JPH04325471A - Production of ceramic composite body - Google Patents

Production of ceramic composite body

Info

Publication number
JPH04325471A
JPH04325471A JP3097442A JP9744291A JPH04325471A JP H04325471 A JPH04325471 A JP H04325471A JP 3097442 A JP3097442 A JP 3097442A JP 9744291 A JP9744291 A JP 9744291A JP H04325471 A JPH04325471 A JP H04325471A
Authority
JP
Japan
Prior art keywords
ceramic
metal material
molded body
solid lubricant
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3097442A
Other languages
Japanese (ja)
Inventor
Takamasa Shintani
新谷 隆政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP3097442A priority Critical patent/JPH04325471A/en
Publication of JPH04325471A publication Critical patent/JPH04325471A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a ceramic composite body with high productivity and to prevent crack and deformation even when a metallic material used is thick or is embedded in a ceramic molded body at high density. CONSTITUTION:A ceramic green molded body contg. a ceramic material and an org. binder is formed, a metallic material coated with a solid lubricant not reacting with the ceramic material is embedded in the molded body and this molded body is fired. Strain produced between the metallic and ceramic materials at the time of firing is relieved by the solid lubricant.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、金属材料をセラミック
ス焼結体に内蔵させたセラミックス複合体の製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a ceramic composite body in which a metal material is embedded in a ceramic sintered body.

【0002】0002

【従来の技術】セラミックス焼結体に金属材料を内蔵さ
せた複合体の製造方法に関しては、次のような技術が知
られている。
BACKGROUND OF THE INVENTION The following techniques are known for manufacturing a composite body in which a metal material is embedded in a ceramic sintered body.

【0003】■カーボンペーストを塗布したセラミック
スグリーンシートを複数枚積層し、このものを焼成して
空隙層を有するセラミックス焼結体を作成し、このセラ
ミックス焼結体の空隙層内に溶融金属を注入して積層ア
クチュエータを製造する方法(特開昭62−21197
5号公報)。
[0003] ■ A plurality of ceramic green sheets coated with carbon paste are laminated and fired to create a ceramic sintered body having a void layer, and molten metal is injected into the void layer of this ceramic sintered body. Method for manufacturing a laminated actuator (Japanese Patent Application Laid-Open No. 62-21197
Publication No. 5).

【0004】■カーボンペーストを印刷したセラミック
スグリーンシートと通常のグリーンシートとを交互に積
層し、このものを焼成して孔部を有する多孔質のセラミ
ックス焼結体を作成し、このセラミックス焼結体の孔部
に金属メッキを施して導電性を付与することにより、圧
電セラミックス体を製造する方法(特開昭62−277
780号公報)。
[0004] Ceramic green sheets printed with carbon paste and regular green sheets are alternately laminated and fired to create a porous ceramic sintered body having holes. A method of manufacturing a piezoelectric ceramic body by applying metal plating to the holes of the body to impart conductivity (Japanese Patent Laid-Open No. 62-277
Publication No. 780).

【0005】■セラミックスグリーンシート上に導電性
ペーストや有機金属化合物からなるペーストパターンを
スクリーン印刷法で形成し、これを複数枚積層して同時
焼成することにより、導電性金属材料を内蔵するセラミ
ックス複合体を製造する方法(特開昭60−54865
号公報、特開昭63−47137号公報)。
[0005] ■ A paste pattern made of conductive paste or an organic metal compound is formed on a ceramic green sheet using a screen printing method, and multiple sheets of this are laminated and simultaneously fired to create a ceramic composite containing a conductive metal material. Method for manufacturing the body (Japanese Patent Application Laid-Open No. 60-54865
(Japanese Patent Application Laid-Open No. 63-47137).

【0006】■導電性ペースト以外の一般の金属材料を
セラミックスグリーン成形体に埋設した後に焼成してセ
ラミックス焼結体を製造する方法。
(2) A method of manufacturing a ceramic sintered body by embedding a general metal material other than a conductive paste in a ceramic green molded body and then firing it.

【0007】[0007]

【発明が解決しようとする課題】上記■及び■の方法で
は、カーボンペースト等により空隙層や孔部を内部に有
するセラミックス焼結体を製造してから、その空隙層や
孔部に金属材料を注入あるいはメッキ等の手段で埋設す
るため、同時焼成ではなく生産性に劣っていた。また、
カーボンペーストの塗布厚はせいぜい最大20μm 程
度であるため焼成収縮後に形成される空隙の厚みも15
μm程度までに限られていた。
[Problems to be Solved by the Invention] In the above methods (1) and (2), a ceramic sintered body having a void layer or holes inside is manufactured using carbon paste or the like, and then a metal material is applied to the void layer or holes. Because it is buried by means such as injection or plating, productivity is poor as it is not fired simultaneously. Also,
Since the coating thickness of carbon paste is at most about 20 μm, the thickness of the voids formed after firing shrinkage is also 15 μm.
It was limited to about μm.

【0008】上記■の方法でもスクリーン印刷法を用い
るため導電ペーストの厚さはせいぜい10μm 程度ま
でであった。
[0008] Even in the method (2) above, since a screen printing method is used, the thickness of the conductive paste is about 10 μm at most.

【0009】さらに、上記■の方法ではセラミックスが
一般に8〜20%の焼結収縮を生じるのに対し、金属材
料はわずかではあるが熱膨張を示す。従って、両者は焼
成の際に逆の挙動を示し、金属材料の厚みが大きい場合
や金属材料をセラミックス成形体内部に高密度に埋設す
る場合には焼成時にクラックを生じ易い。また、金属材
料が薄くかつ低密度に内蔵させる場合においては、クラ
ックを生じずに焼結できても得られた焼結体は残留歪が
大きく、変形を伴うという欠点があった。
Furthermore, in the method (2) above, ceramics generally undergo sintering shrinkage of 8 to 20%, whereas metal materials exhibit thermal expansion, albeit slightly. Therefore, both exhibit opposite behavior during firing, and cracks are likely to occur during firing when the thickness of the metal material is large or when the metal material is embedded in a ceramic molded body at a high density. Further, when the metal material is thin and incorporated in a low density, even if it can be sintered without cracking, the resulting sintered body has a drawback that it has large residual strain and is accompanied by deformation.

【0010】本発明は、上記従来の欠点を解決するもの
であり、その目的とするところは、生産性が良く、また
、金属材料の厚みが大きい場合や金属材料をセラミック
ス成形体内部に高密度に埋設する場合でも、焼成時にク
ラックを生じることのないセラミックス複合体の製造方
法を提供することにある。
[0010] The present invention solves the above-mentioned conventional drawbacks, and aims to improve productivity, and also to improve productivity when the thickness of the metal material is large or when the metal material is placed inside a ceramic molded body at high density. An object of the present invention is to provide a method for manufacturing a ceramic composite that does not cause cracks during firing even when buried in a ceramic composite body.

【0011】[0011]

【課題を解決するための手段】本発明のセラミックス複
合体の製造方法は、セラミックス材料と有機結合剤とを
含有するセラミックスグリーン成形体の中に、該セラミ
ックス材料と反応しない固体潤滑材で被覆された金属材
料を埋設し、その後焼成することを特徴とし、そのこと
により上記目的が達成される。
[Means for Solving the Problems] The method for producing a ceramic composite of the present invention includes coating a ceramic green molded body containing a ceramic material and an organic binder with a solid lubricant that does not react with the ceramic material. The above object is achieved by embedding the metal material and then firing it.

【0012】本発明で使用されるセラミックスグリーン
成形体は、セラミックス材料と有機結合とを含有する組
成物から形成されたものであり、このセラミックスグリ
ーン成形体は、セラミックス材料と有機結合とを混合し
、必要に応じて、エチルアルコール、イソプロピルアル
コール、メチルエチルケトン、トルエンなどの有機溶剤
を添加し、ボールミル、振動ミル等の混練機で混練した
後、得られる溶液をドクターブレードによる流延成形、
射出成形、押出成形、圧縮成形等の成形法により形成さ
れる。
The ceramic green molded body used in the present invention is formed from a composition containing a ceramic material and an organic bond. If necessary, add an organic solvent such as ethyl alcohol, isopropyl alcohol, methyl ethyl ketone, or toluene, and knead with a kneader such as a ball mill or vibration mill.The resulting solution is then cast using a doctor blade.
It is formed by a molding method such as injection molding, extrusion molding, or compression molding.

【0013】上記セラミックス材料としては、例えば、
アルミナ、ジルコニア、マグネシア、サイアロン、スピ
ネル、ムライト、結晶化ガラス、炭化珪素、窒化珪素、
窒化アルミニウム等の粉末およびMgO−SiO2−C
aO系、B2O3−SiO2系、PbO−B2O3−S
iO2系、CaO−SiO2−MgO−B2O3系、P
bO−SiO2−B2O3−CaO−系等のガラスフリ
ット粉末があげられ、単独もしくは二種類以上併用され
る。
[0013] Examples of the above ceramic materials include:
Alumina, zirconia, magnesia, sialon, spinel, mullite, crystallized glass, silicon carbide, silicon nitride,
Powders such as aluminum nitride and MgO-SiO2-C
aO system, B2O3-SiO2 system, PbO-B2O3-S
iO2 system, CaO-SiO2-MgO-B2O3 system, P
Examples include bO-SiO2-B2O3-CaO-based glass frit powders, which may be used alone or in combination of two or more.

【0014】上記有機結合剤としては、例えば、ポリビ
ニルブチラール、ポリビニルアルコール、ポリメチルメ
タクリレート、ポリブチルメタクリレート、セルロース
、デキストリン、ポリエチレンワックス、澱粉、カゼイ
ン等の高分子材料があげられ、単独もしくは二種類以上
併用される。また、必要に応じて、ジオクチルフタレー
ト、ジブチルフタレート、ポリエチレングリコール等の
可塑剤が添加されてもよい。
[0014] Examples of the organic binder include polymeric materials such as polyvinyl butyral, polyvinyl alcohol, polymethyl methacrylate, polybutyl methacrylate, cellulose, dextrin, polyethylene wax, starch, and casein, used alone or in combination of two or more. Used together. Furthermore, a plasticizer such as dioctyl phthalate, dibutyl phthalate, polyethylene glycol, etc. may be added as necessary.

【0015】金属材料としては、例えば、金、銀、チタ
ン、クロム、銅、ニッケル、鉄、モリブデン、マンガン
、アルミニウム、白金、タングステン、イリジウム、ロ
ジウム、コバルト、バナジウム、等の金属やこれらの金
属の合金からなる線状体、箔、板状体が用いられる。 また、所定の形状が必要の場合には、箔や板状体を打ち
抜き、またはエッチング、レーザー処理して作成する。
[0015] Examples of metal materials include metals such as gold, silver, titanium, chromium, copper, nickel, iron, molybdenum, manganese, aluminum, platinum, tungsten, iridium, rhodium, cobalt, vanadium, etc., and metals such as these metals. A linear body, foil, or plate-shaped body made of an alloy is used. In addition, if a predetermined shape is required, it can be created by punching, etching, or laser processing a foil or plate-shaped body.

【0016】上記金属材料を被覆する固体潤滑材として
は、窒化ホウ素、二珪化モリブデン、二硫化モリブデン
、二硫化タングステン、酸化鉛、二硫化鉛、フッ化カル
シウム、雲母等があげられ、単独もしくは二種類以上併
用され、焼成時上記セラミックス材料と反応しないもの
を適宜採用すればよく、特に焼成時に焼結しないものが
好ましい。
[0016] Examples of the solid lubricant coating the metal material include boron nitride, molybdenum disilicide, molybdenum disulfide, tungsten disulfide, lead oxide, lead disulfide, calcium fluoride, mica, etc. It is sufficient to appropriately adopt a material that is used in combination with more than one type and does not react with the above ceramic material during firing, and it is particularly preferable to use a material that does not sinter during firing.

【0017】例えば、アルミナ−PbO−B2O3−S
iO2−CaO系をセラミックス材料として用いる場合
は、その金属を被覆する固体潤滑材として窒化ホウ素を
用いればよい。これらの固体潤滑材は、通常、メタノー
ル、エタノール、ブタノール、プロパノール、シクロヘ
キサノール、テルピネオール、メチルエチルケトン、ア
セトン、酢酸エチル、トルエン、キシレン、ベンゼン、
エーテル、ヘキサン、四塩化炭素、水等の溶媒に分散し
た溶液またはペーストとして用いられる。また、これら
固体潤滑材のみで金属材料を被覆した時、その固体潤滑
材の被覆強度が低く、金属材料より剥離する場合は、必
要に応じて上述の有機結合剤を固体潤滑材を含む溶液に
添加し、固体潤滑材の被覆強度を上げればよい。
For example, alumina-PbO-B2O3-S
When using an iO2-CaO system as a ceramic material, boron nitride may be used as a solid lubricant to coat the metal. These solid lubricants typically include methanol, ethanol, butanol, propanol, cyclohexanol, terpineol, methyl ethyl ketone, acetone, ethyl acetate, toluene, xylene, benzene,
It is used as a solution or paste dispersed in a solvent such as ether, hexane, carbon tetrachloride, or water. In addition, when coating a metal material with only these solid lubricants, if the coating strength of the solid lubricant is low and it peels off from the metal material, if necessary, add the above-mentioned organic binder to a solution containing the solid lubricant. It may be added to increase the coating strength of the solid lubricant.

【0018】有機結合剤の量は、特に限定されるもので
はないが、一般に固体潤滑材に対し0.5〜10重量%
添加すればよい。
The amount of organic binder is not particularly limited, but is generally 0.5 to 10% by weight based on the solid lubricant.
Just add it.

【0019】本発明において、金属材料に固体潤滑材を
被覆する方法は、特に限定されないが、例えば、上記固
体潤滑材を分散した溶液やペースト中に金属材料を浸漬
、引き上げ後乾燥する方法、金属材料にスプレー等で固
体潤滑材を吹き付けた後、乾燥する方法などが適宜採用
される。なお、必要に応じ上記操作を複数回繰り返して
所望厚みの固体潤滑材からなる層を形成すればよい。
In the present invention, the method for coating the metal material with the solid lubricant is not particularly limited, but examples include a method in which the metal material is immersed in a solution or paste in which the solid lubricant is dispersed, pulled up, and then dried; A method of spraying a solid lubricant onto the material and then drying the material may be adopted as appropriate. Note that, if necessary, the above operation may be repeated multiple times to form a layer of solid lubricant having a desired thickness.

【0020】上記金属材料をセラミックスグリーン成形
体の中に埋設する方法は、特に限定されるものでなく従
来より公知の方法が採用でき、例えば、上記セラミック
ス材料および有機結合を含む組成物から形成されるセラ
ミックスグリーンシート間にこの金属材料を挟み込んで
熱圧着する方法、組成物中にこの金属材料を配置しこれ
を加圧成形する方法、石膏型などの成形型中にこの金属
材料を保持しその回りに組成物を流し込む鋳込み成形法
等が適宜採用される。
The method for embedding the metal material in the ceramic green molded body is not particularly limited and any conventionally known method can be used. A method of sandwiching this metal material between ceramic green sheets and bonding with heat, a method of placing this metal material in a composition and press-molding it, a method of holding this metal material in a mold such as a plaster mold and A casting method or the like in which the composition is poured into the surrounding area is appropriately employed.

【0021】次いで、このようにして金属材料が埋設さ
れた複合成形体を加熱炉に供給し、焼成することにより
、金属材料を内蔵したセラミックス複合体が得られる。
[0021] Next, the composite molded body in which the metal material is embedded in this manner is supplied to a heating furnace and fired, thereby obtaining a ceramic composite body containing the metal material.

【0022】この焼結条件は使用されるセラミックス材
料の種類を考慮して適宜決定されるが、一般に1〜10
0℃/Hrの昇温速度で600〜1850℃まで昇温し
、その温度で1〜5時間保持して焼成する。また、この
工程において金属材料及び固体潤滑材の酸化が進む場合
には還元雰囲気中で行うのがよい。
The sintering conditions are appropriately determined in consideration of the type of ceramic material used, but are generally 1 to 10
The temperature is raised to 600 to 1850°C at a heating rate of 0°C/Hr, and the temperature is maintained for 1 to 5 hours for firing. Further, in this step, if the metal material and the solid lubricant are oxidized, it is preferable to carry out the step in a reducing atmosphere.

【0023】なお、この焼成の際、セラミックス材料は
一般に8〜20%の線収縮率を示す。従って、金属材料
が固体潤滑材で被覆されていない場合には、セラミック
ス材料と収縮を生じない金属材料との間に大きな歪を生
じ、焼結体にクラックを生じたり、あるいは大きな変形
を伴う結果となる。
[0023] During this firing, the ceramic material generally exhibits a linear shrinkage rate of 8 to 20%. Therefore, if the metal material is not coated with a solid lubricant, a large strain will occur between the ceramic material and the non-shrinking metal material, resulting in cracks in the sintered body or large deformation. becomes.

【0024】本発明においては、セラミックス材料と金
属材料との間に固体潤滑材よりなる潤滑層が設けられて
いるため、該セラミックス材料が焼結による収縮を生じ
た際、その潤滑層が滑り現象を起こすことにより、金属
材料との間の歪応力を緩和することができる。従って、
焼結体はクラック、変形を生じることがなく、金属材料
を内蔵したセラミックス複合体が得られる。
In the present invention, since a lubricating layer made of a solid lubricant is provided between the ceramic material and the metal material, when the ceramic material shrinks due to sintering, the lubricating layer causes a slipping phenomenon. By causing this, strain stress between the metal material and the metal material can be alleviated. Therefore,
The sintered body does not crack or deform, and a ceramic composite containing a metal material can be obtained.

【0025】[0025]

【作用】金属材料の表面を、セラミックス材料と反応を
生じない固体潤滑材で被覆し、この状態で焼成するもの
であるから、焼成に伴う焼結収縮時、固体潤滑材がすべ
り現象を起こすことにより、金属材料と成形体との間の
歪応力を緩和する。従って、固体潤滑材を被覆しない時
のように焼結体の金属材料と接する部分が過度に金属材
料を圧することもなく、セラミックス材料と金属材料と
の間の歪応力は著しく減少されて焼成後の変形もなくな
る。
[Operation] The surface of the metal material is coated with a solid lubricant that does not react with the ceramic material, and is fired in this state, so the solid lubricant will not cause slipping during sintering shrinkage due to firing. This relieves strain stress between the metal material and the molded body. Therefore, unlike when the solid lubricant is not coated, the part of the sintered body that is in contact with the metal material does not apply excessive pressure on the metal material, and the strain stress between the ceramic material and the metal material is significantly reduced. deformation will also be eliminated.

【0026】[0026]

【実施例】以下に本発明のセラミックス複合体の製造方
法の実施例を説明する。なお「部」とあるのは「重量部
」を意味する。
EXAMPLES Examples of the method for manufacturing a ceramic composite of the present invention will be described below. Note that "parts" means "parts by weight."

【0027】実施例1 平均粒径3μm のアルミナ粉末40部、平均粒径5μ
m のPbO−SiO2−B2O3−CaO系ガラスフ
リット(屈伏点 684℃)60部、ポリビニルブチラ
ール12部、ジオクチルフタレート4.5部、メチルエ
チルケトン24部、トルエン18部、イソプロピルアル
コール18部をアルミナボールミルに供給し、24時間
混練後、得られた溶液をポリエチレンテレフタレートフ
ィルム上に塗布し、乾燥して厚さ200μm のセラミ
ックスグリーンシートを作成した。
Example 1 40 parts of alumina powder with an average particle size of 3 μm, average particle size of 5 μm
60 parts of PbO-SiO2-B2O3-CaO glass frit (deflection point 684°C), 12 parts of polyvinyl butyral, 4.5 parts of dioctyl phthalate, 24 parts of methyl ethyl ketone, 18 parts of toluene, and 18 parts of isopropyl alcohol were fed to an alumina ball mill. After kneading for 24 hours, the resulting solution was applied onto a polyethylene terephthalate film and dried to produce a ceramic green sheet with a thickness of 200 μm.

【0028】一方、平均粒径1μm のコロイダル窒化
ホウ素をアルミナボールミルに供給し、さらに、アルミ
ナボールミルにコロイダル窒化ホウ素100部に対しベ
ンゼンを30部、エタノールを15部、テルピネオール
を15部、ポリメチルメタクリレート(Mw:8万)を
1部投入して48時間混練し、40℃で溶剤を飛散させ
ながら、2600cpsまで増粘して、被覆用液を得た
On the other hand, colloidal boron nitride with an average particle size of 1 μm was supplied to an alumina ball mill, and further, to the alumina ball mill, 30 parts of benzene, 15 parts of ethanol, 15 parts of terpineol, and polymethyl methacrylate were added to 100 parts of colloidal boron nitride. (Mw: 80,000) was added and kneaded for 48 hours, and the viscosity was increased to 2,600 cps while the solvent was scattered at 40° C. to obtain a coating liquid.

【0029】次いで長さ50mm、直径100μm の
金線を上記被覆用液に浸漬し、これを引き上げ乾燥して
金線の周囲に総厚12μm の窒化ホウ素被覆を形成し
た。
Next, a gold wire having a length of 50 mm and a diameter of 100 μm was immersed in the above coating liquid, and was pulled up and dried to form a boron nitride coating having a total thickness of 12 μm around the gold wire.

【0030】次いで、上記グリーンシートを50×50
×0.2mmに切断し、これを10枚積層した上に、上
記被覆済みの金線を2mm間隔で10本平行に配置し、
その上にグリーンシート10枚を積層し、この積層体を
160℃で2時間保持し、250kg/cm2の圧力で
圧着して、被覆金線が内蔵されたセラミックスグリーン
成形体(50×50×4mm)を得た。
[0030] Next, the above green sheet is 50×50
x 0.2 mm, stacked 10 of these, and placed 10 coated gold wires in parallel at 2 mm intervals,
10 green sheets were laminated on top of it, this laminate was held at 160°C for 2 hours, and crimped with a pressure of 250 kg/cm2 to form a ceramic green molded body (50 x 50 x 4 mm) with a built-in coated gold wire. ) was obtained.

【0031】このセラミックスグリーン成形体を加熱炉
に供給し、5℃/hrの昇温速度で500℃まで昇温し
て2時間保持して脱脂した後、さらに50℃/hrで8
50℃まで昇温して2時間保持することにより焼成して
、金線が内蔵されたセラミックス複合体を得た。
This ceramic green molded body was supplied to a heating furnace, heated to 500°C at a heating rate of 5°C/hr, held for 2 hours to degrease, and further heated at 50°C/hr for 8
The temperature was raised to 50° C. and held for 2 hours for firing to obtain a ceramic composite containing gold wires.

【0032】このセラミックス複合体は変形を起こすこ
となく、また金線の端部が露出した面と平行に厚さ2m
mに切断してたところ内部の金線は脱落することなく保
持されていた。
[0032] This ceramic composite did not undergo any deformation, and the thickness of the ceramic composite was 2 m parallel to the surface where the end of the gold wire was exposed.
When it was cut into lengths of m, the gold wire inside was retained without falling off.

【0033】実施例2 平均粒径3μm のアルミナ粉末40部、平均粒径5μ
m のPbO−SiO2−B2O3系ガラスフリット(
屈伏点479℃)60部、ポリメチルメタクリレート(
Mw:13万)17部、ジブチルフタレート5部、メチ
ルエチルケトン24部、トルエン18部、イソプロピル
アルコール18部をボールミルに供給した他は、実施例
1と同様にして、厚さ200μm のセラミックスグリ
ーンシートを作成した。
Example 2 40 parts of alumina powder with an average particle size of 3 μm, average particle size of 5 μm
m PbO-SiO2-B2O3 glass frit (
yield point 479°C) 60 parts, polymethyl methacrylate (
A ceramic green sheet with a thickness of 200 μm was prepared in the same manner as in Example 1, except that 17 parts of Mw: 130,000), 5 parts of dibutyl phthalate, 24 parts of methyl ethyl ketone, 18 parts of toluene, and 18 parts of isopropyl alcohol were fed to the ball mill. did.

【0034】次に、平均粒径2μm の二硫化モリブデ
ンをアルミナボールミルに供給し、さらにアルミナボー
ルミルに二硫化ボリブデン100部に対しベンゼンを3
0部、エタノールを15部、テルピネオールを15部、
ポリメチルメタクリレート(Mw:8万)を1部それぞ
れ投入した他は、以下実施例1と同様にして被覆液を得
た。
Next, molybdenum disulfide having an average particle size of 2 μm was supplied to an alumina ball mill, and 3 parts of benzene was added to 100 parts of molybdenum disulfide to the alumina ball mill.
0 parts, 15 parts of ethanol, 15 parts of terpineol,
A coating solution was obtained in the same manner as in Example 1, except that 1 part of polymethyl methacrylate (Mw: 80,000) was added to each sample.

【0035】次いで、長さ50mm、直径100μm 
のタングステン線を上記被覆用液に浸漬し、これを引き
上げ乾燥してタングステン線の周囲に総厚12μm の
二硫化モリブデン被覆を形成した。
[0035] Next, the length is 50 mm and the diameter is 100 μm.
A tungsten wire was immersed in the above-mentioned coating liquid, and then pulled up and dried to form a molybdenum disulfide coating having a total thickness of 12 μm around the tungsten wire.

【0036】以下、実施例1と同様にして被覆タングス
テン線が内蔵されたセラミックスグリーン成形体(50
×50×4mm)を得た。
Hereinafter, in the same manner as in Example 1, a ceramic green molded body (50
x50 x 4 mm) was obtained.

【0037】このセラミックスグリーン成形体を加熱炉
に供給し、5℃/hrの昇温速度で350℃まで昇温し
2時間保持して脱脂した後、さらに5kg/cm2の窒
素気流中に供給し、10℃/hrの昇温速度で680℃
まで昇温して2時間保持することにより焼成してタング
ステン線が内蔵されたセラミックス複合体を得た。
[0037] This ceramic green molded body was fed into a heating furnace, heated to 350°C at a heating rate of 5°C/hr, held for 2 hours to degrease, and then fed into a nitrogen stream of 5kg/cm2. , 680℃ at a heating rate of 10℃/hr
The temperature was raised to 100°C and held for 2 hours to obtain a ceramic composite with a built-in tungsten wire.

【0038】このセラミックス複合体は変形を起こすこ
となく、またタングステン線の端部が露出した面と平行
に厚さ2mmに切断したところタングステン線は脱落す
ることなく保持されていた。
This ceramic composite did not undergo any deformation, and when cut to a thickness of 2 mm parallel to the surface where the end of the tungsten wire was exposed, the tungsten wire was held without falling off.

【0039】[0039]

【発明の効果】本発明のセラミックス複合体の製造方法
によれば、セラミックスグリーン成形体の中に、固体潤
滑材で被覆された金属材料を埋設した状態で焼成するも
のであるから、生産性が良く、また、金属材料の厚みや
大きさに限定されないセラミックス複合体を得ることが
できる。しかも、埋設される金属材料が大寸法である場
合や高密度に埋設される場合でも、焼成時の金属材料と
セラミックス材料との間の歪を固体潤滑材で緩和するこ
とができるので、クラックを生じたり変形することもな
い。
[Effects of the Invention] According to the method for manufacturing a ceramic composite of the present invention, productivity is improved because the metal material coated with a solid lubricant is buried in the ceramic green molded body and fired. Furthermore, it is possible to obtain a ceramic composite which is not limited by the thickness or size of the metal material. Moreover, even if the buried metal material is large in size or buried at high density, the solid lubricant can alleviate the strain between the metal material and ceramic material during firing, preventing cracks. It does not develop or deform.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】セラミックス材料と有機結合剤とを含有す
るセラミックスグリーン成形体の中に、該セラミックス
材料と反応しない固体潤滑材で被覆された金属材料を埋
設し、その後焼成することを特徴とするセラミックス複
合体の製造方法。
Claim 1: A metal material coated with a solid lubricant that does not react with the ceramic material is buried in a ceramic green molded body containing a ceramic material and an organic binder, and then fired. Method for manufacturing ceramic composites.
JP3097442A 1991-04-26 1991-04-26 Production of ceramic composite body Pending JPH04325471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3097442A JPH04325471A (en) 1991-04-26 1991-04-26 Production of ceramic composite body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3097442A JPH04325471A (en) 1991-04-26 1991-04-26 Production of ceramic composite body

Publications (1)

Publication Number Publication Date
JPH04325471A true JPH04325471A (en) 1992-11-13

Family

ID=14192456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3097442A Pending JPH04325471A (en) 1991-04-26 1991-04-26 Production of ceramic composite body

Country Status (1)

Country Link
JP (1) JPH04325471A (en)

Similar Documents

Publication Publication Date Title
EP0142673B1 (en) Ceramic composite body and production thereof
US6270601B1 (en) Method for producing filled vias in electronic components
JPH02243572A (en) Ceramic composite
CN110731543A (en) Preparation method of microporous ceramic heating element for atomizer
JP5465052B2 (en) Ceramic-metal bonded body and manufacturing method thereof
JP2005289744A (en) Method for manufacturing reaction sintered silicon carbide structure
JPH04325471A (en) Production of ceramic composite body
JP2004362822A (en) Conductive paste and ceramic multilayer substrate
JP4244210B2 (en) Aluminum-ceramic composite and method for producing the same
JP6298342B2 (en) Manufacturing method of ceramic heater
JPS59143347A (en) Manufacture of material for semiconductor substrate
JP2000299180A (en) Manufacture of ceramic heater
JPH0441256A (en) Method of manufacturing ceramic-metal composite body having pores
JP4439257B2 (en) Ceramic green sheet and manufacturing method thereof
JP4107990B2 (en) Electrochemical element
JPH04224179A (en) Production of ceramic composite
JPS58121588A (en) Cylindrical ceramic heater
JPH046181A (en) Production of circular opening forming ceramics sintered body
JPH02221162A (en) Production of aluminum nitride-based sintered body
JPH046163A (en) Production of carrier consisting of aluminium nitride
JP2543534B2 (en) Conductor paste composition for aluminum nitride substrate
KR0153709B1 (en) A1n ceramic heater
JP4610185B2 (en) Wiring board and manufacturing method thereof
JP2512570B2 (en) Method for producing anisotropically conductive ceramic composite
JP2784672B2 (en) Manufacturing method of aluminum nitride sintered body