JPH05175550A - Multilayer semiconductor film reflector - Google Patents

Multilayer semiconductor film reflector

Info

Publication number
JPH05175550A
JPH05175550A JP35710291A JP35710291A JPH05175550A JP H05175550 A JPH05175550 A JP H05175550A JP 35710291 A JP35710291 A JP 35710291A JP 35710291 A JP35710291 A JP 35710291A JP H05175550 A JPH05175550 A JP H05175550A
Authority
JP
Japan
Prior art keywords
semiconductor
reflecting mirror
thickness
layer
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35710291A
Other languages
Japanese (ja)
Inventor
Toshihiro Kato
俊宏 加藤
Takashi Saka
貴 坂
Masumi Hiroya
真澄 廣谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP35710291A priority Critical patent/JPH05175550A/en
Publication of JPH05175550A publication Critical patent/JPH05175550A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To suppress the increase of the electric resistance caused by the discontinuity of a band by alternately stacking first semiconductors and second semiconductors different in band gap, and interposing middle layers, which have band gaps intermediate between the first semiconductors and the second semiconductors, between them and stacking these. CONSTITUTION:For a reflector 14, the first semiconductor 32 consisting of a p-AlAs semiconductor, a middle layer 34 consisting of a p-AlyGa1-yAs semiconductor, the second semiconductor 36 consisting of a p-AlyGa1-yAs semiconductor, and a middle substance 38 consisting of a p-AlyGa1-yAs semiconductor are stacked in order repeatedly. These are epitaxially grown continuously by changing the rate of the material gas introduced into a MOCVD device. The mixed crystal ratios of the middle layers 34 and 38 are determined to be values smaller than 1 and larger than the Al mixed ratio of the second semiconductor 36. The band gaps of the middle layers 34 and 38 are smaller than first semiconductor 32 and larger than the second semiconductor 36 consisting of p-AlxGa1-xAs.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、面発光型発光ダイオー
ドや面発光レーザなどに用いられる半導体多層膜反射鏡
の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a semiconductor multilayer film reflecting mirror used for a surface emitting type light emitting diode or a surface emitting laser.

【0002】[0002]

【従来の技術】バンドギャップが異なる2種類の半導体
が重ね合わされた単位半導体層が繰り返し積層されて、
ブラッグ反射として知られている光波干渉により入射し
た光を反射する半導体多層膜反射鏡が、面発光型発光ダ
イオードや面発光レーザなどに用いられている。かかる
反射鏡は、上記2種類の半導体の屈折率の相違に基づい
て特定の波長の光を反射するもので、例えばAlZ Ga
1-Z Asにて構成される赤外或いは赤色発光ダイオード
の場合、所定の厚さのAlAsとAlx Ga1-x Asと
を交互に積層することによって構成される。AlAsお
よびAlx Ga1-x Asの厚さtA ,tG は、AlAs
の屈折率をnA 、Alx Ga1-x Asの屈折率をnG
AlZ Ga1-Z Asの発光波長すなわち反射すべき光の
中心波長をλB とした時、それ等の光学的厚さn
A A ,nG G がそれぞれλB /4となるように定め
られる。
2. Description of the Related Art A unit semiconductor layer in which two kinds of semiconductors having different band gaps are stacked is repeatedly stacked,
A semiconductor multilayer film reflecting mirror, which is known as Bragg reflection and reflects incident light by light wave interference, is used for a surface emitting type light emitting diode and a surface emitting laser. Such a reflecting mirror reflects light of a specific wavelength based on the difference in the refractive index of the above-mentioned two types of semiconductors. For example, Al Z Ga
If the infrared or red light-emitting diode configured in 1-Z As, constructed by alternately laminating AlAs and Al x Ga 1-x As having a predetermined thickness. The thicknesses t A and t G of AlAs and Al x Ga 1-x As are
The refractive index of the n A, Al x Ga 1- x As the refractive index n G of,
When the emission wavelength of Al Z Ga 1 -Z As, that is, the central wavelength of the light to be reflected is λ B , the optical thickness n of those is n.
It is determined that A t A and n G t G are respectively λ B / 4.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うにバンドギャップが異なる2種類の半導体結晶を交互
に積層した半導体多層膜反射鏡は、両半導体結晶の層界
面におけるバンドの不連続により電気抵抗が高くなるた
め、大きな動作電圧が必要になるという問題があった。
このことは、GaAs半導体による光吸収を防止するた
めに、比較的電気抵抗が大きいAlAs半導体とAlx
Ga1-x As半導体とを交互に積層して半導体多層膜反
射鏡を構成した場合に特に問題となる。
However, the semiconductor multilayer film reflecting mirror in which two kinds of semiconductor crystals having different band gaps are alternately laminated in this way has an electric resistance due to the discontinuity of bands at the layer interfaces of both semiconductor crystals. Since it becomes higher, there is a problem that a large operating voltage is required.
This means that in order to prevent light absorption by the GaAs semiconductor, AlAs semiconductor and Al x semiconductor having a relatively large electric resistance are used.
This is a particular problem when a semiconductor multi-layered film reflection mirror is formed by alternately stacking Ga 1 -x As semiconductors.

【0004】本発明は以上の事情を背景として為された
もので、その目的とするところは、バンドの不連続に起
因する電気抵抗の増加を抑制することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to suppress an increase in electric resistance due to band discontinuity.

【0005】[0005]

【課題を解決するための手段】かかる目的を達成するた
めに、本発明は、バンドギャップが異なる第1半導体お
よび第2半導体が交互に積層されて、入射した光を光波
干渉によって反射する半導体多層膜反射鏡において、前
記第1半導体および第2半導体の中間のバンドギャップ
を有する中間層を挟んでそれ等の第1半導体と第2半導
体とを交互に積層したことを特徴とする。
In order to achieve the above object, the present invention provides a semiconductor multilayer structure in which first semiconductors and second semiconductors having different band gaps are alternately stacked to reflect incident light by light wave interference. In the film reflector, the first semiconductor and the second semiconductor are alternately laminated with an intermediate layer having a band gap intermediate between the first semiconductor and the second semiconductor sandwiched therebetween.

【0006】[0006]

【作用および発明の効果】このようにすれば、第1半導
体と第2半導体との間に、それ等の中間のバンドギャッ
プを有する中間層が存在するため、それ等の半導体間に
おけるバンドの不連続が緩和され、電気抵抗が低減され
て発光ダイオード等の動作電圧が小さくなるのである。
なお、バンドの不連続を一層緩和するために、上記中間
層のバンドギャップを、隣接する第1半導体および第2
半導体のバンドギャップに段階的または連続的に接近す
るように変化させることも可能である。
With this configuration, since there is an intermediate layer having a band gap in the middle between the first semiconductor and the second semiconductor, there is no band difference between those semiconductors. The continuity is relaxed, the electric resistance is reduced, and the operating voltage of the light emitting diode or the like is reduced.
In order to further alleviate the band discontinuity, the band gap of the intermediate layer is set to the adjacent first semiconductor and second semiconductor layer.
It is also possible to change so that the band gap of the semiconductor is gradually or continuously approached.

【0007】ここで、このように第1半導体と第2半導
体との間に中間層を設けると、中間層の屈折率は第1半
導体や第2半導体の屈折率と相違するため、反射波長域
がずれることがある。これを防止するための簡便な手法
として、中間層の膜厚分だけ第1半導体および第2半導
体の膜厚を薄くすることが考えられるが、中間層の膜厚
が比較的大きい場合や、中間層の屈折率が第1半導体お
よび第2半導体の屈折率の平均値からずれている場合に
は、反射波長域のずれを充分に防止できない。
When the intermediate layer is provided between the first semiconductor and the second semiconductor as described above, the refractive index of the intermediate layer is different from the refractive index of the first semiconductor and the second semiconductor. May be misaligned. As a simple method for preventing this, it is conceivable to reduce the film thickness of the first semiconductor and the second semiconductor by the film thickness of the intermediate layer. However, when the film thickness of the intermediate layer is relatively large, When the refractive index of the layer deviates from the average value of the refractive indices of the first semiconductor and the second semiconductor, the deviation of the reflection wavelength region cannot be sufficiently prevented.

【0008】これに対し、第1半導体の光学的厚さをT
O1、第2半導体の光学的厚さをTO2、その第1半導
体または第2半導体の上下に位置する一対の中間層の光
学的厚さの合計をTO3、反射すべき光の中心波長をλ
B とした時、次式(1)を満足するように、それ等第1
半導体,第2半導体,一対の中間層の膜厚を定めれば、
中間層の膜厚が比較的大きい場合や、中間層の屈折率が
第1半導体および第2半導体の屈折率の平均値からずれ
ている場合でも、反射波長域のずれを効果的に防止する
ことができる。
On the other hand, the optical thickness of the first semiconductor is T
O1, TO2 is the optical thickness of the second semiconductor, TO3 is the total optical thickness of the pair of intermediate layers located above and below the first semiconductor or the second semiconductor, and the central wavelength of the light to be reflected is λ.
When B is set, the first
If the thicknesses of the semiconductor, the second semiconductor, and the pair of intermediate layers are determined,
Even when the thickness of the intermediate layer is relatively large, or when the refractive index of the intermediate layer deviates from the average value of the refractive indices of the first semiconductor and the second semiconductor, it is possible to effectively prevent the deviation of the reflection wavelength range. You can

【0009】[0009]

【数2】 TO1+(TO3/2)=TO2+(TO3/2)=λB /4・・・(1)[Number 2] TO1 + (TO3 / 2) = TO2 + (TO3 / 2) = λ B / 4 ··· (1)

【0010】また、上記第1半導体,中間層,第2半導
体,および中間層から成る1周期の単位半導体層の厚さ
は、半導体多層膜反射鏡を構成する総ての単位半導体層
について一定であっても良いが、単位半導体層の厚さを
連続的または段階的に変化させることも可能である。そ
の場合には、その単位半導体層の膜厚の変化に伴って反
射される光の中心波長も変化するため、広範囲の波長域
の光が高い反射率で反射されるようになり、上記のよう
に中間層を設けたことによる反射波長域のずれが殆ど問
題とならなくなる。
Further, the thickness of the unit semiconductor layer of one cycle consisting of the first semiconductor, the intermediate layer, the second semiconductor, and the intermediate layer is constant for all the unit semiconductor layers constituting the semiconductor multilayer mirror. Although it may be present, the thickness of the unit semiconductor layer can be changed continuously or stepwise. In that case, the central wavelength of the reflected light also changes with the change in the thickness of the unit semiconductor layer, so that light in a wide wavelength range is reflected with high reflectance. The deviation of the reflection wavelength range due to the provision of the intermediate layer on the surface becomes almost no problem.

【0011】[0011]

【実施例】以下、本発明の一実施例を図面に基づいて詳
細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings.

【0012】図1は、本発明の一実施例である半導体多
層膜反射鏡を備えた面発光型発光ダイオード10の構造
を説明する図で、p−GaAs基板12上には半導体多
層膜反射鏡(以下、単に反射鏡という)14、p−Al
GaAsクラッド層16、p−GaAs活性層18、n
−AlGaAsクラッド層20、およびn−GaAsキ
ャップ層22が順次積層されており、p−AlGaAs
クラッド層16、p−GaAs活性層18、およびn−
AlGaAsクラッド層20によってダブルヘテロ構造
が構成されている。n−GaAsキャップ層22の上面
24の一部およびp−GaAs基板12の下面には、そ
れぞれ−電極26、+電極28が設けられており、それ
等の間に順電圧が印加されることにより上記ダブルヘテ
ロ構造のp−GaAs活性層18から光が発せられ、n
−GaAsキャップ層22の上面24からその光が取り
出される。上記反射鏡14は、p−GaAs基板12側
へ進行した光を光波干渉によって反射するもので、これ
により光出力が向上する。
FIG. 1 is a view for explaining the structure of a surface emitting light emitting diode 10 equipped with a semiconductor multilayer film reflecting mirror according to one embodiment of the present invention. A semiconductor multilayer film reflecting mirror is provided on a p-GaAs substrate 12. (Hereinafter, simply referred to as a reflecting mirror) 14, p-Al
GaAs cladding layer 16, p-GaAs active layer 18, n
-AlGaAs clad layer 20 and n-GaAs cap layer 22 are sequentially stacked, and p-AlGaAs
Cladding layer 16, p-GaAs active layer 18, and n-
The AlGaAs clad layer 20 constitutes a double hetero structure. A negative electrode 26 and a positive electrode 28 are provided on a part of the upper surface 24 of the n-GaAs cap layer 22 and the lower surface of the p-GaAs substrate 12, respectively. By applying a forward voltage between them, Light is emitted from the p-GaAs active layer 18 having the double hetero structure,
The light is extracted from the upper surface 24 of the -GaAs cap layer 22. The reflecting mirror 14 reflects the light traveling toward the p-GaAs substrate 12 side by light wave interference, and thus the light output is improved.

【0013】上記面発光型発光ダイオード10の各半導
体は、MOCVD(有機金属化学気相成長)装置を用い
てエピタキシャル成長させたもので、p−AlGaAs
クラッド層16の膜厚は約2μm、p−GaAs活性層
18の膜厚は約0.1μm、n−AlGaAsクラッド
層20の膜厚は約2μm、n−GaAsキャップ層22
の膜厚は約0.1μmである。また、反射鏡14は、図
2に示されているように、p−AlAs半導体から成る
第1半導体32、p−Aly Ga1-y As半導体から成
る中間層34、p−Alx Ga1-x As半導体から成る
第2半導体36、およびp−Aly Ga1-y As半導体
から成る中間層38とを順次積層した単位半導体層40
を繰り返し積層したもので、MOCVD装置の反応炉内
に導入する原料ガスの割合を変化させることにより、連
続的にエピタキシャル成長させたものである。上記中間
層34,38のAlの混晶比yは1より小さいとともに
第2半導体36のAlの混晶比xより大きい値に定めら
れており、中間層34,38のバンドギャップは、p−
AlAs半導体から成る第1半導体32よりも小さく、
p−Alx Ga1-x Asから成る第2半導体36よりも
大きい。
Each semiconductor of the surface emitting light emitting diode 10 is epitaxially grown by using a MOCVD (Metal Organic Chemical Vapor Deposition) apparatus, and is made of p-AlGaAs.
The clad layer 16 has a thickness of about 2 μm, the p-GaAs active layer 18 has a thickness of about 0.1 μm, the n-AlGaAs clad layer 20 has a thickness of about 2 μm, and the n-GaAs cap layer 22.
Has a film thickness of about 0.1 μm. Further, the reflecting mirror 14, as shown in FIG. 2, the first semiconductor 32 made of p-AlAs semiconductor, p-Al y Ga 1- y As intermediate layer 34 made of a semiconductor, p-Al x Ga 1 the second semiconductor 36 made of -x as semiconductor, and p-Al y Ga 1-y as unit semiconductor layer 40 and an intermediate layer 38 sequentially laminated made of semiconductor
Is repeatedly laminated, and the epitaxial growth is continuously performed by changing the ratio of the raw material gas introduced into the reaction furnace of the MOCVD apparatus. The Al mixed crystal ratio y of the intermediate layers 34 and 38 is set to a value smaller than 1 and larger than the Al mixed crystal ratio x of the second semiconductor 36, and the band gaps of the intermediate layers 34 and 38 are p−.
Smaller than the first semiconductor 32 made of AlAs semiconductor,
greater than the second semiconductor 36 made of p-Al x Ga 1-x As.

【0014】上記第1半導体32の膜厚t1 および第2
半導体36の膜厚t3 は、それ等の光学的厚さをTO
1,TO2、一対の中間層34,38の光学的厚さの合
計をTO3、反射すべき光の中心波長をλB とした時、
前記(1)式を満足するように定められている。すなわ
ち、第1半導体32の屈折率をn1 、第2半導体36の
屈折率をn3 、同じ半導体から成る中間層34,38の
屈折率をn2 、膜厚をt2 ,t4 とすると、TO1=t
1 1 であり、TO2=t3 3 であり、TO3=(t
2 +t4 )n2 であるから、第1半導体32の膜厚t1
は次式(2)に従って求められ、第2半導体36の膜厚
3 は次式(3)に従って求められる。そして、これ等
の半導体から成る単位半導体層40は、t1 +t2 +t
3 +t4 =Tの一定の厚さで予め定められた積層数Nだ
け繰り返し積層され、反射鏡14を構成している。な
お、中間層34,38の膜厚は、例えば10〜20nm
程度の比較的小さい値が予め設定される。
The thickness t 1 of the first semiconductor 32 and the second
The film thickness t 3 of the semiconductor 36 depends on the optical thickness
1, TO2, the total optical thickness of the pair of intermediate layers 34, 38 is TO3, and the central wavelength of the light to be reflected is λ B ,
It is defined so as to satisfy the expression (1). That is, assuming that the first semiconductor 32 has a refractive index n 1 , the second semiconductor 36 has a refractive index n 3 , the intermediate layers 34 and 38 made of the same semiconductor have n 2 and film thicknesses t 2 and t 4. , TO1 = t
1 n 1 , TO2 = t 3 n 3 , TO3 = (t
2 + t 4 ) n 2 , the film thickness t 1 of the first semiconductor 32 is
Is calculated according to the following equation (2), and the film thickness t 3 of the second semiconductor 36 is calculated according to the following equation (3). The unit semiconductor layer 40 made of these semiconductors is t 1 + t 2 + t
The reflecting mirror 14 is configured by repeatedly laminating a predetermined number of layers N with a constant thickness of 3 + t 4 = T. The thickness of the intermediate layers 34 and 38 is, for example, 10 to 20 nm.
A relatively small value is preset.

【0015】[0015]

【数3】 t1 ={(λB /4)−(t2 +t4 )n2 /2}/n1 ・・・(2) t3 ={(λB /4)−(t2 +t4 )n2 /2}/n3 ・・・(3)Equation 3] t 1 = {(λ B / 4) - (t 2 + t 4) n 2/2} / n 1 ··· (2) t 3 = {(λ B / 4) - (t 2 + t 4) n 2/2} / n 3 ··· (3)

【0016】このような面発光型発光ダイオード10に
おいては、反射鏡14の第1半導体32と第2半導体3
6との間に、それ等の中間のバンドギャップを有する中
間層34,38が存在するため、それ等の半導体間のバ
ンドの不連続が緩和されて電気抵抗が低減され、中間層
34,38を備えていない場合に比較して動作電圧が小
さくなる。因に、表1に示されているように、第2半導
体36のAlの混晶比x=0.2、中間層34,38の
Alの混晶比y=0.6、膜厚t2 =t4 =10nmと
し、第1半導体32すなわちAlAsの屈折率n1
2.97、中間層34,38すなわちAl0.6 Ga0.4
Asの屈折率n2 =3.22、第2半導体36すなわち
Al0.2 Ga0.8 Asの屈折率n3 =3.47、反射す
べき光の中心波長λB =880nmとして、上記(2)
式に従って第1半導体32の膜厚t1 を63.23nm
に設定し、上記(3)式に従って第2半導体36の膜厚
3 を54.12nmに設定した単位半導体層40を2
0層(N=20)積層した本発明に係る半導体多層膜反
射鏡を製造し、動作電流100mAを通電してその反射
鏡の電気抵抗を測定したところ約1.500Ω、一つの
単位半導体層40では約0.075Ωであった。これに
対し、上記中間層34,38を設けることなく第1半導
体32と第2半導体36とを交互に積層するとともに、
それ等の膜厚t1 ,t3 をそれぞれλB /4n1 =7
4.07nm、λB /4n3 =63.40nmとした単
位半導体層を30層積層した従来の半導体多層膜反射鏡
を製造し、動作電流100mAを通電してその反射鏡の
電気抵抗を測定したところ約15.280Ω、一つの単
位半導体層では約0.5093Ωであった。
In such a surface emitting light emitting diode 10, the first semiconductor 32 and the second semiconductor 3 of the reflecting mirror 14 are provided.
6 and the intermediate layers 34 and 38 having a band gap between them are present, the band discontinuity between these semiconductors is relaxed and the electric resistance is reduced, and the intermediate layers 34 and 38 are reduced. The operating voltage is smaller than that in the case where the device is not provided. Incidentally, as shown in Table 1, the mixed crystal ratio x of the second semiconductor 36 is 0.2, the mixed crystal ratio of the intermediate layers 34 and 38 is y 0.6, and the film thickness t 2 = T 4 = 10 nm, the refractive index n 1 = of the first semiconductor 32, that is, AlAs
2.97, the intermediate layers 34 and 38, that is, Al 0.6 Ga 0.4
As the refractive index n 2 = 3.22, the second semiconductor 36, that is, Al 0.2 Ga 0.8 As has a refractive index n 3 = 3.47, and the central wavelength λ B of the light to be reflected is λ B = 880 nm.
According to the equation, the film thickness t 1 of the first semiconductor 32 is 63.23 nm.
And the film thickness t 3 of the second semiconductor 36 is set to 54.12 nm according to the above equation (3).
A semiconductor multilayer film reflecting mirror according to the present invention having 0 layers (N = 20) laminated was manufactured, and an electric current of 100 mA was applied to measure the electric resistance of the reflecting mirror, which was about 1.500Ω and one unit semiconductor layer 40. Then, it was about 0.075Ω. On the other hand, the first semiconductor 32 and the second semiconductor 36 are alternately laminated without providing the intermediate layers 34 and 38, and
The film thicknesses t 1 and t 3 of them are respectively λ B / 4n 1 = 7
A conventional semiconductor multilayer film reflecting mirror having 30 unit semiconductor layers laminated with 4.07 nm and λ B / 4n 3 = 63.40 nm was manufactured, and an operating current of 100 mA was applied to measure the electric resistance of the reflecting mirror. However, it was about 15.280Ω, and about 0.5093Ω in one unit semiconductor layer.

【0017】[0017]

【表1】 [Table 1]

【0018】一方、このように第1半導体32と第2半
導体36との間に中間層34,38を設けると、中間層
34,38の屈折率n2 は第1半導体32や第2半導体
36の屈折率n1 ,n3 と相違するため、反射波長域が
ずれることがある。これを防止するための簡便な手法と
して、中間層34,38の膜厚分だけ第1半導体32お
よび第2半導体36の膜厚を薄くする、例えば上記表1
の従来品においてt2 =t4 =10nmの中間層34,
38を介挿する場合には、第1半導体32の膜厚t1
74.07−10=64.07nmとするとともに、第
2半導体36の膜厚t3 =63.40−10=53.4
0nmとすることが考えられる。このようにすれば、中
間層34,38の屈折率n2 が第1半導体32,第2半
導体36の屈折率n1 ,n3 の平均値である上記実施例
の場合においては、単位半導体層全体の光学的厚さ(T
O1+TO2+TO3)はλB /2となり、本実施例の
単位半導体層40の光学的厚さと一致するが、第1半導
体32側の光学的厚さ(TO1+TO3/2)や第2半
導体36側の光学的厚さ(TO2+TO3/2)はλB
/4からずれるため、反射波長域のずれは生じないもの
の中間層34,38の膜厚t2 ,t4 が大きくなるに従
って反射スペクトルの拡がりが小さくなる。また、中間
層34,38の屈折率n2 が第1半導体32および第2
半導体36の屈折率n1 ,n3 の平均値からずれている
場合には、上記のように中間層34,38の膜厚分だけ
第1半導体32および第2半導体36の膜厚を薄くして
も、第1半導体32側の光学的厚さ(TO1+TO3/
2)や第2半導体36の光学的厚さ(TO2+TO3/
2)がλB /4からずれるとともに、単位半導体層全体
の光学的厚さ(TO1+TO2+TO3)がλB /2か
らずれるため、反射スペクトルの拡がりが小さくなるだ
けでなく反射波長域のずれが顕著となる。
On the other hand, when the intermediate layers 34 and 38 are provided between the first semiconductor 32 and the second semiconductor 36 as described above, the refractive index n 2 of the intermediate layers 34 and 38 is the first semiconductor 32 and the second semiconductor 36. Since the refractive indices n 1 and n 3 are different from each other, the reflection wavelength range may be shifted. As a simple method for preventing this, the film thickness of the first semiconductor 32 and the second semiconductor 36 is reduced by the film thickness of the intermediate layers 34 and 38, for example, as shown in Table 1 above.
In the conventional product of t 2 = t 4 = 10 nm,
In the case of inserting 38, the film thickness t 1 of the first semiconductor 32 =
With the 74.07-10 = 64.07nm, the thickness t 3 of the second semiconductor 36 = 63.40-10 = 53.4
It is considered to be 0 nm. By doing so, in the case of the above embodiment in which the refractive index n 2 of the intermediate layers 34 and 38 is the average value of the refractive indexes n 1 and n 3 of the first semiconductor 32 and the second semiconductor 36, Overall optical thickness (T
O1 + TO2 + TO3) becomes λ B / 2, which is equal to the optical thickness of the unit semiconductor layer 40 of the present embodiment, but the optical thickness (TO1 + TO3 / 2) of the first semiconductor 32 side and the optical thickness of the second semiconductor 36 side are the same. Thickness (TO2 + TO3 / 2) is λ B
Since there is no deviation in the reflection wavelength range from / 4, the spread of the reflection spectrum decreases as the film thicknesses t 2 and t 4 of the intermediate layers 34 and 38 increase. In addition, the refractive indices n 2 of the intermediate layers 34 and 38 are different from those of the first semiconductor 32 and the second semiconductor
When the refractive indices n 1 and n 3 of the semiconductor 36 deviate from the average value, the thicknesses of the first semiconductor 32 and the second semiconductor 36 are reduced by the thicknesses of the intermediate layers 34 and 38 as described above. However, the optical thickness of the first semiconductor 32 side (TO1 + TO3 /
2) and the optical thickness of the second semiconductor 36 (TO2 + TO3 /
2) deviates from λ B / 4, and the optical thickness (TO1 + TO2 + TO3) of the entire unit semiconductor layer deviates from λ B / 2, so that not only the spread of the reflection spectrum decreases but also the deviation of the reflection wavelength range becomes remarkable. Become.

【0019】これに対し、本実施例の反射鏡14は、中
間層34,38の屈折率n2 を考慮した光学的厚さn2
(t2 +t4 )に基づいて第1半導体32の膜厚t1
よび第2半導体36の膜厚t3 が前記(2)式および
(3)式に従って定められているため、それ等の第1半
導体32,第2半導体36の屈折率n1 ,n3 と中間層
34,38の屈折率n2 との相違に拘らず、中間層3
4,38の膜厚t2 ,t4 が比較的大きい場合や、中間
層34,38の屈折率n2 が第1半導体32および第2
半導体36の屈折率n1 ,n3 の平均値からずれている
場合でも、反射波長域のずれが効果的に防止される。な
お、中間層34,38として互いに屈折率が異なる材料
を用いた場合でも、(1)式に従って膜厚が定められて
いれば、反射波長域のずれが効果的に防止される。
[0019] In contrast, the reflector 14 of the present embodiment, the optical thickness n 2 in consideration of refractive index n 2 of the intermediate layer 34 and 38
Since the film thickness t 1 of the first semiconductor 32 and the film thickness t 3 of the second semiconductor 36 are determined based on (t 2 + t 4 ) according to the equations (2) and (3), Despite the difference between the refractive indices n 1 and n 3 of the first semiconductor 32 and the second semiconductor 36 and the refractive indices n 2 of the intermediate layers 34 and 38, the intermediate layer 3
When the film thicknesses t 2 and t 4 of the layers 4, 38 are relatively large, or when the refractive index n 2 of the intermediate layers 34, 38 is the first semiconductor 32 and the second
Even when the refractive indices n 1 and n 3 of the semiconductor 36 deviate from the average value, the deviation of the reflection wavelength region is effectively prevented. Even when materials having different refractive indexes are used for the intermediate layers 34 and 38, if the film thickness is determined according to the equation (1), the deviation of the reflection wavelength region can be effectively prevented.

【0020】例えば、表2に示されている5種類の反射
鏡について、その光反射特性をシミュレーションによっ
て調べたところ、図3〜図6に示す結果が得られた。表
2の反射鏡は、何れも反射すべき光の中心波長λB =8
80nmの場合のもので、反射鏡Iおよび IIIは、中間
層34,38の光学的厚さを考慮して前記(2)式およ
び(3)式に従って第1半導体32の膜厚t1 ,第2半
導体36の膜厚t3 を設定したものである。また、従来
反射鏡は、中間層34,38を設けることなく第1半導
体32と第2半導体36とを交互に積層するとともに、
それ等の膜厚t1 ,t3 をそれぞれλB /4n1 =7
4.07nm、λB /4n3 =63.40nmとしたも
のであり、反射鏡IIおよびIVは、その従来反射鏡に比較
して中間層34,38の膜厚分だけ第1半導体32,第
2半導体36の膜厚t1 ,t3 を薄くしたものである。
上記膜厚の算出に際しては、第1半導体32すなわちA
lAsの屈折率n1 =2.97、中間層34,38すな
わちAl0.45Ga0.55Asの屈折率n2 =3.31、第
2半導体36すなわちAl0.2 Ga0.8 Asの屈折率n
3 =3.47とした。また、上記シミュレーションの条
件は、反射鏡に対して光が垂直に入射し、且つその反射
鏡内において光の吸収はないものとした。また、入射媒
質はAl0.45Ga0.55Asとし、反対側の媒質は前記基
板12と同じGaAsとした。
For example, when the light reflection characteristics of the five types of reflecting mirrors shown in Table 2 were examined by simulation, the results shown in FIGS. 3 to 6 were obtained. The reflectors in Table 2 all have a central wavelength of light to be reflected λ B = 8
In the case of 80 nm, the reflecting mirrors I and III have the film thickness t 1 of the first semiconductor 32, the film thickness t 1 of the first semiconductor 32, and the film thickness t 1 of the first semiconductor 32 in consideration of the optical thickness of the intermediate layers 34 and 38. 2 The film thickness t 3 of the semiconductor 36 is set. Further, in the conventional reflecting mirror, the first semiconductor 32 and the second semiconductor 36 are alternately laminated without providing the intermediate layers 34 and 38, and
The film thicknesses t 1 and t 3 of them are respectively λ B / 4n 1 = 7
4.07 nm, λ B / 4n 3 = 63.40 nm, and the reflecting mirrors II and IV are the same as those of the conventional reflecting mirrors in the first semiconductor 32, (2) The film thicknesses t 1 and t 3 of the semiconductor 36 are thinned.
In calculating the film thickness, the first semiconductor 32, that is, A
lAs has a refractive index n 1 = 2.97, intermediate layers 34 and 38 have a refractive index n 2 = 3.31 of Al 0.45 Ga 0.55 As, and second semiconductor 36 have a refractive index n of Al 0.2 Ga 0.8 As.
3 = 3.47. In addition, the conditions of the above simulation are that light is incident perpendicularly on the reflecting mirror and that light is not absorbed in the reflecting mirror. The incident medium is Al 0.45 Ga 0.55 As, and the medium on the opposite side is GaAs, which is the same as the substrate 12.

【0021】[0021]

【表2】 [Table 2]

【0022】上記図3〜図6から明らかなように、中間
層34,38の光学的厚さを考慮して前記(2)式およ
び(3)式に従って第1半導体32の膜厚t1 ,第2半
導体36の膜厚t3 を設定した反射鏡Iおよび IIIは、
中間層34,38がない従来反射鏡と略同じ反射特性を
得られるのに対し、単に中間層34,38の膜厚分だけ
第1半導体32,第2半導体36の膜厚t1 ,t3 を薄
くした反射鏡IIおよびIVは、従来反射鏡に比較して反射
波長域が長波長側へずれている。
As is apparent from FIGS. 3 to 6, in consideration of the optical thicknesses of the intermediate layers 34 and 38, the film thicknesses t 1 and t 1 of the first semiconductor 32 are calculated in accordance with the equations (2) and (3). The reflecting mirrors I and III in which the film thickness t 3 of the second semiconductor 36 is set are
While almost the same reflection characteristics as the conventional reflecting mirror without the intermediate layers 34 and 38 can be obtained, the film thicknesses t 1 and t 3 of the first semiconductor 32 and the second semiconductor 36 are simply equal to the film thicknesses of the intermediate layers 34 and 38. Reflecting mirrors II and IV with a thinner thickness have a reflection wavelength band shifted to the long wavelength side as compared with conventional reflecting mirrors.

【0023】このように本実施例の面発光型発光ダイオ
ード10によれば、反射波長域のずれを生じることな
く、バンドの不連続に起因する電気抵抗の上昇を抑制
し、動作電圧を低減することができるのである。
As described above, according to the surface-emitting light-emitting diode 10 of this embodiment, the rise of the electric resistance due to the discontinuity of the band is suppressed and the operating voltage is reduced without the deviation of the reflection wavelength region. You can do it.

【0024】以上、本発明の実施例を図面に基づいて詳
細に説明したが、本発明は他の態様で実施することもで
きる。
Although the embodiments of the present invention have been described in detail with reference to the drawings, the present invention can be implemented in other modes.

【0025】例えば、前記実施例では同じ厚さTで単位
半導体層40が所定の積層数Nだけ繰り返し積層されて
いたが、図7の(a)に示されているように単位半導体
層40の厚さを一つ一つ連続的に変化させたり、図7の
(b)に示されているように途中に厚さが等しい単位半
導体層40を介挿したり、図7の(c)に示されている
ように単位半導体層40の厚さを段階的に変化させたり
することも可能である。その場合には反射波長域が拡が
るため、中間層の挿入に伴う反射波長域のずれが殆ど問
題とならなくなり、第1半導体および第2半導体の膜厚
を中間層の膜厚分だけ薄くするだけでも差支えない。な
お、単位半導体層40の膜厚変化は、第1半導体32,
中間層34,第2半導体36,中間層38の膜厚を同じ
割合で変化させるようにしても良いが、第1半導体32
および第2半導体36の膜厚を変化させるだけでも良
い。
For example, in the above embodiment, the unit semiconductor layers 40 having the same thickness T were repeatedly laminated by a predetermined number N, but as shown in FIG. The thickness is continuously changed one by one, a unit semiconductor layer 40 having the same thickness is inserted in the middle as shown in FIG. 7B, or the unit semiconductor layer 40 shown in FIG. As described above, the thickness of the unit semiconductor layer 40 can be changed stepwise. In that case, since the reflection wavelength range is widened, the deviation of the reflection wavelength range due to the insertion of the intermediate layer becomes almost no problem, and the thicknesses of the first semiconductor and the second semiconductor are reduced by the thickness of the intermediate layer. But it doesn't matter. The thickness of the unit semiconductor layer 40 varies depending on whether the first semiconductor 32,
The film thicknesses of the intermediate layer 34, the second semiconductor 36, and the intermediate layer 38 may be changed at the same rate.
Also, the film thickness of the second semiconductor 36 may be simply changed.

【0026】また、前記実施例では一対の中間層34お
よび38の組成や膜厚が同じであるが、互いに異なる組
成や膜厚の中間層34,38を設けることもできる。バ
ンドの不連続を一層緩和するために、中間層34,38
の組成すなわちバンドギャップをそれぞれ2段階,3段
階等で変化させたり連続的に変化させたりすることも可
能である。
Further, although the pair of intermediate layers 34 and 38 have the same composition and the same film thickness in the above embodiment, the intermediate layers 34 and 38 having different compositions and film thicknesses may be provided. In order to further alleviate the band discontinuity, the intermediate layers 34, 38
It is also possible to change the composition, that is, the band gap, in two steps, three steps, or the like, or to change it continuously.

【0027】また、前記実施例ではp型の反射鏡14に
ついて説明したが、n型の反射鏡にも本発明は同様に適
用され得ることは勿論、第1半導体32をGaAsとす
ることもできるなど、反射鏡を構成する半導体の種類や
組成は適宜変更され得る。
Although the p-type reflecting mirror 14 has been described in the above embodiment, the present invention can be similarly applied to an n-type reflecting mirror, and the first semiconductor 32 can be GaAs. For example, the type and composition of the semiconductor that constitutes the reflecting mirror can be changed appropriately.

【0028】また、前記面発光型発光ダイオード10は
基板12の反対側から光を取り出すものであるが、基板
12側から光を取り出す面発光型発光ダイオードにも本
発明は適用され得る。
Further, although the surface emitting type light emitting diode 10 takes out light from the opposite side of the substrate 12, the present invention can be applied to a surface emitting type light emitting diode taking out light from the substrate 12 side.

【0029】また、前記実施例の面発光型発光ダイオー
ド10はp−GaAs活性層18を有するダブルヘテロ
構造を備えているが、GaP、InP、InGaAsP
などの他の化合物半導体から成るダブルヘテロ構造や単
一ヘテロ構造の面発光型発光ダイオード、或いはホモ構
造の面発光型発光ダイオードにも本発明は同様に適用さ
れ得る。面発光レーザなど、反射鏡を有する他の半導体
装置にも同様に適用され得る。
Further, the surface emitting light emitting diode 10 of the above-mentioned embodiment has a double hetero structure having the p-GaAs active layer 18, but GaP, InP, InGaAsP.
The present invention can be similarly applied to a surface emitting light emitting diode having a double hetero structure or a single hetero structure made of another compound semiconductor such as, or a surface emitting light emitting diode having a homo structure. It can be similarly applied to other semiconductor devices having a reflecting mirror, such as a surface emitting laser.

【0030】また、前記実施例ではMOCVD装置を用
いて面発光型発光ダイオード10を作製する場合につい
て説明したが、分子線エピタキシー法など他のエピタキ
シャル成長技術を用いて作製することも可能である。
Further, in the above-mentioned embodiment, the case where the surface emitting light emitting diode 10 is manufactured by using the MOCVD apparatus has been described, but it is also possible to manufacture it by using other epitaxial growth techniques such as the molecular beam epitaxy method.

【0031】その他一々例示はしないが、本発明は当業
者の知識に基づいて種々の変更,改良を加えた態様で実
施することができる。
Although not illustrated one by one, the present invention can be carried out in various modified and improved modes based on the knowledge of those skilled in the art.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例である半導体多層膜反射鏡を
備えた面発光型発光ダイオードの構造を説明する図であ
る。
FIG. 1 is a diagram illustrating a structure of a surface emitting light emitting diode including a semiconductor multilayer film reflecting mirror according to an embodiment of the present invention.

【図2】図1の面発光型発光ダイオードの半導体多層膜
反射鏡の構造を示す図である。
FIG. 2 is a diagram showing a structure of a semiconductor multilayer film reflecting mirror of the surface emitting light emitting diode of FIG.

【図3】本発明に係る半導体多層膜反射鏡の光反射特性
を従来品と比較して示す図である。
FIG. 3 is a diagram showing a light reflection characteristic of a semiconductor multilayer film reflecting mirror according to the present invention in comparison with a conventional product.

【図4】本発明に係る別の半導体多層膜反射鏡の光反射
特性を従来品と比較して示す図である。
FIG. 4 is a diagram showing light reflection characteristics of another semiconductor multilayer film reflecting mirror according to the present invention in comparison with a conventional product.

【図5】本発明に係る更に別の半導体多層膜反射鏡の光
反射特性を従来品と比較して示す図である。
FIG. 5 is a diagram showing a light reflection characteristic of still another semiconductor multilayer film reflecting mirror according to the present invention in comparison with a conventional product.

【図6】本発明に係る更に別の半導体多層膜反射鏡の光
反射特性を従来品と比較して示す図である。
FIG. 6 is a diagram showing the light reflection characteristics of still another semiconductor multilayer film reflecting mirror according to the present invention in comparison with a conventional product.

【図7】半導体多層膜反射鏡を構成している単位半導体
層の厚さを変化させる場合の具体例を説明する図であ
る。
FIG. 7 is a diagram illustrating a specific example in the case of changing the thickness of a unit semiconductor layer forming a semiconductor multilayer film reflecting mirror.

【符号の説明】[Explanation of symbols]

10:面発光型発光ダイオード 14:半導体多層膜反射鏡 32:第1半導体 34,38:中間層 36:第2半導体 40:単位半導体層 10: surface emitting light emitting diode 14: semiconductor multilayer film reflecting mirror 32: first semiconductor 34, 38: intermediate layer 36: second semiconductor 40: unit semiconductor layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】バンドギャップが異なる第1半導体および
第2半導体が交互に積層されて、入射した光を光波干渉
によって反射する半導体多層膜反射鏡において、 前記第1半導体および第2半導体の中間のバンドギャッ
プを有する中間層を挟んで該第1半導体と第2半導体と
を交互に積層したことを特徴とする半導体多層膜反射
鏡。
1. A semiconductor multi-layered film reflecting mirror in which first semiconductors and second semiconductors having different band gaps are alternately laminated to reflect incident light by light wave interference. A semiconductor multilayer film reflecting mirror, wherein the first semiconductor and the second semiconductor are alternately laminated with an intermediate layer having a bandgap sandwiched therebetween.
【請求項2】前記中間層は、そのバンドギャップが隣接
する前記第1半導体および第2半導体のバンドギャップ
に段階的または連続的に接近するように変化しているも
のである請求項1に記載の半導体多層膜反射鏡。
2. The intermediate layer has a band gap that is changed so as to approach the band gaps of the first semiconductor and the second semiconductor adjacent to each other stepwise or continuously. Semiconductor multilayer mirror.
【請求項3】前記第1半導体の光学的厚さをTO1、第
2半導体の光学的厚さをTO2、該第1半導体または第
2半導体の上下に位置する一対の中間層の光学的厚さの
合計をTO3、反射すべき光の中心波長をλB とした
時、次式 【数1】 TO1+(TO3/2)=TO2+(TO3/2)=λB /4 を満足する請求項1または請求項2に記載の半導体多層
膜反射鏡。
3. The optical thickness of the first semiconductor is TO1, the optical thickness of the second semiconductor is TO2, and the optical thickness of a pair of intermediate layers located above and below the first semiconductor or the second semiconductor. Where TO3 is the total wavelength of the light to be reflected and λ B is the central wavelength of the light to be reflected, the following equation is satisfied: TO1 + (TO3 / 2) = TO2 + (TO3 / 2) = λ B / 4 The semiconductor multilayer film reflecting mirror according to claim 2.
【請求項4】前記第1半導体,中間層,第2半導体,お
よび中間層から成る1周期の単位半導体層の厚さが連続
的または段階的に変化している請求項1乃至3の何れか
に記載の半導体多層膜反射鏡。
4. The thickness of a unit semiconductor layer for one period consisting of the first semiconductor, the intermediate layer, the second semiconductor, and the intermediate layer is continuously or stepwise changed. The semiconductor multilayer film reflecting mirror according to.
JP35710291A 1991-12-24 1991-12-24 Multilayer semiconductor film reflector Pending JPH05175550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35710291A JPH05175550A (en) 1991-12-24 1991-12-24 Multilayer semiconductor film reflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35710291A JPH05175550A (en) 1991-12-24 1991-12-24 Multilayer semiconductor film reflector

Publications (1)

Publication Number Publication Date
JPH05175550A true JPH05175550A (en) 1993-07-13

Family

ID=18452392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35710291A Pending JPH05175550A (en) 1991-12-24 1991-12-24 Multilayer semiconductor film reflector

Country Status (1)

Country Link
JP (1) JPH05175550A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7590159B2 (en) 2001-02-26 2009-09-15 Ricoh Company, Ltd. Surface-emission laser diode operable in the wavelength band of 1.1-1.7 micrometers and optical telecommunication system using such a laser diode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7590159B2 (en) 2001-02-26 2009-09-15 Ricoh Company, Ltd. Surface-emission laser diode operable in the wavelength band of 1.1-1.7 micrometers and optical telecommunication system using such a laser diode

Similar Documents

Publication Publication Date Title
EP0874428B1 (en) Long wavelength vertical cavity surface emitting semiconductor laser (VCSEL)
US6061380A (en) Vertical cavity surface emitting laser with doped active region and method of fabrication
US5815524A (en) VCSEL including GaTlP active region
US6333945B1 (en) Semiconductor laser device
US20070001578A1 (en) Multiwavelength laser diode
JP3299056B2 (en) Surface emitting type InGaAlN based semiconductor laser
US6008067A (en) Fabrication of visible wavelength vertical cavity surface emitting laser
JP3134382B2 (en) Semiconductor device having a chirped light reflecting layer
JPH06151955A (en) Semiconductor light emitting element
JP4440571B2 (en) Quantum cascade laser
US5406575A (en) Semiconductor heterostructure laser
JPH05175550A (en) Multilayer semiconductor film reflector
JPH11238940A (en) Manufacture of semiconductor laser and semiconductor laser manufactured by the method
JPH05343739A (en) Semiconductor multilayer film reflecting mirror
JP2002261400A (en) Laser, laser apparatus, and optical communication system
JP2002214428A (en) Semiconductor multilayer film reflecting mirror and semiconductor luminous element
JP2973612B2 (en) Semiconductor multilayer mirror
JP2973581B2 (en) Semiconductor device with chirped light reflecting layer
JPH05327121A (en) Surface emitting type semiconductor laser
JP2007299895A (en) Surface emitted laser element, surface emitted laser array having the same, electronic photographing system having surface emitted laser element or surface emitted laser array, optical interconnection system having surface emitted laser element or surface emitted laser array, and optical communication system having surface emitted laser element or surface emitted laser array
JP2778868B2 (en) Surface-emitting light emitting diode
JPH05343796A (en) Surface emission-type semiconductor laser
JPH03163882A (en) Light-emitting diode with optical reflection layer
JPH0918083A (en) Surface light emitting semiconductor laser
JPH07249835A (en) Semiconductor optical element