としたことを特徴とする。 According to a fourth aspect of the present invention, in the light emitting diode according to any one of the first to third aspects, when the material of the high refractive index film is displayed as a general formula Al x Ga 1-x As layer, the Al mixed crystal ratio x is 0 <x <0.6.

請求項5の発明は、請求項1〜4のいずれかに記載の発光ダイオードにおいて、上記基板がGaAsであり、発光部がAlGaInP又はGaInPで形成されていることを特徴とする。   According to a fifth aspect of the present invention, in the light-emitting diode according to any one of the first to fourth aspects, the substrate is made of GaAs and the light-emitting portion is formed of AlGaInP or GaInP.

請求項6の発明に係る発光ダイオードの製造方法は、MOVPE法により、第一導電型のGaAs基板上に第一導電型のAlGaAs層と第一導電型のAlInP層を交互に成長して分布ブラッグ反射器を形成し、その上に第一導電型のAlGaInPクラッド層、アンドープAlGaInP活性層、第二導電型のAlGaInPクラッド層、第二導電型のAlGaInP電流分散層を順次成長し、その際、上記分布ブラッグ反射器に用いられるAlGaAs層とAlInP層の膜厚を、下記(1)(2)(3)式の関係
(AlGaAs層の膜厚[nm])={λ/(4×n)}×α ・・・(1)
(AlInP層の膜厚[nm])={λ/(4×n)}×(2−α) ・・・(2)
λ:反射させたい光の波長[nm]
:反射させたい光の波長に対するAlGaAs層の屈折率
:反射させたい光の波長に対するAlInP層の屈折率
0.5<α<0.9 ・・・(3)
とすることを特徴とする。
According to a sixth aspect of the present invention, there is provided a method of manufacturing a light emitting diode comprising a distributed Bragg by alternately growing a first conductivity type AlGaAs layer and a first conductivity type AlInP layer on a first conductivity type GaAs substrate by a MOVPE method. A reflector is formed, and a first conductivity type AlGaInP clad layer, an undoped AlGaInP active layer, a second conductivity type AlGaInP clad layer, and a second conductivity type AlGaInP current spreading layer are sequentially grown on the reflector. The film thicknesses of the AlGaAs layer and the AlInP layer used in the distributed Bragg reflector are expressed by the following equations (1), (2) and (3) (film thickness [nm] of the AlGaAs layer) = {λ 0 / (4 × n 1 )} × α (1)
(AlInP layer thickness [nm]) = {λ 0 / (4 × n 2 )} × (2-α) (2)
λ 0 : wavelength of light to be reflected [nm]
n 1 : Refractive index of the AlGaAs layer with respect to the wavelength of the light to be reflected n 2 : Refractive index of the AlInP layer with respect to the wavelength of the light to be reflected 0.5 <α <0.9 (3)
It is characterized by.

<発明の要点>
特許文献1のAlInP、GaAsペアの分布ブラッグ反射器における大きな問題は、活性層のバンドギャップに相当する波長域のメインの光(発光波長630nm)(以下、第一放射光と称す)に加え、GaAsのバンドギャップに相当する波長域の光、つまり強い近赤外光(860nm)(第二放射光)を同時に放出することである(図7参照)。同時に強い近赤外光(第二放射光)を放出する原因は、図6において、活性層25から放射された光の内、n型GaAs基板22及びn型分布ブラッグ反射器23側へ向かった光は、その殆どがn型分布ブラッグ反射器23によってその反対側である、主光取り出し面へ反射される。しかし一部の第一放射光は、n型分布ブラッグ反射器23を構成するAlInP、GaAsのGaAs層に入る。そこでGaAs層に入った第一放射光によって光励起され、GaAs層のバンドギャップに相当する光を放出するからである。即ち、n型分布ブラッグ反射器23のペアの片方にGaAs層を用いた発光ダイオードでは、どうしても強い第二放射光を放出してしまう。従って、赤外光を利用しているセンサー類、例えば一般的な半導体フォトダイオードを、このような発光ダイオードの周囲に存在させた場合、当該フォトダイオードが発光ダイオードから放射される近赤外光(第二放射光)に反応し、誤動作するという不都合があった。
<Key points of the invention>
In addition to the main light in the wavelength region corresponding to the band gap of the active layer (emission wavelength 630 nm) (hereinafter referred to as the first radiation), a major problem with the AlInP, GaAs pair distributed Bragg reflector of Patent Document 1 This is to simultaneously emit light in a wavelength region corresponding to the band gap of GaAs, that is, strong near-infrared light (860 nm) (second emitted light) (see FIG. 7). At the same time, the cause of emitting strong near-infrared light (second emitted light) is directed toward the n-type GaAs substrate 22 and the n-type distributed Bragg reflector 23 in the light emitted from the active layer 25 in FIG. Most of the light is reflected by the n-type distributed Bragg reflector 23 to the main light extraction surface on the opposite side. However, a part of the first radiation enters the GaAs layers of AlInP and GaAs constituting the n-type distributed Bragg reflector 23. This is because the first radiant light entering the GaAs layer is photoexcited to emit light corresponding to the band gap of the GaAs layer. That is, a light emitting diode using a GaAs layer for one of the pair of n-type distributed Bragg reflectors 23 inevitably emits strong second radiation. Therefore, when a sensor using infrared light, for example, a general semiconductor photodiode is present around such a light emitting diode, the near infrared light emitted from the light emitting diode ( In response to the second synchrotron radiation, there was a problem of malfunction.

そこで、本発明(請求項1、2)においては、分布ブラッグ反射器を構成する高屈折率膜と低屈折率膜の材質としてAlGaAs層とAlInP層を用いる。すなわち高屈折率膜として従来のGaAs層の代わりにAlGaAs層を用いる。これにより本発明では、分布ブラッグ反射器からの近赤外光が、図3に示すように無視し得るレベルまで低減される。よって、本発明の発光ダイオードの場合には、その周囲に赤外光を利用しているセンサーが存在していても、該発光ダイオードから放射される近赤外光(第二放射光)に反応して誤動作してしまうことが無くなる。   Therefore, in the present invention (claims 1 and 2), an AlGaAs layer and an AlInP layer are used as materials of the high refractive index film and the low refractive index film constituting the distributed Bragg reflector. That is, an AlGaAs layer is used as the high refractive index film instead of the conventional GaAs layer. Thereby, in this invention, the near-infrared light from a distributed Bragg reflector is reduced to the level which can be disregarded as shown in FIG. Therefore, in the case of the light emitting diode of the present invention, even if there is a sensor using infrared light around it, it reacts to near infrared light (second emitted light) emitted from the light emitting diode. And no malfunction occurs.

また、本発明(請求項3〜5)においては、分布ブラッグ反射器を構成するペア膜のうち、一方の光の吸収のあるAlGaAs層についてはできるだけ薄くし、他方のAlInP層については反射させたい波長の光を反射するように厚く形成しているので、高輝度の発光ダイオードを得ることができる。   In the present invention (claims 3 to 5), among the pair films constituting the distributed Bragg reflector, one of the AlGaAs layers that absorbs light is made as thin as possible and the other AlInP layer is reflected. Since it is formed thick so as to reflect light having a wavelength, a light-emitting diode with high luminance can be obtained.

また本発明(請求項1〜6)においては、分布ブラッグ反射器のAlGaAs層とAlInP層の膜厚を変えるだけで、従来の発光ダイオードと比較し、より高輝度な発光ダイオードを得ることができる。   Further, in the present invention (claims 1 to 6), it is possible to obtain a light-emitting diode with higher brightness as compared with a conventional light-emitting diode only by changing the film thickness of the AlGaAs layer and the AlInP layer of the distributed Bragg reflector. .

AlAs層とAlGaAs層の組合せからなる一般的な分布ブラッグ反射器においては、AlAs層の作製条件が非常に難しく、酸素(O)が混入し易く、その上に成長する発光層の結晶性を著しく悪化させ、輝度の低下を引き起こす。また酸素混入を防ぐためにV族原料とIII族原料との供給量比、いわゆるV/III比を高くする方法を採用すると、製造装置に多大な負荷が掛かり、排気配管がAs屑により閉塞し易いと言う問題がある。しかし、本発明(請求項1〜6)ではAlGaAs層とAlInP層の組合せからなる分布ブラッグ反射器としているので、このような問題がなく、生産に適した、より高反射率な分布ブラッグ反射器を容易に生産することができる。   In a general distributed Bragg reflector composed of a combination of an AlAs layer and an AlGaAs layer, the fabrication conditions of the AlAs layer are very difficult, oxygen (O) is easily mixed, and the crystallinity of the light-emitting layer grown thereon is remarkably increased. Deteriorates and causes a decrease in brightness. Further, if a method of increasing the supply ratio of the Group V raw material and the Group III raw material, that is, the so-called V / III ratio, is used to prevent oxygen contamination, the manufacturing apparatus is heavily loaded, and the exhaust pipe is easily clogged with As debris. There is a problem to say. However, in the present invention (Claims 1 to 6), a distributed Bragg reflector comprising a combination of an AlGaAs layer and an AlInP layer is used. Therefore, there is no such problem, and a distributed Bragg reflector with higher reflectivity suitable for production. Can be easily produced.

本発明によれば、次のような優れた効果が得られる。   According to the present invention, the following excellent effects can be obtained.

請求項1、2の発明においては、分布ブラッグ反射器を構成する高屈折率膜と低屈折率膜の材質としてAlGaAs層とAlInP層を用いるので、分布ブラッグ反射器からの近赤外光が無視し得るレベルまで低減される。従って、本発明の発光ダイオードの周囲に一般的な半導体フォトダイオードが存在していても誤動作しない。   In the first and second aspects of the invention, since the AlGaAs layer and the AlInP layer are used as the materials of the high refractive index film and the low refractive index film constituting the distributed Bragg reflector, the near infrared light from the distributed Bragg reflector is ignored. To a possible level. Therefore, even if a general semiconductor photodiode exists around the light emitting diode of the present invention, no malfunction occurs.

また請求項3〜5の発明においては、光の吸収のあるAlGaAs層をできるだけ薄くし、AlInP層を反射させたい波長の光を反射するように厚く形成しているので、高輝度の発光ダイオードを得ることができる。   In the inventions of claims 3 to 5, since the light-absorbing AlGaAs layer is made as thin as possible and the AlInP layer is formed thick so as to reflect light having a wavelength desired to be reflected, a high-intensity light-emitting diode is formed. Obtainable.

また請求項1〜6の発明においては、分布ブラッグ反射器のAlGaAs層とAlInP層の膜厚を変えるだけで、従来の発光ダイオードと比較し、より高輝度な発光ダイオードを得ることができる。   According to the first to sixth aspects of the present invention, it is possible to obtain a light-emitting diode with higher brightness as compared with a conventional light-emitting diode by simply changing the film thickness of the AlGaAs layer and the AlInP layer of the distributed Bragg reflector.

以下、本発明を図示の実施の形態に基づいて説明する。   Hereinafter, the present invention will be described based on the illustrated embodiments.

本発明の実施形態に係る発光ダイオードの構造を図1に示す。ここでは第一導電型をn型、第二導電型をp型とする。この発光ダイオードは、第一導電型基板としてのn型GaAs基板2上に、高屈折率膜のn型AlGaAs層と低屈折率膜のn型AlInP層を交互に積層した多層膜から成るn型分布ブラッグ反射器3が形成されている。さらにこの上に、第一導電型下クラッド層であるn型AlGaInP下クラッド層4と、アンドープAlGaInP活性層5と、第二導電型上クラッド層であるp型AlGaInP上クラッド層6のダブルヘテロ構造から成る発光部(発光領域層)が形成されている。なお、n型GaAs基板2とn型分布ブラッグ反射器3との間には、n型GaAsバッファ層を設けてもよい。   A structure of a light emitting diode according to an embodiment of the present invention is shown in FIG. Here, the first conductivity type is n-type, and the second conductivity type is p-type. This light emitting diode is an n-type comprising a multilayer film in which an n-type AlGaAs layer of a high refractive index film and an n-type AlInP layer of a low refractive index film are alternately laminated on an n-type GaAs substrate 2 as a first conductivity type substrate. A distributed Bragg reflector 3 is formed. Further thereon, a double heterostructure of an n-type AlGaInP lower cladding layer 4 which is a first conductivity type lower cladding layer, an undoped AlGaInP active layer 5, and a p-type AlGaInP upper cladding layer 6 which is a second conductivity type upper cladding layer. A light emitting portion (light emitting region layer) is formed. An n-type GaAs buffer layer may be provided between the n-type GaAs substrate 2 and the n-type distributed Bragg reflector 3.

さらに、上記した発光部の上、正確にはp型AlGaInP上クラッド層6上には、第二導電型電流分散層としてp型AlGaInP電流分散層7が形成されている。更に、チップ表面には、その中央に円形の部分電極から成る表面電極8が形成され、また裏面には、その一部分または全面にn側用金属電極から成る裏面電極1が形成されている。   Further, a p-type AlGaInP current spreading layer 7 is formed as a second conductivity type current spreading layer on the above-described light emitting portion, more precisely on the p-type AlGaInP upper cladding layer 6. Furthermore, a surface electrode 8 made of a circular partial electrode is formed at the center of the chip surface, and a back electrode 1 made of an n-side metal electrode is formed on a part or the whole of the back surface.

上記分布ブラッグ反射器3を構成するAlGaAs層及びAlInP層の膜厚は、下記の(1)(2)(3)式のようにして求める。   The film thicknesses of the AlGaAs layer and the AlInP layer constituting the distributed Bragg reflector 3 are obtained by the following equations (1), (2), and (3).

(AlGaAs層の膜厚[nm])={λ/(4×n)}×α ・・・(1)
(AlInP層の膜厚[nm])={λ/(4×n)}×(2−α) ・・・(2)
λ:反射させたい光の波長[nm]
:反射させたい光の波長に対するAlGaAs層の屈折率
:反射させたい光の波長に対するAlInP層の屈折率
0.5<α<0.9 ・・・(3)
図2に上記係数αと分布ブラッグ反射器のスペクトル面積の関係を示す。α=1となる通常の分布ブラッグ反射器(高屈折率膜と低屈折率膜の膜厚をλ/4nに等しくした場合)と比較して、係数αの範囲を0.5<α<0.9とした分布ブラッグ反射器の方が、発光ダイオードの輝度向上がより認められる。すなわち、上記係数αについては、図2から分かるように、0.5<α<0.9の範囲、好ましくは0.6≦α≦0.8の範囲、更に好ましくは略0.7とすると、α=1の場合(高屈折率膜と低屈折率膜の膜厚をλ/4nに等しくした場合)に較べ、より大きなスペクトル面積[a.u.(任意単位)]、従って高反射率な分布ブラッグ反射器を得ることができる。
(AlGaAs layer thickness [nm]) = {λ 0 / (4 × n 1 )} × α (1)
(AlInP layer thickness [nm]) = {λ 0 / (4 × n 2 )} × (2-α) (2)
λ 0 : wavelength of light to be reflected [nm]
n 1 : Refractive index of the AlGaAs layer with respect to the wavelength of the light to be reflected n 2 : Refractive index of the AlInP layer with respect to the wavelength of the light to be reflected 0.5 <α <0.9 (3)
FIG. 2 shows the relationship between the coefficient α and the spectral area of the distributed Bragg reflector. Compared with a normal distributed Bragg reflector with α = 1 (when the film thickness of the high refractive index film and the low refractive index film is equal to λ / 4n), the range of the coefficient α is 0.5 <α <0. In the case of a distributed Bragg reflector having a. That is, as can be seen from FIG. 2, the coefficient α is in the range of 0.5 <α <0.9, preferably in the range of 0.6 ≦ α ≦ 0.8, and more preferably about 0.7. , Α = 1 (when the film thickness of the high refractive index film and the low refractive index film is equal to λ / 4n), a larger spectral area [a. u. (Arbitrary units)], and therefore a distributed Bragg reflector with high reflectivity can be obtained.

図3に、上記構成の分布ブラッグ反射器を有するLEDの発光スペクトルを示す。従来のGaAs層とAlInP層をペアとする分布ブラッグ反射器の場合には、GaAs層からの近赤外光(図7)がメインピークの1/10程度の大きさで発生していたが、本実施形態のAlGaAs層とAlInP層をペアとする分布ブラッグ反射器3の場合には、図3に示すように、外部に取り出される近赤外光がメインピークの約1/60以下という実質的に無視し得るレベルまで低減される。よって、本実施形態の発光ダイオードの周囲に一般的な半導体フォトダイオードを存在させても、該フォトダイオードは放射される近赤外光に反応しなくなり、誤動作が防止される。   FIG. 3 shows an emission spectrum of the LED having the distributed Bragg reflector having the above configuration. In the case of a distributed Bragg reflector having a pair of a conventional GaAs layer and an AlInP layer, near-infrared light (FIG. 7) from the GaAs layer was generated at a size about 1/10 of the main peak. In the case of the distributed Bragg reflector 3 in which the AlGaAs layer and the AlInP layer of this embodiment are paired, as shown in FIG. 3, the near-infrared light extracted outside is substantially 1/60 or less of the main peak. To a negligible level. Therefore, even if a general semiconductor photodiode exists around the light emitting diode of the present embodiment, the photodiode does not react to the emitted near infrared light, and malfunction is prevented.

図5に、GaAs層とAlInP層とのペア数とLED光度との関係を示す。0から15ペアまでは光度が単調に増加するが、15〜30ペアでは略飽和傾向となる。よって、GaAs層とAlInP層とのペア数は30ペア以下が好ましく、15〜25ペアがより好ましい。   FIG. 5 shows the relationship between the number of pairs of the GaAs layer and the AlInP layer and the LED luminous intensity. The light intensity increases monotonically from 0 to 15 pairs, but tends to be saturated at 15 to 30 pairs. Therefore, the number of pairs of the GaAs layer and the AlInP layer is preferably 30 pairs or less, and more preferably 15 to 25 pairs.

より具体的に、図1の発光ダイオード(LED)の実施例について説明する。   More specifically, an embodiment of the light emitting diode (LED) of FIG. 1 will be described.

MOVPE法により、n型GaAs基板2上に、高屈折率膜のn型AlGaAs層(膜厚30.7nm、キャリア濃度1×1018cm−3)と低屈折率膜のn型AlInP層(膜厚71.2nm、キャリア濃度1×1018cm−3)の2層を交互に成長した計20ペアからなる分布ブラッグ反射器3を成長した。更にその上に、厚さが0.5μmでキャリア濃度が1×1018cm−3のn型AlGaInP下クラッド層4、厚さが0.5μmのアンドープAlGaInP活性層5、厚さが0.5μmでキャリア濃度が5×1017cm−3のp型AlGaInP上クラッド層6を順次成長した。更にその上に、厚さが5μmでキャリア濃度が1×1018cm−3のp型AlGaInP電流分散層7を成長した。 On the n-type GaAs substrate 2 by the MOVPE method, an n-type AlGaAs layer (film thickness: 30.7 nm, carrier concentration: 1 × 10 18 cm −3 ) and a low-refractive index film n-type AlInP layer (film) A distributed Bragg reflector 3 consisting of 20 pairs in which two layers having a thickness of 71.2 nm and a carrier concentration of 1 × 10 18 cm −3 ) were alternately grown was grown. Furthermore, an n-type AlGaInP lower cladding layer 4 having a thickness of 0.5 μm and a carrier concentration of 1 × 10 18 cm −3 , an undoped AlGaInP active layer 5 having a thickness of 0.5 μm, and a thickness of 0.5 μm. The p-type AlGaInP upper cladding layer 6 having a carrier concentration of 5 × 10 17 cm −3 was sequentially grown. Further, a p-type AlGaInP current spreading layer 7 having a thickness of 5 μm and a carrier concentration of 1 × 10 18 cm −3 was grown thereon.

このエピタキシャルウェハより図1のLEDチップを製作し、特性評価を行った。上記式でα=1の場合(高屈折率膜と低屈折率膜の膜厚をλ/4nに等しくした場合)の分布ブラッグ反射器を持つLEDチップと比較して、発光出力は約15%アップの2.8mWとなり、素子の動作電圧(Vf特性)は変わらず1.9Vであった。つまり、発光出力及び動作電圧の特性については、特許文献1とほぼ同じ良好な結果が維持された。   The LED chip of FIG. 1 was manufactured from this epitaxial wafer, and the characteristics were evaluated. Compared with the LED chip having the distributed Bragg reflector when α = 1 in the above formula (when the film thickness of the high refractive index film and the low refractive index film is equal to λ / 4n), the light emission output is about 15%. The operating voltage (Vf characteristics) of the device remained unchanged at 1.9 V. That is, the same good results as in Patent Document 1 were maintained for the characteristics of the light emission output and the operating voltage.

一方、本発明の重要論点であるところの発光ダイオードから外部に取り出される近赤外光の強度については、図3に示すように無視し得るレベルまで低減され、周囲に一般的な半導体フォトダイオードを存在させても反応しなくなった。   On the other hand, the intensity of near infrared light extracted from the light emitting diode, which is an important point of the present invention, is reduced to a negligible level as shown in FIG. No longer reacts when present.

上記実施形態では、電流分散層7を有する発光ダイオードの構造について述べたが、本発明はこれに限定されるものではなく、図1から電流分散層7を省略した発光ダイオードの構造についても適用することができる。すなわち、図4に示すように、n型のGaAs基板2上に、上記(1)(2)式に従って、高屈折率膜のn型AlGaAs層と低屈折率膜のn型AlInP層を交互に積層した多層膜から成るn型の分布ブラッグ反射器3を形成し、さらにこの上にn型AlGaInP下クラッド層4と、アンドープAlGaInP活性層5と、p型AlGaInP上クラッド層6とから成るダブルヘテロ構造の発光部を設け、この上クラッド層6上にp型AlGaInP電流分散層7を形成し、更に、表面電極8と裏面電極1を形成した構成とすることができる。   In the above embodiment, the structure of the light emitting diode having the current spreading layer 7 has been described. However, the present invention is not limited to this, and the present invention is also applicable to the structure of the light emitting diode in which the current spreading layer 7 is omitted from FIG. be able to. That is, as shown in FIG. 4, an n-type AlGaAs layer of a high refractive index film and an n-type AlInP layer of a low refractive index film are alternately formed on an n-type GaAs substrate 2 according to the above equations (1) and (2). An n-type distributed Bragg reflector 3 composed of laminated multilayer films is formed, and a double heterostructure comprising an n-type AlGaInP lower cladding layer 4, an undoped AlGaInP active layer 5, and a p-type AlGaInP upper cladding layer 6 thereon. A light emitting portion having a structure is provided, a p-type AlGaInP current spreading layer 7 is formed on the upper cladding layer 6, and a front electrode 8 and a back electrode 1 are further formed.

また、電流分散層7には、AlGaInPの他、透明導電膜のITO膜や、GaAlAsや、GaP等を用いることができる。   In addition to AlGaInP, a transparent conductive ITO film, GaAlAs, GaP, or the like can be used for the current spreading layer 7.

本発明の実施形態に係る発光ダイオードの構造を示す図である。It is a figure which shows the structure of the light emitting diode which concerns on embodiment of this invention. 本発明で用いる式中の係数αと分布ブラッグ反射膜のスペクトル面積の関係を示す図である。It is a figure which shows the relationship between the coefficient (alpha) in the type | formula used by this invention, and the spectrum area of a distributed Bragg reflecting film. 本発明の実施形態に係る発光ダイオードの発光スペクトルを示した図である。It is the figure which showed the emission spectrum of the light emitting diode which concerns on embodiment of this invention. 本発明の他の実施形態に係る発光ダイオードの構造を示す図である。It is a figure which shows the structure of the light emitting diode which concerns on other embodiment of this invention. 本発明の実施形態に係る発光ダイオードのGaAs層とAlInP層とのペア数とLED光度の関係を示した図である。It is the figure which showed the relationship between the number of pairs of the GaAs layer and AlInP layer of the light emitting diode which concerns on embodiment of this invention, and LED luminous intensity. 従来の発光ダイオードの構造を示す図である。It is a figure which shows the structure of the conventional light emitting diode. 従来の発光ダイオードの発光スペクトルを示した図である。It is the figure which showed the emission spectrum of the conventional light emitting diode.

符号の説明Explanation of symbols

1 裏面電極
2 GaAs基板
3 ブラッグ反射器
4 AlGaInP下クラッド層
5 AlGaInP活性層
6 AlGaInP上クラッド層
7 AlGaInP電流分散層
8 表面電極
DESCRIPTION OF SYMBOLS 1 Back electrode 2 GaAs substrate 3 Bragg reflector 4 AlGaInP lower clad layer 5 AlGaInP active layer 6 AlGaInP upper clad layer 7 AlGaInP current dispersion layer 8 Surface electrode

Claims (6)

第一導電型基板の上に、活性層を第一導電型下クラッド層と第二導電型上クラッド層で挟んだ発光部を形成し、第一導電型下クラッド層と基板との間に、高屈折率膜と低屈折率膜を交互に積層した多層膜から成る第一導電型の分布ブラッグ反射器を挿入した構造の発光ダイオードにおいて、
上記分布ブラッグ反射器を構成する高屈折率膜と低屈折率膜の材質としてAlGaAs層とAlInP層を用いたことを特徴とする発光ダイオード。
On the first conductivity type substrate, a light emitting portion is formed in which the active layer is sandwiched between the first conductivity type lower cladding layer and the second conductivity type upper cladding layer, and between the first conductivity type lower cladding layer and the substrate, In a light emitting diode having a structure in which a distributed Bragg reflector of the first conductivity type composed of a multilayer film in which a high refractive index film and a low refractive index film are alternately laminated is inserted,
A light emitting diode using an AlGaAs layer and an AlInP layer as materials of a high refractive index film and a low refractive index film constituting the distributed Bragg reflector.
第一導電型基板の上に、活性層を第一導電型下クラッド層と第二導電型上クラッド層で挟んだ発光部を形成し、その上に第二導電型電流分散層を形成し、第一導電型下クラッド層と基板との間に、高屈折率膜と低屈折率膜を交互に積層した多層膜から成る第一導電型の分布ブラッグ反射器を挿入した構造の発光ダイオードにおいて、
上記分布ブラッグ反射器を構成する高屈折率膜と低屈折率膜の材質としてAlGaAs層とAlInP層を用いたことを特徴とする発光ダイオード。
On the first conductivity type substrate, a light emitting part sandwiching the active layer between the first conductivity type lower clad layer and the second conductivity type upper clad layer is formed, and a second conductivity type current spreading layer is formed thereon, In a light emitting diode having a structure in which a first conductivity type distributed Bragg reflector composed of a multilayer film in which a high refractive index film and a low refractive index film are alternately laminated is inserted between a first conductivity type lower cladding layer and a substrate,
A light emitting diode using an AlGaAs layer and an AlInP layer as materials of a high refractive index film and a low refractive index film constituting the distributed Bragg reflector.
請求項1又は2記載の発光ダイオードにおいて、
上記分布ブラッグ反射器に用いられるAlGaAs層とAlInP層の膜厚を、下記(1)(2)(3)式の関係
(AlGaAs層の膜厚[nm])={λ/(4×n)}×α ・・・(1)
(AlInP層の膜厚[nm])={λ/(4×n)}×(2−α) ・・・(2)
λ0:反射させたい光の波長[nm]
:反射させたい光の波長に対するAlGaAs層の屈折率
:反射させたい光の波長に対するAlInP層の屈折率
0.5<α<0.9 ・・・(3)
としたことを特徴とする発光ダイオード。
The light-emitting diode according to claim 1 or 2,
The film thicknesses of the AlGaAs layer and the AlInP layer used in the distributed Bragg reflector are expressed by the following equations (1), (2), and (3) (the film thickness [nm] of the AlGaAs layer) = {λ 0 / (4 × n 1 )} × α (1)
(AlInP layer thickness [nm]) = {λ 0 / (4 × n 2 )} × (2-α) (2)
λ 0 : Wavelength of light to be reflected [nm]
n 1 : Refractive index of the AlGaAs layer with respect to the wavelength of the light to be reflected n 2 : Refractive index of the AlInP layer with respect to the wavelength of the light to be reflected 0.5 <α <0.9 (3)
A light emitting diode characterized by that.
請求項1〜3のいずれかに記載の発光ダイオードにおいて、
上記高屈折率膜の材質を一般式AlGa1−xAs層として表示したとき、そのAl混晶比xを0<x<0.6としたことを特徴とする発光ダイオード。
In the light emitting diode in any one of Claims 1-3,
A light emitting diode characterized in that when the material of the high refractive index film is expressed as an Al x Ga 1-x As layer, the Al mixed crystal ratio x is 0 <x <0.6.
請求項1〜4のいずれかに記載の発光ダイオードにおいて、
上記基板がGaAsであり、発光部がAlGaInP又はGaInPで形成されていることを特徴とする発光ダイオード。
In the light emitting diode in any one of Claims 1-4,
A light-emitting diode, wherein the substrate is made of GaAs and the light-emitting portion is formed of AlGaInP or GaInP.
MOVPE法により、第一導電型のGaAs基板上に第一導電型のAlGaAs層と第一導電型のAlInP層を交互に成長して分布ブラッグ反射器を形成し、その上に第一導電型のAlGaInPクラッド層、アンドープAlGaInP活性層、第二導電型のAlGaInPクラッド層、第二導電型のAlGaInP電流分散層を順次成長し、
その際、上記分布ブラッグ反射器に用いられるAlGaAs層とAlInP層の膜厚を、下記(1)(2)(3)式の関係
(AlGaAs層の膜厚[nm])={λ/(4×n)}×α ・・・(1)
(AlInP層の膜厚[nm])={λ/(4×n)}×(2−α) ・・・(2)
λ:反射させたい光の波長[nm]
:反射させたい光の波長に対するAlGaAs層の屈折率
:反射させたい光の波長に対するAlInP層の屈折率
0.5<α<0.9 ・・・(3)
とすることを特徴とする発光ダイオードの製造方法。
A distributed Bragg reflector is formed by alternately growing a first conductivity type AlGaAs layer and a first conductivity type AlInP layer on a first conductivity type GaAs substrate by MOVPE, and the first conductivity type AlGaAs layer is formed thereon. An AlGaInP cladding layer, an undoped AlGaInP active layer, a second conductivity type AlGaInP cladding layer, and a second conductivity type AlGaInP current spreading layer are sequentially grown,
At that time, the thicknesses of the AlGaAs layer and the AlInP layer used in the distributed Bragg reflector are expressed by the following equations (1), (2), and (3) (the thickness of the AlGaAs layer [nm]) = {λ 0 / ( 4 × n 1 )} × α (1)
(AlInP layer thickness [nm]) = {λ 0 / (4 × n 2 )} × (2-α) (2)
λ 0 : wavelength of light to be reflected [nm]
n 1 : Refractive index of the AlGaAs layer with respect to the wavelength of the light to be reflected n 2 : Refractive index of the AlInP layer with respect to the wavelength of the light to be reflected 0.5 <α <0.9 (3)
A method for producing a light-emitting diode, characterized by:
JP2006044339A 2005-02-25 2006-02-21 Light-emitting diode and method of manufacturing it Pending JP2006270073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006044339A JP2006270073A (en) 2005-02-25 2006-02-21 Light-emitting diode and method of manufacturing it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005051657 2005-02-25
JP2006044339A JP2006270073A (en) 2005-02-25 2006-02-21 Light-emitting diode and method of manufacturing it

Publications (1)

Publication Number Publication Date
JP2006270073A true JP2006270073A (en) 2006-10-05

Family

ID=37205631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006044339A Pending JP2006270073A (en) 2005-02-25 2006-02-21 Light-emitting diode and method of manufacturing it

Country Status (1)

Country Link
JP (1) JP2006270073A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101337379B1 (en) 2012-06-22 2013-12-05 광전자 주식회사 Algainp light emitting diode with n-type alas bottom window layer and fabrication thereof
JP2021114594A (en) * 2019-08-27 2021-08-05 株式会社東芝 Optical semiconductor element
US11114822B2 (en) 2019-08-27 2021-09-07 Kabushiki Kaisha Toshiba Optical semiconductor element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101337379B1 (en) 2012-06-22 2013-12-05 광전자 주식회사 Algainp light emitting diode with n-type alas bottom window layer and fabrication thereof
JP2021114594A (en) * 2019-08-27 2021-08-05 株式会社東芝 Optical semiconductor element
US11114822B2 (en) 2019-08-27 2021-09-07 Kabushiki Kaisha Toshiba Optical semiconductor element

Similar Documents

Publication Publication Date Title
US7683378B2 (en) Light emitting diode and method for fabricating same
US20110037049A1 (en) Nitride semiconductor light-emitting device
JP3643665B2 (en) Semiconductor light emitting device
JP2002222989A (en) Semiconductor light-emitting device
JP2012502473A (en) II-VI multiple quantum well vertical cavity surface emitting laser on a heat sink optically pumped by a gallium nitride laser diode
JPH11274558A (en) Semiconductor light emitting element and semiconductor light emitting device
KR20080003901A (en) Nitride semiconductor light emitting element
TWI495152B (en) Light emitting diode and method for producing the same
US8502265B2 (en) Light emitting device having different multi-quantum well materials
WO2010134298A1 (en) Light emitting diode, light emitting diode lamp, and lighting apparatus
JP2008103534A (en) Semiconductor light emitting element
JP2010245312A (en) Light-emitting element
JP2005268601A (en) Compound semiconductor light-emitting device
JP4077137B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP2006040998A (en) Semiconductor light emitting device and epitaxial wafer therefor
TW201347226A (en) Light emitting diode and manufacturing method thereof
JP2006270073A (en) Light-emitting diode and method of manufacturing it
CN1355569A (en) Structure of LED and its preparing process
JPH11233815A (en) Semiconductor light emitting diode
KR20190133382A (en) A surface-emitting laser device and light emitting device including the same
JP2004241462A (en) Light emitting element and epitaxial wafer therefor
JP2004342732A (en) Oxide semiconductor light emitting device
JP2007150075A (en) Nitride semiconductor light emitting element
KR101189162B1 (en) Light emitting diode and manufacturing method thereof
JP3496745B2 (en) Light emitting diode