JPH08139414A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH08139414A
JPH08139414A JP27387794A JP27387794A JPH08139414A JP H08139414 A JPH08139414 A JP H08139414A JP 27387794 A JP27387794 A JP 27387794A JP 27387794 A JP27387794 A JP 27387794A JP H08139414 A JPH08139414 A JP H08139414A
Authority
JP
Japan
Prior art keywords
light emitting
crystal substrate
emitting portion
semiconductor
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27387794A
Other languages
Japanese (ja)
Other versions
JP3299056B2 (en
Inventor
Shinichi Watabe
信一 渡部
Kazuyuki Tadatomo
一行 只友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP27387794A priority Critical patent/JP3299056B2/en
Publication of JPH08139414A publication Critical patent/JPH08139414A/en
Application granted granted Critical
Publication of JP3299056B2 publication Critical patent/JP3299056B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To provide a semiconductor laser having a new resonator structure which can make easily high quality crystal of semiconductor forming a light emitting part compatible with high reflectivity of a reflecting part. CONSTITUTION: A semiconductor laser is provided with a laminate S formed by laminating a plurality of semiconductor layers containing a light emitting part 2 on a crystal substrate 1, and a pair of reflecting parts 3a, 3b formed by directly or indirectly sandwiching the laminate S in the lamination direction. A pair of the reflecting parts constitutes a resonator structure which makes a light emitted from the light emitting part resonate in the lamination direction. When the light emitting part is a multilayered structure composed of InGaAlN based compound semiconductor, sapphire, GaN, SiC, ZnO, etc., are desirable as the material of the crystal substrate. As the reflecting part, a multilayered structure composed of InGaAlN based compound semiconductor or a dielectric multilayered film is preferable.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、表面放射型の半導体レ
ーザに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface emitting semiconductor laser.

【0002】[0002]

【従来の技術】端面放射型の半導体レーザは、その構造
の一例を図3(a)に模式的に示すように、結晶基板1
a上にダブルヘテロ接合によって発光層2aが形成さ
れ、この発光層2aの対向する側端面を、反射面3c・
3dとし、これによってファブリペロー型等の共振器構
造を構成し、該側端面からレーザ光L1を放出させるも
のである。ただし、図では電極等の付帯部分は省略して
いる。また、発光部と結晶基板にはハッチングを施して
強調している(以下、同様)。この反射面の形成は、G
aAs等の一般の半導体材料を用いた積層構造では、結
晶基板と共に側端面をへき開することで容易に達成でき
る。しかし、InGaAlN系の化合物半導体の単結晶
および、これが結晶成長しうる結晶基板となる結晶等に
は、へき開が困難な性質を示す物質が多く、これらの半
導体材料を用いた積層構造では、反射面の形成は容易で
はない。
2. Description of the Related Art An edge-emitting type semiconductor laser has a crystal substrate 1 as shown in FIG.
The light emitting layer 2a is formed on the surface a by a double heterojunction, and the opposite side end faces of the light emitting layer 2a are formed on the reflecting surface 3c
3d, thereby forming a Fabry-Perot type resonator structure and emitting the laser beam L1 from the side end face. However, incidental parts such as electrodes are omitted in the drawing. Further, the light emitting portion and the crystal substrate are hatched to emphasize them (hereinafter the same). The formation of this reflective surface is G
A laminated structure using a general semiconductor material such as aAs can be easily achieved by cleaving the side end face together with the crystal substrate. However, a single crystal of an InGaAlN-based compound semiconductor, a crystal serving as a crystal substrate on which the crystal can grow, and the like have many substances that exhibit a property of being difficult to cleave, and a laminated structure using these semiconductor materials has a reflective surface. Is not easy to form.

【0003】一方、発光層の側端面を反射面としない共
振器構造を有するものとして、表面放射型の半導体レー
ザ(「垂直共振型面発光レーザ」とも呼ばれる。)が知
られている。図3(b)は、その構造の一例を模式的に
示す図である。この型の反射面は、反射層3e、3fと
して、発光層を含む発光部2bを積層方向に挟んで形成
され、発光した光は積層に垂直な方向に共振し、積層の
最外面からレーザ光L2として放出される。このような
共振器構造は、上記のような側端面のへき開が困難な物
質にとって、半導体レーザを形成するのに有用な構造で
ある。また、このような共振器構造は、結晶基板1b上
に反射層、発光部、反射層を順次結晶成長させて積層す
るものであるため、反射面間の平行を容易に高精度なも
のとすることができる。
On the other hand, a surface emitting semiconductor laser (also called "vertical cavity surface emitting laser") is known as one having a resonator structure in which the side end surface of the light emitting layer is not used as a reflecting surface. FIG. 3B is a diagram schematically showing an example of the structure. The reflection surface of this type is formed as the reflection layers 3e and 3f with the light emitting portion 2b including the light emitting layer sandwiched in the stacking direction, and the emitted light resonates in the direction perpendicular to the stacking and laser light is emitted from the outermost surface of the stacking. It is released as L2. Such a resonator structure is a structure useful for forming a semiconductor laser for the above-described substance whose side end face is difficult to cleave. Further, in such a resonator structure, since the reflective layer, the light emitting portion, and the reflective layer are sequentially crystal-grown and laminated on the crystal substrate 1b, the parallelism between the reflecting surfaces can be easily made highly accurate. be able to.

【0004】[0004]

【発明が解決しようとする課題】ところが、表面放射型
の共振器構造における反射面には、超格子を構成する2
層の結晶層を1ペアとしてこれを所望のペア数だけ積層
したものや、誘電体多層膜等、多層の反射面が用いられ
る場合が多く、特に超格子を用いるような構成の反射面
の場合に次のような問題が顕著となる。即ち、超格子を
用いる場合、反射面の反射率を高くするためには、超格
子を構成する2層のペア数を増やせばよいが、そのペア
数が増えるにつれて、その上に形成される発光部の結晶
品質は低下し、高い効率の発光は得られなくなる。逆に
言うと、高い効率の発光を得るために発光部の結晶性を
向上させようとすると、発光部に対して結晶基板側にあ
る超格子のペア数を少なくせざるを得なかったのであ
る。
However, a superlattice is formed on the reflecting surface of the surface emitting resonator structure.
In many cases, a multilayered reflective surface such as a layer formed by laminating a desired number of pairs of crystal layers or a dielectric multilayer film is used, and particularly a reflective surface having a structure using a superlattice. The following problems become noticeable. That is, when a superlattice is used, in order to increase the reflectance of the reflecting surface, the number of pairs of two layers forming the superlattice may be increased. However, as the number of pairs increases, the light emission formed on the superlattice increases. The crystal quality of the part deteriorates, and high-efficiency light emission cannot be obtained. Conversely, in order to improve the crystallinity of the light emitting portion in order to obtain highly efficient light emission, the number of superlattice pairs on the crystal substrate side with respect to the light emitting portion had to be reduced. .

【0005】また、表面放射型の半導体レーザの中に
は、結晶基板上に発光部となる層を直接形成し、結晶基
板の、発光部が形成された側と反対側の面から結晶基板
に貫通孔を形成し、該孔内に発光部を露出させ、そこに
反射層を形成する構造のものも知られているが、この様
な構造のものは複雑で高度な加工工程を必要とするうえ
に、反射面の面積を大きくすると、結晶基板を中心とす
るデバイスの機械的強度が損なわれる等の問題があっ
た。
In the surface emitting semiconductor laser, a layer to be a light emitting portion is directly formed on the crystal substrate, and the surface of the crystal substrate opposite to the side where the light emitting portion is formed is changed to the crystal substrate. There is also known a structure in which a through hole is formed, a light emitting portion is exposed in the hole, and a reflective layer is formed therein, but such a structure requires a complicated and sophisticated processing step. In addition, when the area of the reflecting surface is increased, there is a problem that the mechanical strength of the device centering on the crystal substrate is impaired.

【0006】本発明の目的は、発光部を形成する半導体
の良好な結晶品質と、反射部の高い反射率とを、容易に
両立させることができる新規な共振器構造を有する半導
体レーザを提供することである。
An object of the present invention is to provide a semiconductor laser having a novel resonator structure which can easily achieve both good crystal quality of the semiconductor forming the light emitting portion and high reflectance of the reflecting portion. That is.

【0007】[0007]

【課題を解決するための手段】本発明の半導体レーザ
は、以下の特徴を有するものである。 (1) 発光部を含む複数の半導体層が結晶基板上に積層さ
れてなる積層体と、この積層体を積層方向に直接または
間接的に挟んで形成される一対の反射部とを有し、この
一対の反射部が、発光部から発せられた光を積層方向に
共振させる共振器構造であることを特徴とする表面放射
型の半導体レーザ。 (2) 発光部が、InGaAlN系結晶からなる多層構造
であって、結晶基板が、発光部から発せられる光を通過
させうる材料からなるものである (1)記載の半導体レー
ザ。 (3) 発光部から発せられる光を通過させうる結晶基板の
材料が、サファイア、GaN、SiC、ZnOのうちの
いずれかである(2) 記載の半導体レーザ。 (4) 一対の反射部のうち少なくとも一方の反射部が、I
nGaAlN系結晶からなる多層構造、または、誘電体
多層膜である (1)記載の半導体レーザ。
The semiconductor laser of the present invention has the following features. (1) having a laminated body in which a plurality of semiconductor layers including a light emitting portion are laminated on a crystal substrate, and a pair of reflecting portions formed by directly or indirectly sandwiching the laminated body in the laminating direction, A surface emitting semiconductor laser, wherein the pair of reflecting portions has a resonator structure that resonates the light emitted from the light emitting portion in the stacking direction. (2) The semiconductor laser according to (1), wherein the light emitting portion has a multi-layer structure made of InGaAlN-based crystal, and the crystal substrate is made of a material capable of transmitting the light emitted from the light emitting portion. (3) The semiconductor laser according to (2), wherein the material of the crystal substrate that allows the light emitted from the light emitting portion to pass therethrough is any one of sapphire, GaN, SiC, and ZnO. (4) At least one of the pair of reflecting portions is I
The semiconductor laser according to (1), which has a multilayer structure made of nGaAlN-based crystals or a dielectric multilayer film.

【0008】[0008]

【作用】本発明の半導体レーザは表面放射型の構造を有
し、共振器構造を構成する一対の反射部のうち結晶基板
側の反射部が、発光部と結晶基板との間に設けられてい
るのではなく、結晶基板の積層方向の2面のうち発光部
が存在する側の面とは反対側の面に、直接または他の層
を介して設けられるものである。以下、この「結晶基板
の積層方向の2面のうち発光部が存在する側の面とは反
対側の面」を、「結晶基板の裏面」という。またこれに
対して、発光部が存在する側の面を「結晶基板のおもて
面」という。
The semiconductor laser of the present invention has a surface emission type structure, and the reflecting portion on the crystal substrate side of the pair of reflecting portions forming the resonator structure is provided between the light emitting portion and the crystal substrate. Instead of being provided, it is provided directly or through another layer on the surface opposite to the surface on the side where the light emitting portion is present among the two surfaces in the stacking direction of the crystal substrate. Hereinafter, this “surface of the two surfaces of the crystal substrate in the stacking direction opposite to the surface on the side where the light emitting portion is present” is referred to as “the back surface of the crystal substrate”. On the other hand, the surface on the side where the light emitting portion is present is referred to as the “front surface of the crystal substrate”.

【0009】本発明の半導体レーザが有する共振器構造
によって、発光部から結晶基板の側に向かう光は結晶基
板を通過し、結晶基板の裏面の界面、または、結晶基板
の裏面の側に設けられた反射部で反射し、他方の反射部
との間でレーザ発振を生ずる。また、このような共振器
構造によって、発光部は、結晶基板に対して直接的(バ
ッファ層等の形成に関係する層を含む)に形成されるこ
とが可能となり、発光部を形成する半導体材料の結晶品
質を向上させることを、反射部の影響を受けることなく
独立的に図ることができる。また同様に、結晶基板の裏
側の反射部に対しては、反射率を向上させるための改善
を、発光部に影響を与えることなく自由に施すことがで
きる。
Due to the resonator structure of the semiconductor laser of the present invention, light traveling from the light emitting portion toward the crystal substrate passes through the crystal substrate and is provided at the interface of the back surface of the crystal substrate or the back surface side of the crystal substrate. The reflected light is reflected by the reflected portion and laser oscillation is generated between the reflected portion and the other reflected portion. Further, such a resonator structure enables the light emitting portion to be formed directly on the crystal substrate (including layers related to formation of a buffer layer etc.), and the semiconductor material forming the light emitting portion can be formed. The crystal quality can be independently improved without being affected by the reflection part. Similarly, the reflection portion on the back side of the crystal substrate can be freely improved to improve the reflectance without affecting the light emitting portion.

【0010】また、上記のような従来の表面放射型の半
導体レーザの一例(即ち、レーザ結晶基板にその裏側か
ら貫通孔を形成し、該孔内に発光部を露出させ、そこに
反射層を形成したもの)に比べて、結晶基板に対する複
雑で高度な加工工程を必要としない。
Further, an example of the conventional surface emitting semiconductor laser as described above (that is, a through hole is formed in the laser crystal substrate from the back side thereof, a light emitting portion is exposed in the hole, and a reflection layer is provided there. It does not require complicated and sophisticated processing steps for the crystal substrate as compared with the one formed.

【0011】[0011]

【実施例】以下、実施例を挙げて本発明をさらに詳細に
説明する。図1は、本発明の半導体レーザの構造の一例
を模式的に示す図である。同図の構造例は、結晶基板1
上に発光部2(または、発光部2を含む複数の半導体
層)が積層されて積層体Sが形成され、この積層体Sを
積層方向に挟んで、一対の反射部3a、3bが形成され
ている。この一対の反射部3a、3bが、発光部2から
発せられた光を積層方向に共振させる共振器構造であ
り、積層の最外面からレーザ光Lが放出されるものであ
る。ただし、同図では電極等の付帯部分は省略してい
る。発光部2を含む複数の半導体層とは、発光部に加え
て、バッファ層や他の機能を与えるための付帯的な層を
全て含むものである。また、発光部と結晶基板には、ハ
ッチングを施している。レーザ光Lが放出される積層の
最外面は、2面のうちいずれであってもよい。
EXAMPLES The present invention will be described in more detail with reference to examples. FIG. 1 is a diagram schematically showing an example of the structure of the semiconductor laser of the present invention. The structural example in the figure is a crystal substrate 1.
The light emitting unit 2 (or a plurality of semiconductor layers including the light emitting unit 2) is stacked on top to form a stacked body S, and the pair of reflecting units 3a and 3b are formed with the stacked body S sandwiched in the stacking direction. ing. The pair of reflecting portions 3a and 3b has a resonator structure that resonates the light emitted from the light emitting portion 2 in the stacking direction, and the laser light L is emitted from the outermost surface of the stack. However, in the figure, the additional parts such as electrodes are omitted. The plurality of semiconductor layers including the light emitting section 2 include all the incidental layers for providing a buffer layer and other functions in addition to the light emitting section. Further, the light emitting portion and the crystal substrate are hatched. The outermost surface of the stack from which the laser light L is emitted may be either of the two surfaces.

【0012】このような構造によって、上記作用で述べ
たように、発光部2は、結晶基板1に対して、例えばエ
ピタキシャル成長させる等、直接的に形成することが可
能となり、発光部を形成する半導体の結晶は高品質なも
のとなる。一方、結晶基板の裏面の側の反射部3aに対
しては、例えば超格子のペア数を増やすこと等、反射率
を向上させるための改善を、発光部の結晶品質に影響を
与えることなく自由に施すことができる。
With such a structure, as described in the above operation, the light emitting portion 2 can be directly formed on the crystal substrate 1 by, for example, epitaxial growth, and the semiconductor forming the light emitting portion can be formed. The crystals are of high quality. On the other hand, with respect to the reflecting portion 3a on the back surface side of the crystal substrate, improvements for improving the reflectance, such as increasing the number of pairs of superlattices, can be freely performed without affecting the crystal quality of the light emitting portion. Can be applied to.

【0013】結晶基板は、一方の面に発光部を含む半導
体層を、他方の面に反射部を、結晶成長または他の形成
法によって設けるための基礎となるものである。結晶基
板の材料としては、成長させるべき半導体結晶と格子定
数の整合性が良好であるような結晶であれば、単一の元
素からなる半導体、化合物半導体の他、サファイヤのよ
うな絶縁体等、どのようなものであってもよい。具体的
な材料は、発光部を形成する半導体材料の例示と共に後
述する。
The crystal substrate serves as a basis for providing a semiconductor layer including a light emitting portion on one surface and a reflecting portion on the other surface by crystal growth or another forming method. As the material of the crystal substrate, as long as it is a crystal having a good lattice constant matching with the semiconductor crystal to be grown, a semiconductor made of a single element, a compound semiconductor, an insulator such as sapphire, and the like, It can be anything. The specific material will be described later together with an example of the semiconductor material forming the light emitting unit.

【0014】発光部は、共振させるべき光を発する部分
である。発光させるための原理や方式は限定されない
が、主に次の(a)、(b)の方式が例示される。 (a)pn接合の活性層に電子またはホールを注入し、
電子とホールとの再結合によって発光させる方式(注入
型)。この場合、発光部の構造は、p型およびn型のク
ラッド層によって活性層を挟んだ所謂ダブルヘテロ接合
の構造や、超格子構造を有するSQW (Single Quantum
Well)、MQW (Multi Quantum Well) 等が例示され
る。 (b)レーザ発振させたい目的の波長(発光部のバンド
ギャップに応じた波長)より大きなエネルギーを持った
レーザ光を外部から発光部に照射して励起し、目的の波
長の光を放出させる方式(光励起型)。発光部の構造
は、基本的には注入型と同様で、2つのクラッド層によ
って活性層を挟んだダブルヘテロ接合の構造や、SQ
W、MQW等が例示される。ただし、この光励起型の場
合、各層の伝導型は特に制御する必要はなく、アンドー
プであることが望ましい。
The light emitting portion is a portion that emits light to be resonated. The principle and method for emitting light are not limited, but the following methods (a) and (b) are mainly exemplified. (A) Injecting electrons or holes into the active layer of the pn junction,
A method of emitting light by recombining electrons and holes (injection type). In this case, the structure of the light emitting portion is a so-called double heterojunction structure in which an active layer is sandwiched by p-type and n-type cladding layers, or an SQW (Single Quantum) having a superlattice structure.
Well), MQW (Multi Quantum Well) and the like. (B) A method in which a laser beam having energy larger than the desired wavelength (wavelength corresponding to the bandgap of the light emitting section) to be lased is externally applied to the light emitting section for excitation to emit light of the desired wavelength. (Photoexcitation type). The structure of the light emitting part is basically the same as that of the injection type, and the structure of a double heterojunction in which the active layer is sandwiched by two cladding layers and the SQ
W, MQW, etc. are illustrated. However, in the case of the photoexcitation type, it is not necessary to control the conduction type of each layer, and it is preferable that the conduction type is undoped.

【0015】本発明の半導体レーザの構造においては、
発光部から発せられた光が少なくとも結晶基板の裏面の
界面において反射するように、好ましくは結晶基板の裏
面に設けられた所定の反射部において反射するように、
該光が結晶基板を通過することが必要である。ここでい
う通過とは、結晶基板に入射した光が100%通過する
ことだけを意味するのではなく、レーザ発振が達成され
るものであれば、入射した光が結晶基板内で多少の減衰
を伴うものであっても、入射した光の波長帯の一部が吸
収されるものであってもよい。従って、結晶基板の材料
と発光部の材料とを選択するに際しては、発光部から発
せられた光が結晶基板を通過するように、その材料を考
慮することが必要である。このような点から、発光部の
材料としては、 III族の典型元素と窒素とからなる化合
物半導体が好ましく、その中でも特に、Inx Gay
1-x-y N、(0≦x≦1、0≦y≦1)で決定される
化合物半導体、即ち、InGaAlN系の化合物半導体
が好ましい。
In the structure of the semiconductor laser of the present invention,
In order that the light emitted from the light emitting portion is reflected at least at the interface of the back surface of the crystal substrate, preferably at the predetermined reflection portion provided on the back surface of the crystal substrate,
It is necessary for the light to pass through the crystal substrate. The term "passage" as used herein does not mean that 100% of the light incident on the crystal substrate passes, but if laser oscillation is achieved, the incident light may undergo some attenuation within the crystal substrate. It may be accompanied or part of the wavelength band of the incident light may be absorbed. Therefore, when selecting the material of the crystal substrate and the material of the light emitting portion, it is necessary to consider the material so that the light emitted from the light emitting portion passes through the crystal substrate. From this point of view, as the material of the light emitting portion, a compound semiconductor composed of a representative element and nitrogen Group III are preferred, among them, an In x Ga y A
A compound semiconductor determined by l 1-xy N, (0 ≦ x ≦ 1, 0 ≦ y ≦ 1), that is, an InGaAlN-based compound semiconductor is preferable.

【0016】InGaAlN系の化合物半導体は、主と
して緑色から青色、さらに紫外光にいたる波長帯の発光
が可能な材料であり、現在、市販されているInGaA
s系、GaAlAs系、InGaAlP系の材料による
発光素子に比べて、短い波長の発光が可能な素子を形成
することができるものである。このような短い波長領域
によるレーザは、光ディスク等のピックアップ用光源、
医療用など種々のセンサー光源など、用途が期待されて
いる。また、本発明の半導体レーザでは、上記のよう
に、発光部から発せられた光が結晶基板を通過しうるこ
とが、その共振器構造を成立させるための必須の条件で
ある。この点においても、InGaAlN系の化合物半
導体を発光部の材料として選択することによって、発光
部から発せられた光が通過しうる結晶基板の材料の選択
が容易となる。
The InGaAlN-based compound semiconductor is a material capable of emitting light mainly in a wavelength band from green to blue and further to ultraviolet light, and is currently commercially available InGaA.
It is possible to form an element capable of emitting light of a shorter wavelength than a light emitting element made of an s-based, GaAlAs-based, or InGaAlP-based material. A laser with such a short wavelength region is used as a light source for a pickup such as an optical disc,
Applications such as various sensor light sources for medical purposes are expected. Further, in the semiconductor laser of the present invention, the light emitted from the light emitting portion can pass through the crystal substrate as described above, which is an essential condition for establishing the resonator structure. Also in this respect, by selecting the InGaAlN-based compound semiconductor as the material of the light emitting portion, it becomes easy to select the material of the crystal substrate through which the light emitted from the light emitting portion can pass.

【0017】上記InGaAlN系の化合物半導体を用
いた発光部の具体的な構造例としては、n型AlGaN
クラッド層、アンドープのInGaN活性層、p型Al
GaNクラッド層を順次成長させてなるダブルヘテロ接
合の構造や、SQW、MQW等の構造が例示される。
As a specific structural example of the light emitting portion using the above InGaAlN compound semiconductor, n-type AlGaN is used.
Cladding layer, undoped InGaN active layer, p-type Al
Examples include a double heterojunction structure formed by sequentially growing a GaN cladding layer, and a structure such as SQW and MQW.

【0018】反射部は、光の共振が可能なように光を反
射させることができる全ての手段を含むものであり、例
えば、鏡面、屈折率の異なる界面、これらの面が多重に
形成されるように材料物質が積層されてなる積層体等が
挙げられる。なかでも、化合物半導体からなる多層構
造、または、誘電体多層膜が好ましいものとして挙げら
れ、特に、歪超格子等の超格子を構成する2層の結晶層
を1ペアとしてこれを所望のペア数だけ積層したもの
が、高い反射率を有するものであり好ましい。
The reflecting portion includes all means capable of reflecting light so that the light can resonate. For example, a mirror surface, an interface having different refractive index, and these surfaces are multiply formed. A laminated body in which the material substances are laminated in this manner is included. Among them, a multilayer structure made of a compound semiconductor or a dielectric multilayer film is preferable, and in particular, two crystal layers forming a superlattice such as a strained superlattice are regarded as one pair, and this is used as a desired number of pairs. It is preferable that only these layers are laminated because they have high reflectance.

【0019】反射部が、光を反射させるためにその反射
部自体の内部に光を入射させる構成であるならば、その
材料は、結晶基板と同様に、発光部から発せられた光が
通過する性質のものを用いる。例えば、発光部における
活性層の材料をInGaAlN系の化合物半導体のなか
でもInGaNとするとき、反射部を上記超格子による
多層の反射層の構造とするならば、該超格子を構成する
材料は、AlN/Al0.1 Ga0.9 N 、AlN/Al
0.2 Ga0.8 N 、AlN/GaN 、InGaAlN
/GaN等の、InGaAlN系の化合物半導体から選
ばれた組合せが例示される。また、誘電体多層膜は、好
ましい材料のものを適宜選択し用いてよい。
If the reflecting portion has a structure in which light is made incident on the inside of the reflecting portion itself in order to reflect the light, the material allows the light emitted from the light emitting portion to pass through, like the crystal substrate. Use the one of the nature. For example, when the material of the active layer in the light emitting portion is InGaN among InGaAlN-based compound semiconductors, and if the reflecting portion has a structure of a multilayer reflecting layer of the superlattice, the material forming the superlattice is AlN / Al 0.1 Ga 0.9 N, AlN / Al
0.2 Ga 0.8 N, AlN / GaN, InGaAlN
A combination selected from InGaAlN-based compound semiconductors such as / GaN is exemplified. Further, as the dielectric multilayer film, those made of a preferable material may be appropriately selected and used.

【0020】上記反射部の構造のなかでも、AlN/A
0.1 Ga0.9 Nによる超格子の構造は、高い反射率を
有する多層の構造であって、InGaNの活性層に対し
て本発明の有用性を最も顕著に示しうる反射部の一例で
ある。そのペア数は片方の反射部当たり10〜50ペ
ア、好ましくは20〜40ペアがよい。ペア数が10ペ
ア以下では充分な反射率が得えられず、50ペア以上で
は反射率が100%に近い付近で飽和して、これ以上の
反射率を得ることが困難となる。超格子を用いた反射層
においてこのような高度な反射率を達成し、かつ、発光
部の結晶品質にその超格子の影響を与えないことは、従
来の半導体レーザの構造では容易に成し得なかったので
ある。反射部は、結晶基板と発光部とを含む積層体を、
直接挟んで形成するものであってもよく、また、該積層
体を間接的に挟む態様、即ち、必要に応じて所望の機能
を有する層が該積層体の最外層に積層され、これを反射
部が挟んで形成する態様であってもよい。反射部の面積
は限定されず、構造に応じて決定される。
Among the structures of the reflecting portion, AlN / A
structure of the superlattice by l 0.1 Ga 0.9 N is higher a structure of a multilayer having a reflectivity, which is an example of a reflection portion that can most prominently indicate the utility of the present invention the active layer of InGaN. The number of pairs is 10 to 50 pairs, preferably 20 to 40 pairs per one reflecting portion. When the number of pairs is 10 pairs or less, sufficient reflectance cannot be obtained, and when the number of pairs is 50 pairs or more, the reflectance saturates near 100%, and it becomes difficult to obtain more reflectance. Achieving such a high reflectance in a reflective layer using a superlattice and not affecting the crystal quality of the light emitting portion by the superlattice can be easily achieved by the structure of a conventional semiconductor laser. It wasn't. The reflecting portion is a laminated body including a crystal substrate and a light emitting portion,
It may be formed by directly sandwiching it, or a mode in which the laminate is indirectly sandwiched, that is, a layer having a desired function is laminated on the outermost layer of the laminate as necessary, and this is reflected. A mode in which the parts are sandwiched and formed may be used. The area of the reflecting portion is not limited and is determined according to the structure.

【0021】発光部および反射部を構成する材料とし
て、InGaAlN系の化合物半導体が好ましいことは
上記したが、この系の材料は結晶成長の条件が高温・高
圧のように厳しい場合が多い。このような材料の高品質
な単結晶を成長させるには、これらの材料に対して適当
な格子定数の結晶基板上に、ZnO、BeO、MgO、
CaO、SrO、CdO、BaO、HgO等のII族元素
の酸化物およびこれらの化合物や、AlN、GaN、A
lGaN等をバッファ層として形成し、その上に目的の
InGaAlN系の化合物半導体を単結晶成長させる方
法が好ましい。また、その場合の結晶基板の材料として
は、サファイア、SiC、ZnO、GaN等が好ましい
ものとして例示される。
As described above, the InGaAlN-based compound semiconductor is preferable as the material forming the light emitting portion and the reflecting portion. However, the material of this system often has severe crystal growth conditions such as high temperature and high pressure. To grow high quality single crystals of such materials, ZnO, BeO, MgO,
Oxides of Group II elements such as CaO, SrO, CdO, BaO, HgO and their compounds, AlN, GaN, A
It is preferable to use a method in which lGaN or the like is formed as a buffer layer and the desired InGaAlN-based compound semiconductor is grown as a single crystal on the buffer layer. Further, as the material of the crystal substrate in that case, sapphire, SiC, ZnO, GaN and the like are exemplified as preferable materials.

【0022】発光部および反射部を構成する半導体層を
結晶成長させる方法としては、結晶基板に対してエピタ
キシャル成長可能な成膜法が好ましく、VPE(Vapor
Phase Epitaxy )、MOVPE(Metal Organic VP
E)、HVPE(Hydride VPE)、MBE(Molecula
r Beam Epitaxy)、GS−MBE(Gas Sourse MB
E)、CBE(Chemical Beam Epitaxy )、LPE(Li
quid Phase Epitaxy)等が挙げられる。
As a method for crystal-growing the semiconductor layer forming the light-emitting portion and the reflection portion, a film-forming method capable of epitaxial growth on a crystal substrate is preferable, and VPE (Vapor) is used.
Phase Epitaxy), MOVPE (Metal Organic VP)
E), HVPE (Hydride VPE), MBE (Molecula
r Beam Epitaxy), GS-MBE (Gas Sourse MB)
E), CBE (Chemical Beam Epitaxy), LPE (Li
quid Phase Epitaxy).

【0023】結晶基板の裏面の側に反射部を、おもて面
の側に発光部を結晶成長させて形成する場合、いずれの
面の側の成長を先に行なってもよいが、発光部の結晶が
高品質であることが必要であるため、裏面の側の反射部
の成長を先に行なうことが好ましい。これによって、発
光部の結晶は、反射部の結晶成長時の高温にさらされず
にすみ、高い結晶品質が維持される。
When the reflecting portion is formed on the back surface side of the crystal substrate and the light emitting portion is formed on the front surface side by crystal growth, either surface may be grown first, but the light emitting portion may be grown first. Since it is necessary that the crystal of (3) has a high quality, it is preferable to grow the reflecting portion on the back surface side first. As a result, the crystal of the light emitting portion is not exposed to the high temperature during crystal growth of the reflecting portion, and high crystal quality is maintained.

【0024】レーザ光の放出方向は限定されず、一対の
反射部のうちのいずれの側から放出されるものであって
もよい。また、上記のように、本発明の半導体レーザの
発光方式は、注入型・光励起型等を問わないが、注入型
とする場合、電極等の付帯構造は公知の構造を使用して
もよく、レーザ光の放出方向や目的の仕様に応じて設け
られる。図2は、本発明による半導体レーザの構造にお
いて、発光方式を注入型とする場合の電極構造の一例を
模式的に示す図である。同図では電極にだけ、ハッチン
グを施している。同図の例では、n型GaN単結晶基板
1の裏面の中央に柱状の反射部3aが形成され、その周
囲をとりまくように電極4が形成されている。反射部3
aは、AlN/Al0.1 Ga0.9 による超格子が積層さ
れたものである。また、結晶基板1のおもて面には、n
型Al0.15Ga0.85Nクラッド層2a、アンドープのI
0.1 Ga0.9 N活性層2c、p型Al0.15Ga0.85
クラッド層2bを順次成長させてなるダブルヘテロ接合
の発光部2が形成され、さらにその上面の中央にp型の
反射部3bが柱状に形成され、その周囲をとりまくよう
にSiO2 やSiN等からなる絶縁体層5が形成され、
これらの上層に電極6が形成された構造となっている。
反射部3bの構造は、反射部3aと対をなし得るもので
あるが、アンドープでよい。このような構造において、
電極4、6間に順方向の電圧を与えると、反射部3bを
通じて正孔(伝導型の選択によっては電子)が注入さ
れ、発光部2における発光、および、反射部3a、3b
によるレーザ発振が得られ、反射部3a側から外界に対
してレーザ光Lが放出される。
The emission direction of the laser light is not limited, and it may be emitted from either side of the pair of reflecting portions. Further, as described above, the emission method of the semiconductor laser of the present invention may be injection type, photoexcitation type, or the like, but in the case of injection type, a known structure may be used for the incidental structure of the electrodes and the like, It is provided according to the emission direction of the laser light and the intended specifications. FIG. 2 is a diagram schematically showing an example of an electrode structure in the case where the light emitting method is the injection type in the structure of the semiconductor laser according to the present invention. In the figure, only the electrodes are hatched. In the example of the figure, a columnar reflecting portion 3a is formed in the center of the back surface of the n-type GaN single crystal substrate 1, and an electrode 4 is formed so as to surround the periphery thereof. Reflector 3
a is a stack of superlattices made of AlN / Al 0.1 Ga 0.9 . In addition, the front surface of the crystal substrate 1 has n
Type Al 0.15 Ga 0.85 N cladding layer 2a, undoped I
n 0.1 Ga 0.9 N active layer 2c, p-type Al 0.15 Ga 0.85 N
Emitting portion 2 of the double heterojunction formed by sequentially growing a clad layer 2b is formed is further formed reflective portion 3b of the p-type in the middle of its upper surface in a columnar shape from SiO 2, SiN, or the like so as to surround the periphery An insulating layer 5 is formed,
The structure is such that the electrode 6 is formed on these upper layers.
The structure of the reflecting portion 3b can form a pair with the reflecting portion 3a, but may be undoped. In such a structure,
When a forward voltage is applied between the electrodes 4 and 6, holes (electrons depending on the selection of the conduction type) are injected through the reflecting portion 3b, so that the light emitting portion 2 emits light and the reflecting portions 3a and 3b.
Laser oscillation is obtained, and the laser light L is emitted from the reflecting portion 3a side to the outside world.

【0025】反射部3a、3bの積層方向に垂直な断面
の形状は限定されず、円形、方形、帯状形等が挙げられ
る。また、図2の構造例では、反射部3bは、p型にド
ーピングされた半導体の積層体であり、正孔または電子
が集中的に通過するための経路となっている。このよう
な構造の他の例として、反射部3bの反射率を高めるた
めにドーピングせず、その代わり、該反射部の中央付近
に、電極6とp型クラッド層2bとの間の電流の経路と
なる柱状のp型半導体が、該反射部を積層方向に貫通す
るように形成された構造等が例示される。
The shape of the cross section perpendicular to the stacking direction of the reflecting portions 3a and 3b is not limited, and may be circular, rectangular, strip-shaped or the like. Further, in the structural example of FIG. 2, the reflection portion 3b is a laminated body of p-type doped semiconductors and serves as a path for concentrated passage of holes or electrons. As another example of such a structure, doping is not performed in order to increase the reflectance of the reflection portion 3b, but instead, a current path between the electrode 6 and the p-type cladding layer 2b is provided near the center of the reflection portion. An example is a structure in which a columnar p-type semiconductor to be formed is formed so as to penetrate the reflecting portion in the stacking direction.

【0026】〔性能確認実験〕本発明の半導体レーザの
性能を確認するため、同様の構成からなる発光部を用い
て、本発明による表面放射型の半導体レーザと、従来の
構造による表面放射型、および、端面放射型の半導体レ
ーザとを製作し、各々のレーザ発振のしきい値を比較し
た。発光部の構成は、本発明および従来技術のものを、
共にAl0.15Ga0.85N/Ga0.9 In0.1 N(活性
層)/Al0.15Ga0.85Nからなるダブルヘテロ接合の
構成とした。以下、「共通仕様の発光部」という。ま
た、その発光方式は光励起型とし、励起光源はN2 レー
ザとした。各サンプルの性能の確認方法としては、レー
ザ発振が開始されたときの、励起光源(N2 レーザ)の
入力パワー〔kW/cm2 〕を調べ、比較することで確
認するものとした。
[Performance Confirmation Experiment] In order to confirm the performance of the semiconductor laser of the present invention, a surface emission type semiconductor laser according to the present invention and a surface emission type having a conventional structure are used by using a light emitting portion having the same structure. Also, edge emitting semiconductor lasers were manufactured, and the threshold values of the respective laser oscillations were compared. The structure of the light emitting unit is the same as that of the present invention and the prior art.
Both had a double heterojunction structure composed of Al 0.15 Ga 0.85 N / Ga 0.9 In 0.1 N (active layer) / Al 0.15 Ga 0.85 N. Hereinafter, it is referred to as a "common specification light emitting unit". Further, the light emitting system was a photoexcitation type, and the excitation light source was an N 2 laser. As a method of confirming the performance of each sample, the input power [kW / cm 2 ] of the pumping light source (N 2 laser) when the laser oscillation was started was examined and compared to confirm.

【0027】(1)本発明による構造例1 上記実施例において説明した図1に示す構造の半導体レ
ーザを製作した。結晶基板に対する発光部および反射部
の形成の順番を、図1を用いて説明すると、先ずサファ
イア結晶からなる結晶基板1の裏面側に、AlNからな
るバッファ層(図示せず)を介して一方の反射部3aを
形成し、次に結晶基板1のおもて面側に、AlNからな
るバッファ層(図示せず)を介して共通仕様の発光部2
を形成し、さらにその上に他方の反射部3bを形成する
ものとした。反射部は、3a、3b共に、AlN層とA
0.1 Ga0.9 N層とが超格子を構成するように積層さ
れたものを1ペアとしてこれが40ペア積層された構造
である。バッファ層を含む各層の形成は、全てエピタキ
シャル成長可能な方法によるものである。この半導体レ
ーザのしきい値を、他の例の結果と共に下記に示す。
(1) Structural Example 1 According to the Present Invention A semiconductor laser having the structure shown in FIG. 1 described in the above embodiment was manufactured. The order of forming the light emitting portion and the reflecting portion with respect to the crystal substrate will be described with reference to FIG. 1. First, one side of the crystal substrate 1 made of sapphire crystal is provided with a buffer layer (not shown) made of AlN interposed therebetween. The reflecting portion 3a is formed, and then the light emitting portion 2 having a common specification is provided on the front surface side of the crystal substrate 1 via a buffer layer (not shown) made of AlN.
And the other reflecting portion 3b is further formed thereon. The reflectors 3a and 3b have an AlN layer and an A
This is a structure in which 40 pairs of 1 0.1 Ga 0.9 N layers and a layer of 0.1 Ga 0.9 N are laminated to form a superlattice. The formation of each layer including the buffer layer is based on a method capable of epitaxial growth. The threshold value of this semiconductor laser is shown below together with the results of other examples.

【0028】(2)本発明による構造例2 反射部3a、3bの構造を共に、AlN層とGaN層と
の超格子が40ペア積層された構造とした以外は、構造
例1と全く同様の半導体レーザのサンプルを製作した。
この半導体レーザのしきい値を、他の例の結果と共に下
記に示す。
(2) Structural Example 2 According to the Present Invention Exactly the same as Structural Example 1 except that the reflecting portions 3a and 3b both have a structure in which 40 pairs of superlattices of an AlN layer and a GaN layer are laminated. A semiconductor laser sample was manufactured.
The threshold value of this semiconductor laser is shown below together with the results of other examples.

【0029】(3)従来技術による比較例1 本比較例では、従来技術による半導体レーザのうち、端
面放射型のサンプルとして、図3(a)に示す構造のも
のを製作した。製作工程の概略としては、サファイア結
晶基板1a上に、AlNからなるバッファ層(図示せ
ず)を形成し、その上に共通仕様の発光部を形成し、発
光層2aの側端面3c、3dをエッチングによって反射
面とした。この半導体レーザのしきい値を、他の例の結
果と共に下記に示す。
(3) Comparative Example 1 According to Prior Art In this comparative example, among the semiconductor lasers according to the prior art, an edge emitting sample having the structure shown in FIG. 3A was manufactured. As an outline of the manufacturing process, a buffer layer (not shown) made of AlN is formed on a sapphire crystal substrate 1a, a light emitting portion having a common specification is formed on the buffer layer, and the side end surfaces 3c and 3d of the light emitting layer 2a are formed. A reflective surface was formed by etching. The threshold value of this semiconductor laser is shown below together with the results of other examples.

【0030】(4)従来技術による比較例2 発光層2aの側端面を反射面とするための加工を、研磨
によって行った以外は比較例1と全く同様の、端面放射
型の半導体レーザのサンプルを製作した。この半導体レ
ーザのしきい値を、他の例の結果と共に下記に示す。
(4) Comparative Example 2 of the Prior Art A sample of edge emitting semiconductor laser which is exactly the same as Comparative Example 1 except that the processing for making the side end surface of the light emitting layer 2a a reflecting surface is performed by polishing. Was produced. The threshold value of this semiconductor laser is shown below together with the results of other examples.

【0031】(5)従来技術による比較例3 従来技術による半導体レーザのうち、表面放射型のサン
プルとして、図3(b)に示す従来構造のものを製作し
た。結晶基板に対する発光部および反射部の形成の順番
を、同図を用いて説明すると、先ずサファイア結晶基板
1bの面上に、AlNからなるバッファ層(図示せず)
を介して一方の反射部3eを形成し、次に共通仕様の発
光部2を形成し、さらにその上に他方の反射部3fを形
成する順番である。反射部は、3e、3f共に、AlN
層とAl0.1 Ga0.9 N層とが超格子を構成するように
積層されたものを1ペアとしてこれが20ペア積層され
た構造である。超格子のペア数は、その増加による反射
率の向上に伴い、発光部の結晶品質が劣化することを考
慮し、20ペアを最適なペア数とした。バッファ層を含
む各層の形成は、全てエピタキシャル成長可能な方法に
よるものである。この半導体レーザのしきい値を、他の
例の結果と共に下記に示す。
(5) Comparative Example 3 of the Prior Art Among the semiconductor lasers of the prior art, a surface emission type sample having a conventional structure shown in FIG. 3B was manufactured. The order of forming the light emitting portion and the reflecting portion with respect to the crystal substrate will be described with reference to the same figure. First, a buffer layer made of AlN (not shown) is formed on the surface of the sapphire crystal substrate 1b.
In this order, one reflecting portion 3e is formed via the, then the light emitting portion 2 of the common specification is formed, and the other reflecting portion 3f is further formed thereon. The reflection parts are 3N and 3F, and are made of AlN.
The layer and the Al 0.1 Ga 0.9 N layer are laminated so as to form a superlattice, and one pair constitutes 20 pairs. The number of superlattice pairs was set to 20 in consideration of the fact that the crystal quality of the light emitting portion deteriorates as the reflectance increases due to the increase. The formation of each layer including the buffer layer is based on a method capable of epitaxial growth. The threshold value of this semiconductor laser is shown below together with the results of other examples.

【0032】上記、本発明による構造例1、2、およ
び、従来技術による比較例1〜3の、各々の反射部の概
略としきい値は次の通りである。 (1)本発明による構造例1 反射部;AlN/Al0.1 Ga0.9 N超格子各40ペ
ア、 しきい値;15kW/cm2 (2)本発明による構造例2 反射部;AlN/GaN超格子各40ペア、 しきい値;20kW/cm2 (3)従来技術による比較例1 反射面(端面放射型)の形成法;エッチング、 しきい値;30kW/cm2 (4)従来技術による比較例2 反射面(端面放射型)の形成法;研磨、 しきい値;150kW/cm2 (5)従来技術による比較例3 反射部;AlN/Al0.1 Ga0.9 N超格子各20ペ
ア、 しきい値;50kW/cm2
The outlines and threshold values of the reflecting portions of the above-mentioned structure examples 1 and 2 of the present invention and the comparative examples 1 to 3 of the prior art are as follows. (1) Structural example 1 according to the present invention Reflecting portion; AlN / Al 0.1 Ga 0.9 N superlattice 40 pairs each, threshold value; 15 kW / cm 2 (2) Structural example 2 according to the present invention Reflecting portion; AlN / GaN superlattice 40 pairs each, threshold value: 20 kW / cm 2 (3) Comparative example 1 according to prior art Method of forming reflective surface (end face emission type); etching, threshold value; 30 kW / cm 2 (4) Comparative example according to conventional technology 2 Method of forming reflective surface (edge emission type); polishing, threshold value; 150 kW / cm 2 (5) Comparative example 3 according to conventional technology Reflecting part; AlN / Al 0.1 Ga 0.9 N superlattice 20 pairs each, threshold value 50 kW / cm 2

【0033】上記確認実験によって、本発明による半導
体レーザの構造が、従来のものに比べより低い入力によ
ってレーザ発振が得られることが確認できた。
From the above confirmation experiments, it was confirmed that the structure of the semiconductor laser according to the present invention can obtain laser oscillation with a lower input than the conventional structure.

【0034】[0034]

【発明の効果】本発明の半導体レーザは表面放射型の構
造であって、その従来の特徴に加えて、共振器構造を構
成する一対の反射部のうち発光部に対して結晶基板側の
ものが、結晶基板の裏面側に設けられることを特徴とす
るものである。この特徴によって、発光部は結晶基板上
に直接成形可能となり、現在の高輝度発光ダイオードを
製造する際に用いられる結晶成長法と全く同様の方法が
使用可能である。これによって、注入型・光励起型を問
わず、発光部においては、該高輝度発光ダイオードと同
じレベルの結晶品質、内部量子効率が得られる。また同
様に、結晶基板の裏側の反射部においては、発光部の結
晶性劣化を考慮することなく、反射率を向上させるため
の改善を優先して自由に施すことができる。特に、反射
部を超格子による多数のペア層によって構成する場合、
その反射率を向上させるために、積層数の限度まで形成
することも可能である。さらに、基板に対する貫通孔の
加工等を必要としないため、低コストで、効率の良い表
面放射型の半導体レーザが提供できる。
The semiconductor laser of the present invention has a surface emission type structure, and in addition to its conventional characteristics, one of a pair of reflecting portions constituting the resonator structure, which is closer to the crystal substrate than the light emitting portion. Is provided on the back surface side of the crystal substrate. Due to this feature, the light emitting portion can be directly molded on the crystal substrate, and the same method as the crystal growth method used in manufacturing the current high-brightness light emitting diode can be used. As a result, regardless of the injection type or the photoexcitation type, in the light emitting portion, the same level of crystal quality and internal quantum efficiency as that of the high brightness light emitting diode can be obtained. Similarly, in the reflecting portion on the back side of the crystal substrate, the improvement for improving the reflectance can be given priority and freely without considering the crystallinity deterioration of the light emitting portion. In particular, when the reflection part is composed of a large number of pair layers of superlattice,
In order to improve the reflectance, it is possible to form the layers up to the limit. Further, since it is not necessary to process the through hole in the substrate, it is possible to provide an efficient surface emitting semiconductor laser at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体レーザの構造の一例を模式的に
示す図である。
FIG. 1 is a diagram schematically showing an example of a structure of a semiconductor laser of the present invention.

【図2】本発明の半導体レーザの構造において、発光方
式を注入型とする場合の電極構造の一例を模式的に示す
図である。
FIG. 2 is a diagram schematically showing an example of an electrode structure in the case where the emission method is an injection type in the structure of the semiconductor laser of the present invention.

【図3】従来の半導体レーザの構造の一例を模式的に示
す図である。
FIG. 3 is a diagram schematically showing an example of a structure of a conventional semiconductor laser.

【符号の説明】[Explanation of symbols]

1 結晶基板 2 発光部 3a 反射部 3b 反射部 S 積層体 L 放出されるレーザ光 DESCRIPTION OF SYMBOLS 1 Crystal substrate 2 Light emission part 3a Reflection part 3b Reflection part S Laminated body L Laser light emitted

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 発光部を含む複数の半導体層が結晶基板
上に積層されてなる積層体と、この積層体を積層方向に
直接または間接的に挟んで形成される一対の反射部とを
有し、この一対の反射部が、発光部から発せられた光を
積層方向に共振させる共振器構造であることを特徴とす
る表面放射型の半導体レーザ。
1. A laminated body having a plurality of semiconductor layers including a light emitting portion laminated on a crystal substrate, and a pair of reflective portions formed by directly or indirectly sandwiching the laminated body in the laminating direction. The pair of reflecting portions has a resonator structure that resonates the light emitted from the light emitting portion in the stacking direction.
【請求項2】 発光部が、InGaAlN系の化合物半
導体からなる多層構造であって、結晶基板が、発光部か
ら発せられた光を通過させうる材料からなるものである
請求項1記載の半導体レーザ。
2. The semiconductor laser according to claim 1, wherein the light emitting portion has a multi-layer structure made of an InGaAlN-based compound semiconductor, and the crystal substrate is made of a material capable of transmitting the light emitted from the light emitting portion. .
【請求項3】 発光部から発せられる光を通過させうる
結晶基板の材料が、サファイア、GaN、SiC、Zn
Oのうちのいずれかである請求項2記載の半導体レー
ザ。
3. The material of the crystal substrate that allows the light emitted from the light emitting portion to pass through is sapphire, GaN, SiC, Zn.
The semiconductor laser according to claim 2, which is any one of O.
【請求項4】 一対の反射部のうち少なくとも一方の反
射部が、InGaAlN系の化合物半導体からなる多層
構造、または、誘電体多層膜である請求項1記載の半導
体レーザ。
4. The semiconductor laser according to claim 1, wherein at least one of the pair of reflecting portions has a multilayer structure made of an InGaAlN compound semiconductor or a dielectric multilayer film.
JP27387794A 1994-11-08 1994-11-08 Surface emitting type InGaAlN based semiconductor laser Expired - Fee Related JP3299056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27387794A JP3299056B2 (en) 1994-11-08 1994-11-08 Surface emitting type InGaAlN based semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27387794A JP3299056B2 (en) 1994-11-08 1994-11-08 Surface emitting type InGaAlN based semiconductor laser

Publications (2)

Publication Number Publication Date
JPH08139414A true JPH08139414A (en) 1996-05-31
JP3299056B2 JP3299056B2 (en) 2002-07-08

Family

ID=17533822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27387794A Expired - Fee Related JP3299056B2 (en) 1994-11-08 1994-11-08 Surface emitting type InGaAlN based semiconductor laser

Country Status (1)

Country Link
JP (1) JP3299056B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1079530A (en) * 1996-07-08 1998-03-24 Toshiba Corp Light-emitting diode for gallium nitride compound semiconductor
JPH10303493A (en) * 1997-04-24 1998-11-13 Nichia Chem Ind Ltd Nitride semiconductor laser
JPH1197796A (en) * 1997-07-24 1999-04-09 Samsung Electron Co Ltd Iii-v compound surface emission laser and fabrication thereof
EP0834970A3 (en) * 1996-10-07 1999-04-14 Canon Kabushiki Kaisha Multi-layer mirror of compound semiconductors including nitrogen and surface light-emitting device with the same
WO1999042863A1 (en) * 1998-02-18 1999-08-26 Seiko Epson Corporation Method of fabricating distributed reflection multilayer mirror
JP2005524981A (en) * 2002-05-03 2005-08-18 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optically pumped semiconductor laser device
JP2006245354A (en) * 2005-03-04 2006-09-14 Oki Electric Ind Co Ltd Semiconductor device, manufacturing method thereof, semiconductor wafer, and manufacturing method thereof
KR100699739B1 (en) * 1999-03-12 2007-03-27 스미또모 가가꾸 가부시끼가이샤 Iii-v compound semiconductor
WO2007063833A1 (en) * 2005-11-29 2007-06-07 Rohm Co., Ltd. Nitride semiconductor light emitting device
CN109991765A (en) * 2019-03-13 2019-07-09 清华大学 A kind of electrooptical switching based on conductive metal oxide

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1079530A (en) * 1996-07-08 1998-03-24 Toshiba Corp Light-emitting diode for gallium nitride compound semiconductor
US6057560A (en) * 1996-10-07 2000-05-02 Canon Kabushiki Kaisha Multi-layer, mirror of compound semiconductors including nitrogen and surface light-emitting device with the same
EP0834970A3 (en) * 1996-10-07 1999-04-14 Canon Kabushiki Kaisha Multi-layer mirror of compound semiconductors including nitrogen and surface light-emitting device with the same
JPH10303493A (en) * 1997-04-24 1998-11-13 Nichia Chem Ind Ltd Nitride semiconductor laser
JPH1197796A (en) * 1997-07-24 1999-04-09 Samsung Electron Co Ltd Iii-v compound surface emission laser and fabrication thereof
US6337222B1 (en) 1998-02-18 2002-01-08 Seiko Epson Corporation Methods for fabricating distributed reflection multi-layer film mirrors
WO1999042863A1 (en) * 1998-02-18 1999-08-26 Seiko Epson Corporation Method of fabricating distributed reflection multilayer mirror
KR100699739B1 (en) * 1999-03-12 2007-03-27 스미또모 가가꾸 가부시끼가이샤 Iii-v compound semiconductor
JP2005524981A (en) * 2002-05-03 2005-08-18 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Optically pumped semiconductor laser device
JP2006245354A (en) * 2005-03-04 2006-09-14 Oki Electric Ind Co Ltd Semiconductor device, manufacturing method thereof, semiconductor wafer, and manufacturing method thereof
WO2007063833A1 (en) * 2005-11-29 2007-06-07 Rohm Co., Ltd. Nitride semiconductor light emitting device
US8093606B2 (en) 2005-11-29 2012-01-10 Rohm Co., Ltd. Nitride semiconductor light emitting device
CN109991765A (en) * 2019-03-13 2019-07-09 清华大学 A kind of electrooptical switching based on conductive metal oxide
CN109991765B (en) * 2019-03-13 2020-06-09 清华大学 Electro-optical switch based on conductive metal oxide

Also Published As

Publication number Publication date
JP3299056B2 (en) 2002-07-08

Similar Documents

Publication Publication Date Title
JPH07297476A (en) Semiconductor laser device
US6515308B1 (en) Nitride-based VCSEL or light emitting diode with p-n tunnel junction current injection
US6249534B1 (en) Nitride semiconductor laser device
JP4265875B2 (en) Manufacturing method of surface emitting semiconductor laser
JPH08307001A (en) Semiconductor laser diode and method of manufacture
JP2002353563A (en) Semiconductor light-emitting element and manufacturing method therefor
JPH10242584A (en) Semiconductor light-emitting element
JPH11274558A (en) Semiconductor light emitting element and semiconductor light emitting device
JPH10321910A (en) Light-emitting semiconductor element
JP2009182145A (en) Semiconductor optical element
US6403983B1 (en) Quantum well type light-emitting diode
JPH10145003A (en) Semiconductor laser and optical communication system using the same
JP3299056B2 (en) Surface emitting type InGaAlN based semiconductor laser
JPH08228048A (en) Nitride semiconductor laser device
JPS5939083A (en) Light emitting surface type semiconductor laser
JP2009158807A (en) Semiconductor laser diode
JP4134366B2 (en) Surface emitting laser
JPH11307876A (en) Surface-emitting semiconductor laser element, optical disc recording/producing device and optical transmitter for plastic optical fiber
US5406575A (en) Semiconductor heterostructure laser
JPH1027945A (en) Surface light-emitting device
JPH1146038A (en) Nitride semiconductor laser element and manufacture of the same
WO2021125005A1 (en) Light-emitting device and method for manufacturing light-emitting device
JP2010034267A (en) Broad-area type semiconductor laser device, broad-area type semiconductor laser array, laser display, and laser irradiation apparatus
JP3802465B2 (en) Vertical cavity surface emitting semiconductor laser
JP2007150075A (en) Nitride semiconductor light emitting element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100419

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100419

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110419

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130419

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees