JP4610185B2 - Wiring board and manufacturing method thereof - Google Patents

Wiring board and manufacturing method thereof Download PDF

Info

Publication number
JP4610185B2
JP4610185B2 JP2003427987A JP2003427987A JP4610185B2 JP 4610185 B2 JP4610185 B2 JP 4610185B2 JP 2003427987 A JP2003427987 A JP 2003427987A JP 2003427987 A JP2003427987 A JP 2003427987A JP 4610185 B2 JP4610185 B2 JP 4610185B2
Authority
JP
Japan
Prior art keywords
layer
insulating
wiring board
insulating substrate
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003427987A
Other languages
Japanese (ja)
Other versions
JP2005191102A (en
Inventor
正光 鬼谷
康博 佐々木
秀洋 有川
安彦 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003427987A priority Critical patent/JP4610185B2/en
Publication of JP2005191102A publication Critical patent/JP2005191102A/en
Application granted granted Critical
Publication of JP4610185B2 publication Critical patent/JP4610185B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、各種配線基板や半導体素子収納用パッケージ等に適用される配線基板の製造に好適に用いられ、異種材料等を複合化した配線基板と、その製造方法に関するものである。特に、パワーモジュール基板等の放熱性や大電流を許容することが可能な配線導体あるいはコンデンサ・磁気シールド等の機能を有するセラミック基板を製造するのに用いられる配線基板およびその製造方法に関するものである。   The present invention relates to a wiring board that is suitably used for manufacturing a wiring board that is applied to various wiring boards, semiconductor element storage packages, and the like, and to a manufacturing method thereof. In particular, the present invention relates to a wiring substrate used for manufacturing a ceramic substrate having a function of a wiring conductor or a capacitor / magnetic shield capable of allowing heat dissipation and a large current, such as a power module substrate, and a manufacturing method thereof. .

近年、半導体素子の高集積化に伴い、半導体装置から発生する熱も増加している。半導体装置の誤動作をなくすためには、このような熱を装置外に放出可能な配線基板が必要とされている。また、電気的な特性としては、演算速度の高速化により、信号の遅延が問題となり、配線導体損失の小さい、つまり低抵抗の配線導体を用いることが要求されてきた。   In recent years, heat generated from a semiconductor device has been increased with higher integration of semiconductor elements. In order to eliminate the malfunction of the semiconductor device, a wiring substrate capable of releasing such heat to the outside of the device is required. Further, as an electrical characteristic, signal delay becomes a problem due to an increase in calculation speed, and it has been required to use a wiring conductor having a small wiring conductor loss, that is, a low resistance.

このような半導体素子を搭載した配線基板としては、その信頼性の点から、アルミナセラミックスを絶縁基体とし、その表面あるいは内部にタングステンやモリブデンなどの高融点金属からなる配線層を被着形成したセラミック配線基板が多用されている。ところが、従来から多用されている高融点金属からなる配線層では、抵抗を高々13μΩ・cm程度までしか低くできない。従って、前述のような多層配線基板における配線導体の抵抗値を低減して大電流を流せるようにするために、多層配線基板を構成する絶縁基体に銅(Cu)の厚膜や無電解メッキにより配線導体を形成することが行われていた。   As a wiring board on which such a semiconductor element is mounted, a ceramic in which alumina ceramics is used as an insulating base and a wiring layer made of a refractory metal such as tungsten or molybdenum is deposited on the surface or inside thereof from the viewpoint of reliability. Wiring boards are frequently used. However, in a wiring layer made of a refractory metal that has been widely used in the past, the resistance can only be lowered to about 13 μΩ · cm. Therefore, in order to reduce the resistance value of the wiring conductor in the multilayer wiring board as described above and allow a large current to flow, the insulating base constituting the multilayer wiring board is formed by a thick copper (Cu) film or electroless plating. Forming a wiring conductor has been performed.

しかし、かかる配線導体では、配線の高密度化のために配線パターンの線幅が多層配線基板の面積により制限され、一定以上に幅広く形成することができず、しかも、前記配線導体の形成方法では後の工程に悪影響を及ぼさず短時間に低コストで充分な厚さの配線導体を得ることが困難であり、前記低抵抗化を満足するものではなかった。   However, in such a wiring conductor, the line width of the wiring pattern is limited by the area of the multilayer wiring board in order to increase the density of the wiring, and cannot be formed wider than a certain level. It was difficult to obtain a wiring conductor with a sufficient thickness at a low cost in a short time without adversely affecting the subsequent processes, and the above-mentioned reduction in resistance was not satisfied.

そこで、配線導体の抵抗値を低減して大電流を流せるようにするために、多層配線基板を構成するセラミックグリーシートに貫通穴を形成し、該貫通穴に電気抵抗値の低い銅(Cu)や銀(Ag)等の低融点金属から成る配線用導体ペーストを厚く充填して低抵抗配線導体としたものが提案されている(例えば、特許文献1参照)。
特開平7―162157号公報
Therefore, in order to reduce the resistance value of the wiring conductor and allow a large current to flow, a through hole is formed in the ceramic grease sheet constituting the multilayer wiring board, and copper (Cu) having a low electric resistance value is formed in the through hole. A wiring conductor paste made of a low melting point metal such as silver or silver (Ag) has been proposed as a low resistance wiring conductor (see, for example, Patent Document 1).
JP-A-7-162157

しかしながら、特許文献1では所定のシートに設けられた貫通穴に充填したペーストを乾燥すると、シートとペースト充填部との界面に隙間が生じるという問題に加え、パワー素子作動時の繰り返しの熱履歴により絶層と導電体層界面に割れが生じて、割れから、水分が基板内に浸入し、内部配線が腐食する問題があった。
However, in Patent Document 1, when the paste filled in a through hole provided in a predetermined sheet is dried, a gap is generated at the interface between the sheet and the paste filling portion, and due to repeated thermal history when the power element is operated. cracking the insulation layer and the conductor layer interface occurs, the cracks, moisture penetrates into the substrate, the internal wiring is a problem of corrosion.

従って、本発明は、異種材料間に発生す隙間を抑制し、且つ割れが生じた場合でも、雰囲気を遮断し、内部配線等の腐食の進行を回避できる配線基板並びにその製造方法を提供することを目的とする。   Therefore, the present invention provides a wiring board that can suppress a gap generated between different kinds of materials and that can block the atmosphere and avoid the progress of corrosion of internal wiring and the like, and a method of manufacturing the same, even when cracking occurs. With the goal.

本発明の配線基板は、ラミックスからなる絶縁体層を備えてなる絶縁基板を複数積層してなり、一方の最外の絶縁基板が、前記絶縁体層内に該絶縁体層と略同一厚みの導電体層を備えなる配線基板であって、前記一方の最外の絶縁基板における前記配線基板の表面側の前記絶縁体層と前記導電体層との表面境界部、樹脂を含有する被覆樹脂層で被覆されていることを特徴とする。
Wiring board of the invention will be an insulating substrate made includes an insulating layer made of ceramics and stacked, one outermost insulating substrate, substantially the same as the insulator layer on the insulator layer a wiring board comprising comprising a conductor layer having a thickness, the front surface boundary between the insulator layer and the conductor layer on the surface side of the wiring board in the outermost insulating substrate of the one of which, the resin It is characterized by being covered with the containing coating resin layer.

また、本発明の配線基板は、セラミックスからなる絶縁体層を備えてなる絶縁基板を複数積層してなり、一方の最外の絶縁基板が、前記絶縁体層内に該絶縁体層と略同一厚みの導電体層を備えなる配線基板であって、前記一方の最外の絶縁基板における前記配線基板の表面側の前記絶縁体層と前記導電体層との表面境界部、金属を含有する被覆金属層と、樹脂を含有する被覆樹脂層とで順次被覆されていることを特徴とする。
The wiring board of the present invention is made by an insulating substrate made includes an insulating layer made of ceramics and stacked, one outermost insulating substrate, said insulator layer on the insulator layer a wiring board comprising comprises a conductive layer having substantially the same thickness, the front surface boundary between the insulator layer and the conductor layer on the surface side of the wiring board in the outermost insulating substrate of the one of which, It is characterized by being sequentially coated with a coated metal layer containing a metal and a coated resin layer containing a resin.

また、本発明の配線基板は、セラミックスからなる絶縁体層を備えてなる絶縁基板を複数積層してなり、一方の最外の絶縁基板が、前記絶縁体層内に該絶縁体層と略同一厚みの導電体層を備えなる配線基板であって、前記一方の最外の絶縁基板における前記配線基板の表面側の前記絶縁体層と前記導電体層との表面境界部、セラミックを含有する被覆セラミック層と、樹脂を含有する被覆樹脂層とで順次被覆されていることを特徴とする。
The wiring board of the present invention is made by an insulating substrate made includes an insulating layer made of ceramics and stacked, one outermost insulating substrate, said insulator layer on the insulator layer a wiring board comprising comprises a conductive layer having substantially the same thickness, the front surface boundary between the insulator layer and the conductor layer on the surface side of the wiring board in the outermost insulating substrate of the one of which, It is characterized by being sequentially coated with a coated ceramic layer containing a ceramic and a coated resin layer containing a resin.

また、本発明の配線基板は、セラミックスからなる絶縁体層を備えてなる絶縁基板を複数積層してなり、一方の最外の絶縁基板が、前記絶縁体層内に該絶縁体層と略同一厚みの導電体層を備えなる配線基板であって、前記一方の最外の絶縁基板における前記配線基板の表面側の前記絶縁体層と前記導電体層との表面境界部、金属を含有する被覆金属層と、セラミックを含有する被覆セラミック層と、樹脂を含有する被覆樹脂層とで順次被覆されていることを特徴とする。
The wiring board of the present invention is made by an insulating substrate made includes an insulating layer made of ceramics and stacked, one outermost insulating substrate, said insulator layer on the insulator layer a wiring board comprising comprises a conductive layer having substantially the same thickness, the front surface boundary between the insulator layer and the conductor layer on the surface side of the wiring board in the outermost insulating substrate of the one of which, It is characterized by being sequentially coated with a coated metal layer containing a metal, a coated ceramic layer containing a ceramic, and a coated resin layer containing a resin.

また、本発明の配線基板は、セラミックスからなる絶縁体層を備えてなる絶縁基板を複数積層してなり、一方の最外の絶縁基板が、前記絶縁体層内に該絶縁体層と略同一厚みの導電体層を備えなる配線基板であって、前記一方の最外の絶縁基板における前記配線基板の表面側の前記絶縁体層と前記導電体層との表面境界部、セラミックを含有する被覆セラミック層と、金属を含有する被覆金属層と、樹脂を含有する被覆樹脂層とで順次被覆されていることを特徴とする。
The wiring board of the present invention is made by an insulating substrate made includes an insulating layer made of ceramics and stacked, one outermost insulating substrate, said insulator layer on the insulator layer a wiring board comprising comprises a conductive layer having substantially the same thickness, the front surface boundary between the insulator layer and the conductor layer on the surface side of the wiring board in the outermost insulating substrate of the one of which, It is characterized by being sequentially coated with a coated ceramic layer containing ceramic, a coated metal layer containing metal, and a coated resin layer containing resin.

また、本発明の配線基板は、前記被覆樹脂層の厚みが10〜100μmであることが望ましい。   Moreover, as for the wiring board of this invention, it is desirable that the thickness of the said coating resin layer is 10-100 micrometers.

また、本発明の配線基板は、前記被覆樹脂層の25℃におけるヤング率が3〜10GPaであることが望ましい。   Moreover, as for the wiring board of this invention, it is desirable that the Young's modulus in 25 degreeC of the said coating resin layer is 3-10GPa.

本発明の配線基板の製造方法は、セラミックスからなる絶縁体層を備えてなる絶縁基板を複数積層してなり、一方の最外の絶縁基板が、前記絶縁体層内に該絶縁体層と略同一厚みの導電体層を備えてなる配線基板の製造方法であって、前記一方の最外の絶縁基板が、絶縁体層成形体と略同一厚みの導電体層成形体を、絶縁体層成形体を貫通するように形成して複合成形体を作製する複合成形体作製工程と、前記複合成形体を焼成して、前記絶縁体層と略同一厚みの前記導電体層が、前記絶縁体層内に形成された前記絶縁基板を作製する絶縁基板作製工程と、前記配線基板の表面側となる前記絶縁体層と前記導電体層との表面境界部を、樹脂を含有する被覆樹脂層で被覆する樹脂被覆工程と、を具備することにより作製されることを特徴とする。
The method for manufacturing a wiring board according to the present invention includes a plurality of insulating substrates each including an insulating layer made of ceramics, and one outermost insulating substrate is substantially the same as the insulating layer in the insulating layer. A method of manufacturing a wiring board comprising a conductor layer having the same thickness, wherein the one outermost insulating substrate forms a conductor layer molded body having substantially the same thickness as the insulator layer molded body. a composite molding manufacturing process formed by preparing a composite shaped body so as to penetrate the body, and sintering the composite shaped body, said conductive layer of said insulator layer substantially the same thickness, the insulator layer an insulating substrate fabricating step of fabricating the insulating substrate formed within the front surface boundary between the insulator layer and the conductor layer serving as the surface side of the wiring substrate, a coating resin layer containing a resin characterized in that it is produced by anda resin coating step of coating

また、本発明の配線基板の製造方法は、前記複合成形体作製工程と、前記絶縁基板作製工程との間に、前記複合成形体と他の記絶縁体層成形体とを積層する積層工程を具備することが望ましい。
A method of manufacturing a wiring board of the present invention, the composite molded product producing process, between the insulating substrate producing step, a laminating step of laminating said composite molding and other serial insulator layer molded article It is desirable to have it.

本発明の配線基板の製造方法は、セラミックスからなる絶縁体層を備えてなる絶縁基板を複数積層してなり、一方の最外の絶縁基板が、前記絶縁体層内に該絶縁体層と略同一厚みの導電体層を備えてなる配線基板の製造方法であって、前記一方の最外の絶縁基板が、絶縁体層成形体と略同一厚みの導電体層成形体を、前記絶縁体層成形体を貫通するように形成し、前記配線基板の表面側となる前記絶縁体層成形体と前記導電体層成形体との表面境界部を被覆金属層成形体で被覆して複合成形体を作製する複合成形体作製工程と、前記複合成形体を焼成して、前記絶縁体層と略同一厚みの前記導電体層が、前記絶縁体層内に
形成され、前記配線基板の表面側となる前記導電体層と前記絶縁体層の表面境界部が被覆金属層で覆われた絶縁基板を作製する絶縁基板作製工程と、前記被覆金属層を樹脂を含有する被覆樹脂層で被覆する樹脂被覆工程と、を具備することにより作製されることを特徴とする。
The method for manufacturing a wiring board according to the present invention includes a plurality of insulating substrates each including an insulating layer made of ceramics, and one outermost insulating substrate is substantially the same as the insulating layer in the insulating layer. a wiring substrate manufacturing method of comprising comprises a conductive layer of the same thickness, the one outermost insulating substrate is an insulator layer formed body and the conductor layer molded article of substantially the same thickness, the insulator layer the compact was formed so as to penetrate, the surface side of the wiring board wherein insulator layers molded body and the composite compact the front surface boundary is coated with the coating metal layer formed body and the conductor layer formed body a composite molded body preparing step of preparing a, and sintering the composite compact, the insulator layer and the conductive layer having substantially the same thickness, are <br/> formed on said insulator layer, said wiring board an insulating base surface boundary is coated with the coating metal layer on the surface side and the conductor layer serving as said insulator layer An insulating substrate fabricating step of fabricating the, the coating metal layer, characterized in that it is produced by comprising: a resin coating step of coating a coating resin layer containing a resin.

また、本発明の配線基板の製造方法は、前記複合成形体作製工程と、前記絶縁基板作製工程との間に、前記複合成形体と他の絶縁体層成形体とを積層する積層工程を具備することが望ましい。
A method of manufacturing a wiring board of the present invention, comprises the composite molded body manufacturing process, between the insulating substrate producing step, a laminating step of laminating said composite molding and another insulating layer moldings It is desirable to do.

本発明の配線基板の製造方法は、セラミックスからなる絶縁体層を備えてなる絶縁基板を複数積層してなり、一方の最外の絶縁基板が、前記絶縁体層内に該絶縁体層と略同一厚みの導電体層を備えてなる配線基板の製造方法であって、前記一方の最外の絶縁基板が、絶縁体層成形体と略同一厚みの導電体層成形体を、前記絶縁体層成形体を貫通するように形成し、前記配線基板の表面側となる前記絶縁体層成形体と前記導電体層成形体との表面境界部を被覆セラミック層成形体で被覆して複合成形体を作製する複合成形体作製工程と、前記複合成形体を焼成して、前記絶縁体層と略同一厚みの前記導電体層が、前記絶縁体層内に形成され、前記配線基板の表面側となる前記導電体層と前記絶縁体層の表面境界部被覆セラミック層で覆われた絶縁基板を作製する絶縁基板作製工程と、前記被覆セラミック層を樹脂を含有する被覆樹脂層で被覆する樹脂被覆工程と、を具備することにより作製されることを特徴とする。
The method for manufacturing a wiring board according to the present invention includes a plurality of insulating substrates each including an insulating layer made of ceramics, and one outermost insulating substrate is substantially the same as the insulating layer in the insulating layer. a wiring substrate manufacturing method of comprising comprises a conductive layer of the same thickness, the one outermost insulating substrate is an insulator layer formed body and the conductor layer molded article of substantially the same thickness, the insulator layer the compact was formed so as to penetrate, the surface side of the wiring board wherein insulator layers molded body and the composite compact the front surface boundary is coated with coated ceramic layer molded body with the conductor layers formed body a composite molded body preparing step of preparing a, and sintering the composite shaped body, said conductive layer of said insulator layer substantially the same thickness is formed on the insulating layer, and a surface side of the wiring substrate the surface boundary of the conductive layer and the insulating layer is covered with a covering ceramic layer comprising An insulating substrate fabricating step of fabricating the insulating substrate, the coated ceramic layer, characterized in that it is produced by comprising: a resin coating step of coating a coating resin layer containing a resin.

また、本発明の配線基板の製造方法は、前記複合成形体作製工程と、前記絶縁基板作製工程との間に、前記複合成形体と他の絶縁体層成形体とを積層する積層工程を具備することが望ましい。
A method of manufacturing a wiring board of the present invention, comprises the composite molded body manufacturing process, between the insulating substrate producing step, a laminating step of laminating said composite molding and another insulating layer moldings It is desirable to do.

本発明の配線基板の製造方法は、セラミックスからなる絶縁体層を備えてなる絶縁基板
を複数積層してなり、一方の最外の絶縁基板が、前記絶縁体層内に該絶縁体層と略同一厚みの導電体層を備えてなる配線基板の製造方法であって、前記一方の最外の絶縁基板が、絶縁体層成形体と略同一厚みの導電体層成形体を、前記絶縁体層成形体を貫通するように形成し、前記配線基板の表面側となる前記絶縁体層成形体と前記導電体層成形体との表面境界部を、被覆金属層成形体と被覆セラミック層成形体とで順次、被覆して複合成形体を作製する複合成形体作製工程と、前記複合成形体を焼成して、前記絶縁体層と略同一厚みの前記導電体層が、前記絶縁体層内に形成され、前記配線基板の表面側となる前記導電体層と前記絶縁体層の表面境界部被覆金属層と被覆セラミック層とで順次、覆われた絶縁基板を作製する絶縁基板作製工程と、前記被覆セラミック層を、樹脂を含有する被覆樹脂層で被覆する樹脂被覆工程と、を具備することにより作製されることを特徴とする。
The method for manufacturing a wiring board according to the present invention comprises an insulating substrate comprising an insulating layer made of ceramics.
A method of manufacturing a wiring board, wherein one outermost insulating substrate includes a conductor layer having substantially the same thickness as the insulator layer in the insulator layer. outermost insulating substrate, an insulating layer formed body and the conductor layer formed body having substantially the same thickness, is formed so as to penetrate the insulator layer molded body, the insulator layer composed of a surface side of the wiring substrate the front surface boundary portion between the molded body and the conductive layer molded body successively in the coating metal layer formed body and the covering ceramic layer molded body, the composite molding manufacturing step of manufacturing a composite molded body covering, the composite firing the shaped body, wherein the conductor layer of the insulating layer having substantially the same thickness, the formed in the insulator layer, the conductor layer serving as the surface side of the wiring board and said insulator layer surface boundary portion and the coating metal layer sequentially in the coated ceramic layer, an insulating substrate to produce a covered insulated substrate work A step, the coated ceramic layer, characterized in that it is produced by comprising: a resin coating step of coating a coating resin layer containing a resin.

また、本発明の配線基板の製造方法は、前記複合成形体作製工程と、前記絶縁基板作製工程との間に、前記複合成形体と他の絶縁体層成形体とを積層する積層工程を具備することが望ましい。
A method of manufacturing a wiring board of the present invention, comprises the composite molded body manufacturing process, between the insulating substrate producing step, a laminating step of laminating said composite molding and another insulating layer moldings It is desirable to do.

本発明の配線基板の製造方法は、セラミックスからなる絶縁体層を備えてなる絶縁基板を複数積層してなり、一方の最外の絶縁基板が、前記絶縁体層内に該絶縁体層と略同一厚みの導電体層を備えてなる配線基板の製造方法であって、前記一方の最外の絶縁基板が、絶縁体層成形体と略同一厚みの導電体層成形体を、前記絶縁体層成形体を貫通するように形成し、前記配線基板の表面側となる前記絶縁体層成形体と前記導電体層成形体との表面境界部を、被覆セラミック層成形体と被覆金属層成形体とで順次、被覆して複合成形体を作製する複合成形体作製工程と、前記複合成形体を焼成して、前記絶縁体層と略同一厚みの前記導電体層が、前記絶縁体層内に形成され、前記配線基板の表面側となる前記導電体層と前記絶縁体層の表面境界部被覆セラミック層と被覆金属層とで順次、覆われた絶縁基板を作製する絶縁基板作製工程と、前記被覆金属層を、樹脂を含有する被覆樹脂層で被覆する樹脂被覆工程と、を具備することにより作製されることを特徴とする。
The method for manufacturing a wiring board according to the present invention includes a plurality of insulating substrates each including an insulating layer made of ceramics, and one outermost insulating substrate is substantially the same as the insulating layer in the insulating layer. a wiring substrate manufacturing method of comprising comprising a conductor layer having the same thickness, the one outermost insulating substrate is an insulator layer formed body and the conductor layer molded article of substantially the same thickness, the insulator layer formed so as to pass through the molded body, the front surface boundary of the the surface of the wiring substrate and the insulating layer molded body and the conductive layer molded article coated ceramic layer molded body and the coating metal layer formed body sequentially between the composite compact preparation step of producing a composite molded article coated by baking the composite compact, the conductive layer of the insulator layer substantially the same thickness, the insulating layer is formed, the surface boundary between the insulator layer and the conductor layer serving as the surface side of the wiring substrate Includes but sequentially in the coated ceramic layer and the coating metal layer, an insulating substrate fabricating step of fabricating a covered insulated substrate, said coating metal layer, a resin coating step of coating a coating resin layer containing a resin, a It is produced by this.

また、本発明の配線基板の製造方法は、複合成形体作製工程と、絶縁基板作製工程との間に、前記複合成形体と他の絶縁体層成形体とを積層する積層工程を具備することが望ましい。
In addition, the method for manufacturing a wiring board of the present invention includes a laminating step of laminating the composite molded body and another insulator layer molded body between the pre- composite molded body manufacturing process and the pre- insulating substrate manufacturing process. It is desirable to do.

本発明の配線基板は、ラミックスからなる絶縁体層を備えてなる絶縁基板を複数積層してなり、一方の最外の絶縁基板が、前記絶縁体層内に該絶縁体層と略同一厚みの導電体層を備えなる配線基板であって、前記一方の最外の絶縁基板における前記配線基板の表面側の前記絶縁体層と前記導電体層との表面境界部、樹脂を含有する被覆樹脂層で被覆されていることを特徴とする。
Wiring board of the invention will be an insulating substrate made includes an insulating layer made of ceramics and stacked, one outermost insulating substrate, substantially the same as the insulator layer on the insulator layer a wiring board comprising comprising a conductor layer having a thickness, the front surface boundary between the insulator layer and the conductor layer on the surface side of the wiring board in the outermost insulating substrate of the one of which, the resin It is characterized by being covered with the containing coating resin layer.

このような、一方の最外の絶縁基板が、前記絶縁体層内に該絶縁体層と略同一厚みの導電体層を備えなる配線基板において、配線基板の表面側の絶縁体層と導電体層との表面境界部を被覆することが重要である。これにより、パワー素子作動時の熱履歴により絶縁体層と導電体層の界面に割れが生じた場合であっても、応力が集中する基板表面にヤング率の低い樹脂層を設けることでクラックの進展を回避し、雰囲気を遮断できることから導電体層の腐食の進行による導通不良等を回避することができ、配線基板の信頼性が向上する。
Such, one outermost insulating substrate, wherein the wiring substrate made comprising a conductor layer of the insulating layer having substantially the same thickness in the insulator layer, the surface side of the wiring board insulation layer and the conductive It is important to cover the surface boundary with the body layer. As a result, even if a crack occurs at the interface between the insulator layer and the conductor layer due to the thermal history during operation of the power element, the crack can be prevented by providing a resin layer with a low Young's modulus on the substrate surface where stress is concentrated. Since the progress can be avoided and the atmosphere can be shut off, a conduction failure due to the progress of the corrosion of the conductor layer can be avoided, and the reliability of the wiring board is improved.

前記一方の最外の絶縁基板における前記配線基板の表面側の前記絶縁体層と前記導電体層との表面境界部、金属を含有する被覆金属層と、樹脂を含有する被覆樹脂層とで順次被覆されていることを特徴とする。
Front surface boundary between the insulator layer and the conductor layer on the surface side of the wiring board in the outermost insulating substrate of the one is, and the coating metal layer containing a metal, and a coating resin layer containing a resin It is characterized by being sequentially coated with.

このように、絶縁体層と導電体層との界面部に金属を含有する被覆金属層を形成することで、変形に対してヤング率の低い金属層が存在すると同時に、応力集中部位を覆うことで基板表面における異種材料が接触する部位の応力集中を回避できるため、基板の割れを回避できる。さらに、被覆金属層を覆うように被覆樹脂層を設けることが重要である。これにより、基板表面に搭載するパワー素子等の電子部品接合時における半田流れを回避するためである。また、応力が集中する基板表面にヤング率の低い樹脂層を設けることでクラックの進展を回避し、雰囲気を遮断できることから導電体層の腐食の進行による導通不良等を回避することができ、配線基板の信頼性が向上する。   In this way, by forming a coated metal layer containing metal at the interface between the insulator layer and the conductor layer, a metal layer having a low Young's modulus with respect to deformation exists, and at the same time, a stress concentration site is covered. Thus, stress concentration at the part where different materials contact on the substrate surface can be avoided, so that cracking of the substrate can be avoided. Furthermore, it is important to provide a coating resin layer so as to cover the coating metal layer. This is to avoid solder flow when joining electronic components such as power elements mounted on the substrate surface. In addition, by providing a resin layer with a low Young's modulus on the substrate surface where stress is concentrated, the progress of cracks can be avoided and the atmosphere can be shut off. The reliability of the substrate is improved.

前記一方の最外の絶縁基板における前記配線基板の表面側の前記絶縁体層と前記導電体層との表面境界部、セラミックを含有する被覆セラミック層と、樹脂を含有する被覆樹脂層とで順次被覆されていることを特徴とする。
Front surface boundary between the insulator layer and the conductor layer on the surface side of the wiring board in the outermost insulating substrate of the one is, and the coated ceramic layer containing ceramic, and the coating resin layer containing a resin It is characterized by being sequentially coated with.

これにより、応力集中する絶縁体層と導電体層との界面の強度を高めることができ、より高い信頼性を満足できる。   Thereby, the intensity | strength of the interface of the insulator layer and conductor layer which stress concentrates can be raised, and higher reliability can be satisfied.

前記一方の最外の絶縁基板における前記配線基板の表面側の前記絶縁体層と前記導電体層との表面境界部、金属を含有する被覆金属層と、セラミックを含有する被覆セラミック層と、樹脂を含有する被覆樹脂層とで順次被覆されていることを特徴とする。これにより、絶縁体層と導電体層に発生する応力を被覆金属層で緩和すると同時に被覆セラミック層で界面部分の強度を高めることができるため、割れを回避できる。
Front surface boundary between the insulator layer and the conductor layer on the surface side of the wiring board in the outermost insulating substrate of the one is, and the coating metal layer containing a metal, a coated ceramic layer containing ceramics , characterized in that it is successively coated with a coating resin layer containing a resin. Thereby, since the stress which generate | occur | produces in an insulator layer and a conductor layer is relieve | moderated with a covering metal layer, the intensity | strength of an interface part can be raised with a covering ceramic layer, A crack can be avoided.

前記一方の最外の絶縁基板における前記配線基板の表面側の前記絶縁体層と前記導電体層との表面境界部、セラミックを含有する被覆セラミック層と、金属を含有する被覆金属層と、樹脂を含有する被覆樹脂層とで順次被覆されていることを特徴とする。これにより、ヤング率が順次変化する構造が形成できるため、配線基板表面に発生する応力を効果的に緩和することができる。
Front surface boundary between the insulator layer and the conductor layer on the surface side of the wiring board in the outermost insulating substrate of the one is, and the coated ceramic layer containing ceramic, a coating metal layer containing a metal , characterized in that it is successively coated with a coating resin layer containing a resin. As a result, a structure in which the Young's modulus sequentially changes can be formed, so that the stress generated on the wiring board surface can be effectively relieved.

また、前記被覆樹脂層の厚みが10〜100μmであることが望ましい。   Moreover, it is desirable that the thickness of the coating resin layer is 10 to 100 μm.

このように、被覆樹脂層の厚みを10μm以上とすることで樹脂層の割れを回避でき、かつ、部品実装時の半田流れ不良を抑制できる。また、被覆樹脂層厚みを100μm以下とすることで被覆樹脂層の凹凸による半田ペーストの印刷不良を回避できる為、部品搭載時に安定した実装性が得られる。
Thus, by setting the thickness of the coating resin layer to 10 μm or more, it is possible to avoid cracking of the resin layer and to suppress solder flow failure during component mounting. Further, when the thickness of the coating resin layer is 100 μm or less, printing failure of the solder paste due to the unevenness of the coating resin layer can be avoided, so that stable mountability can be obtained at the time of component mounting.

また、被覆樹脂の25℃におけるヤング率が3〜10GPaであることが重要である。ヤング率を3GPa以上にすることで実装工程中に発生するスクラッチや樹脂層の剥がれを低減でき、絶縁体層と導電体層界面の被覆部分が雰囲気と接触による腐食等による信頼性低下を回避できる。一方、10GPa以下にすることで、被覆樹脂層に発生する応力を緩和し、被覆樹脂自体の割れを回避することが出来る。   In addition, it is important that the Young's modulus at 25 ° C. of the coating resin is 3 to 10 GPa. By setting the Young's modulus to 3 GPa or more, it is possible to reduce scratches and resin layer peeling that occur during the mounting process, and to avoid deterioration in reliability due to corrosion due to the atmosphere and contact between the insulator layer and the conductor layer interface. . On the other hand, by making it 10 GPa or less, the stress generated in the coating resin layer can be relaxed, and the cracking of the coating resin itself can be avoided.

前記一方の最外の絶縁基板が、絶縁体層成形体と略同一厚みの導電体層成形体を、絶縁体層成形体を貫通するように形成して複合成形体を作製する複合成形体作製工程と、前記複合成形体を焼成して、前記絶縁体層と略同一厚みの前記導電体層が、前記絶縁体層内に形成された前記絶縁基板を作製する絶縁基板作製工程と、前記配線基板の表面側となる前記絶縁体層と前記導電体層との表面境界部を、樹脂を含有する被覆樹脂層で被覆する樹脂被覆工程と、を具備することにより作製することで境界部に割れや隙間が発生した場合であっても水分や異物の浸入による導体の腐食を回避し、信頼性を向上することができる。
また、複合成形体作製工程と、絶縁基板作製工程との間に他の絶縁体層を積層する積層工程を具備することが望ましく、これにより、さらに、絶縁基板の強度を高めることができ、基板の信頼性が向上する。また、他の絶縁体層を積層することで、立体的な回路パターンが形成でき基板の小型化を図ることも出来る。
Preparation of composite molded body in which said one outermost insulating substrate forms a conductor molded body having substantially the same thickness as that of the insulating layer molded body so as to penetrate through the insulating layer molded body. a step, by firing the composite compact, the insulator layer and the conductive layer having substantially the same thickness, and the insulating substrate fabricating step of fabricating the insulating substrate formed on said insulator layer, said wiring the front surface boundary of the insulating layer serving as a surface side of the substrate and the conductor layer, and a resin coating step of coating a coating resin layer containing a resin, in Rukoto be produced by having a boundary Even when cracks or gaps occur in the portion, corrosion of the conductor due to intrusion of moisture or foreign matter can be avoided, and reliability can be improved.
In addition, it is desirable to include a laminating step of laminating another insulator layer between the composite molded body producing step and the insulating substrate producing step, whereby the strength of the insulating substrate can be further increased. Reliability is improved. Further, by laminating other insulator layers, a three-dimensional circuit pattern can be formed and the substrate can be downsized.

また、複合成形体を形成した後に、絶縁体層成形体と導電体層成形体との表面境界部を金属層成形体やセラミック層成形体で被覆して、焼成し、さらに被覆樹脂層で被覆することにより、クラックの発生に加え、腐食等による信頼性低下を回避できる。
Also, after forming the composite molded body, the surface boundary between the insulator layer molded body and the conductor layer molded body is coated with a metal layer molded body or a ceramic layer molded body, fired, and further coated with a coating resin layer By doing so, it is possible to avoid a decrease in reliability due to corrosion in addition to the generation of cracks.

また、この形態においても、積層体を形成してもよいことは言うまでもない。   Needless to say, a laminate may also be formed in this embodiment.

本発明の配線基板は、例えば、図1(a)、(b)、(c)、図2(d)、(e)に示すように絶縁体層1a、1bと略同一厚みの導電体層3a、3b、並びにその他の絶縁体層6a、6b、6cが積層されて一体化された配線基板8であって、配線基板8の内部及び表面に配線回路が形成され、配線基板8の最外層に絶縁体層1aと導電体層3aとが形成された形態を有するものである。この導電体層3aは、絶縁体層1aと略同一厚みを有しており、絶縁体層1aを貫通する方向並びに導電体層1aの面方向に電流を流す機能を有している。   The wiring board according to the present invention includes, for example, a conductor layer having substantially the same thickness as the insulator layers 1a and 1b as shown in FIGS. 1 (a), (b), (c), FIGS. 2 (d) and (e). 3a, 3b, and other insulating layers 6a, 6b, 6c are laminated and integrated, and a wiring circuit is formed inside and on the surface of the wiring board 8, and the outermost layer of the wiring board 8 The insulator layer 1a and the conductor layer 3a are formed. The conductor layer 3a has substantially the same thickness as the insulator layer 1a, and has a function of flowing a current in a direction passing through the insulator layer 1a and in a surface direction of the conductor layer 1a.

このような形態の配線基板では、大電流回路が重列に配置される為にインダクタンスの低減が可能となり、信号の応答性が良好になる。   In the wiring board having such a configuration, since the large current circuit is arranged in a double row, the inductance can be reduced, and the response of the signal is improved.

そして、図1(a)に示すように、配線基板8の最外層に形成された絶縁体層1aと導電体層3aの界面のうち表面側の表面境界部が被覆樹脂層7で被覆されていることが重要である。このように、被覆樹脂層7で表面境界部を被覆することにより、絶縁体層1aと導電体層3aの接触界面に隙間が生じた場合でも、界面部の最表面にヤング率の低い被覆樹脂層7が存在することで隙間をカバーでき、外部からの水分、異物の浸入を遮断することができ、導体の腐食や、それに伴う導体抵抗の劣化を回避できる。   Then, as shown in FIG. 1A, the surface boundary portion on the surface side of the interface between the insulator layer 1a and the conductor layer 3a formed on the outermost layer of the wiring substrate 8 is covered with the coating resin layer 7. It is important that Thus, even if a gap occurs at the contact interface between the insulator layer 1a and the conductor layer 3a by covering the surface boundary portion with the coating resin layer 7, the coating resin having a low Young's modulus on the outermost surface of the interface portion The presence of the layer 7 can cover the gap, block the entry of moisture and foreign matter from the outside, and avoid the corrosion of the conductor and the accompanying deterioration of the conductor resistance.

また、図1(b)の場合には配線基板表面の絶縁体層1aと導電体層3aの界面が被覆金属層4で被覆され、さらに、被覆金属層4を被覆するように被覆樹脂層7で被覆されている。これにより、パワー素子作動時に発生する熱に伴い、絶縁体層1aと導電体層3aの界面に生じる熱膨張差に起因する応力を緩和することができ、界面部の割れをより効果的に回避できる。   In the case of FIG. 1B, the interface between the insulator layer 1 a and the conductor layer 3 a on the surface of the wiring board is covered with the covering metal layer 4, and the covering resin layer 7 is further covered with the covering metal layer 4. It is covered with. As a result, the stress caused by the difference in thermal expansion occurring at the interface between the insulator layer 1a and the conductor layer 3a can be relieved with the heat generated when the power element is operated, and the crack at the interface can be avoided more effectively. it can.

また、図1(c)の場合には配線基板表面の絶縁体層1aと導電体層3aの界面が被覆セラミック層5で被覆され、さらに、被覆セラミック層5を被覆するように被覆樹脂層7で被覆されている。これにより、パワー素子作動時に発生する熱に伴い、絶縁体層1aと導電体層3aの界面に生じる熱膨張差に起因する応力に対し、界面部の強度を高めることができる為、割れを回避できる。   In the case of FIG. 1C, the interface between the insulator layer 1 a and the conductor layer 3 a on the surface of the wiring board is covered with the covering ceramic layer 5, and the covering resin layer 7 is further covered with the covering ceramic layer 5. It is covered with. As a result, the strength of the interface portion can be increased against the stress caused by the difference in thermal expansion occurring at the interface between the insulator layer 1a and the conductor layer 3a due to the heat generated when the power element is operated, so that cracking is avoided. it can.

また、図2(d)の場合には配線基板表面の絶縁体層1aと導電体層3aの界面が被覆金属層4で被覆され、さらに、被覆金属層4を被覆するように被覆セラミック層5で被覆され、さらに、被覆セラミック層5を被覆するように被覆樹脂層7が形成されている。   In the case of FIG. 2 (d), the interface between the insulator layer 1 a and the conductor layer 3 a on the surface of the wiring board is covered with the covering metal layer 4, and the covering ceramic layer 5 is further covered so as to cover the covering metal layer 4. Further, a coating resin layer 7 is formed so as to cover the coating ceramic layer 5.

また、図2(e)の場合には配線基板表面の絶縁体層1aと導電体層3aの界面が被覆セラミック層5で被覆され、さらに、被覆セラミック層5を被覆するように被覆金属層4で被覆され、さらに、被覆金属層4を被覆するように被覆樹脂層7が形成されている。これにより、応力集中する界面に金属並びにセラミックスの2重の被覆層を形成することで、応力緩和と強度確保が可能となり、配線基板8の割れを回避できる。
Further, the interface between the insulating layer 1a and the conductive layer 3a of the wiring board surface is covered with a covering ceramic layer 5 in the case of FIG. 2 (e), the further the covering metal layer so as to cover the coated ceramic layer 5 4 and a coating resin layer 7 is formed so as to cover the coating metal layer 4. Thus, by forming a double coating layer of metal and ceramics at the stress-concentrating interface, stress relaxation and strength can be ensured, and cracking of the wiring board 8 can be avoided.

この被覆樹脂層7の厚みは10〜100μmであることが重要であり、さらには、25〜50μmであることが好ましい。   It is important that the thickness of the coating resin layer 7 is 10 to 100 μm, and more preferably 25 to 50 μm.

このように、被覆樹脂層7の厚みを10μm以上とすることで被覆樹脂層7の割れを回避でき、かつ、部品実装時の半田流れ不良を抑制できる。更に、被覆樹脂層7の厚みを10μm以上とすることでスクリーン印刷等の樹脂層形成における被覆樹脂層7のカスレを回避でき、半田流れ防止層の形状を好適に形成できる。また、被覆樹脂層7の厚みを100μm以下にすることで、配線基板8上への部品実装工程におけるに半田ペースト厚みを均一に形成することが出来る。   As described above, by setting the thickness of the coating resin layer 7 to 10 μm or more, it is possible to avoid cracking of the coating resin layer 7 and to suppress a solder flow failure during component mounting. Furthermore, by setting the thickness of the coating resin layer 7 to 10 μm or more, it is possible to avoid the coating resin layer 7 from being scraped in the resin layer formation such as screen printing, and the solder flow prevention layer can be suitably formed. Further, by setting the thickness of the coating resin layer 7 to 100 μm or less, the solder paste thickness can be uniformly formed in the component mounting process on the wiring board 8.

被覆樹脂層7を厚くしすぎた場合には、被覆樹脂層7の過剰な厚みがもたらす、配線基板8表面の凹凸により、半田ペーストの均一化が図れない為であり、部品搭載時の実装性が著しく劣化する。更に、実装部品の載置不良なども発生しやすくなる。   This is because if the coating resin layer 7 is made too thick, the solder paste cannot be made uniform due to the unevenness of the surface of the wiring board 8 caused by the excessive thickness of the coating resin layer 7. Deteriorates significantly. In addition, mounting components are not easily mounted.

また、被覆樹脂の25℃におけるヤング率が3〜10GPaであることが重要であり、さらには4〜7GPaの樹脂であることが好ましい。   In addition, it is important that the Young's modulus at 25 ° C. of the coating resin is 3 to 10 GPa, and it is more preferable that the resin is 4 to 7 GPa.

これにより、被覆樹脂層7に発生する割れやスクラッチを回避できる。ヤング率が3GPa以上の樹脂を用いることにより、実装工程中に発生するスクラッチや樹脂層の剥がれを低減でき、絶縁体層1aと導電体層3a界面が雰囲気と接触することによる腐食を抑制し、信頼性低下を回避できる。一方、10GPa以下にすることで、被覆樹脂層7に発生する応力に対し、配線基板8の最表面に位置する被覆樹脂層7自体の割れを回避することが出来る。これにより絶縁体層1aと導電体層3aとの界面が雰囲気と接触することによる腐食を抑制し、信頼性低下を回避できる。   Thereby, the crack and scratch which generate | occur | produce in the coating resin layer 7 are avoidable. By using a resin with a Young's modulus of 3 GPa or more, it is possible to reduce scratches and peeling of the resin layer that occur during the mounting process, and to suppress corrosion due to the interface between the insulator layer 1a and the conductor layer 3a coming into contact with the atmosphere, Reduced reliability can be avoided. On the other hand, by setting the pressure to 10 GPa or less, it is possible to avoid the cracking of the coating resin layer 7 itself located on the outermost surface of the wiring substrate 8 against the stress generated in the coating resin layer 7. Thereby, the corrosion by the interface of the insulator layer 1a and the conductor layer 3a coming into contact with the atmosphere can be suppressed, and the decrease in reliability can be avoided.

次に、本発明の配線基板8の製造方法について説明する。   Next, the manufacturing method of the wiring board 8 of this invention is demonstrated.

まず、例えば、図3(a)に示すように、打ち抜き穴37を具備する金型39の上面に絶縁層成形体10を配置する。   First, for example, as shown in FIG. 3A, the insulating layer molded body 10 is disposed on the upper surface of a mold 39 having punched holes 37.

次に、図3(b)に示すように、絶縁層成形体10に、絶縁層成形体10と略同一厚みの導電体層成形体13を重ねる。   Next, as shown in FIG. 3B, the conductor layer molded body 13 having the same thickness as the insulating layer molded body 10 is stacked on the insulating layer molded body 10.

次に、図3(c)に示すように、押し金型35で、導電体層成形体13を絶縁層成形体10に挿入するようにする。   Next, as shown in FIG. 3 (c), the conductor layer molded body 13 is inserted into the insulating layer molded body 10 with a pressing die 35.

次に、不要な部分の導電体層成形体13と絶縁層成形体10とを除去することで、図3(d)に示すような絶縁層成形体10の一部に導電体層成形体13が形成された複合成形体9を形成することができる。   Next, unnecessary portions of the conductor layer molded body 13 and the insulating layer molded body 10 are removed, so that a portion of the insulating layer molded body 10 as shown in FIG. It is possible to form a composite molded body 9 in which is formed.

このようにして作製した複合成形体9を用いて、本発明の配線基板8を作製する。   The wiring board 8 of the present invention is manufactured using the composite molded body 9 thus manufactured.

図4(a)に示される複合成形体9は、必要に応じて、他の複合成形体9や、他の成形体と積層され、焼成した後、絶縁体層1aと導電体層3aの界面を被覆するように、被覆樹脂層7を形成することで、図1(a)に示すような配線基板8となる。   The composite molded body 9 shown in FIG. 4 (a) is laminated with another composite molded body 9 or another molded body as necessary, and after firing, the interface between the insulator layer 1a and the conductor layer 3a. By forming the coating resin layer 7 so as to cover the wiring board 8, a wiring substrate 8 as shown in FIG.

また、図4(b)に示される複合成形体9は、絶縁層成形体10と導電体層成形体13との露出した界面を被覆するように被覆金属層成形体14を形成したもので、焼成した後、被覆金属層4を被覆するように、被覆樹脂層7を形成することで、図1(b)に示すような配線基板となる。   Moreover, the composite molded body 9 shown in FIG. 4B is obtained by forming a coated metal layer molded body 14 so as to cover the exposed interface between the insulating layer molded body 10 and the conductor layer molded body 13. After firing, a coating resin layer 7 is formed so as to cover the coating metal layer 4, whereby a wiring substrate as shown in FIG. 1B is obtained.

また、図4(c)に示される複合成形体9は、絶縁層成形体10と導電体層成形体13との露出した界面を被覆するように、被覆セラミック層成形体15を形成したもので、焼成した後、被覆セラミック層5を被覆するように、被覆樹脂層7を形成することで、図1(c)に示すような配線基板となる。   Also, the composite molded body 9 shown in FIG. 4C is obtained by forming a coated ceramic layer molded body 15 so as to cover the exposed interface between the insulating layer molded body 10 and the conductor layer molded body 13. After the firing, the coating resin layer 7 is formed so as to cover the coating ceramic layer 5, whereby a wiring substrate as shown in FIG. 1C is obtained.

また、図4(d)に示される複合成形体9は、絶縁層成形体10と導電体層成形体13との露出した界面を被覆するように、被覆金属層成形体14と被覆セラミック層成形体15を順次、形成したもので、焼成した後、絶縁体層1aと導電体層3aの界面を被覆するように形成された被覆金属層4と、被覆セラミック層5を被覆するように被覆樹脂層7を形成することで、図2(d)に示すような配線基板となる。   Also, the composite molded body 9 shown in FIG. 4 (d) forms the coated metal layer molded body 14 and the coated ceramic layer so as to cover the exposed interface between the insulating layer molded body 10 and the conductor layer molded body 13. The body 15 is formed in sequence, and after firing, a coating metal layer 4 formed so as to cover the interface between the insulator layer 1a and the conductor layer 3a, and a coating resin so as to cover the coating ceramic layer 5 By forming the layer 7, a wiring substrate as shown in FIG.

また、図4(e)に示される複合成形体9は、絶縁層成形体10と導電体層成形体13との露出した界面を被覆するように、被覆セラミック層成形体15と被覆金属層成形体14を順次、形成したもので、焼成した後、絶縁体層1aと導電体層3aの界面を被覆するように形成された被覆セラミック層5と、被覆金属層4を被覆するように被覆樹脂層7を形成することで、図2(e)に示すような配線基板となる。   Also, the composite molded body 9 shown in FIG. 4 (e) forms the coated ceramic layer molded body 15 and the coated metal layer molding so as to cover the exposed interface between the insulating layer molded body 10 and the conductor layer molded body 13. The body 14 is formed in sequence, and after firing, a coating ceramic layer 5 formed so as to cover the interface between the insulator layer 1a and the conductor layer 3a, and a coating resin so as to cover the coating metal layer 4 By forming the layer 7, a wiring substrate as shown in FIG.

なお、いずれの場合も上記した焼成工程の前に、他の複合成形体9や他の成形体6と積層することで、多層の配線基板8を作製することができる。   In any case, a multilayer wiring board 8 can be produced by laminating with another composite molded body 9 or another molded body 6 before the firing step described above.

これにより、大電流回路を配線基板8に立体的に配置することができる為、より配線基板8の小型化が図れると共に、金属を主成分とする導電体層3の体積が増加することでパワー素子から発生する熱を効果的に伝達できる為、素子の誤動作を回避できる。   As a result, a large current circuit can be three-dimensionally arranged on the wiring board 8, so that the wiring board 8 can be further miniaturized and the volume of the conductor layer 3 mainly composed of metal is increased. Since heat generated from the element can be effectively transmitted, malfunction of the element can be avoided.

なお、被覆樹脂層7の形成にあたっては、被覆樹脂層7をスクリーン印刷により形成し、熱或いは光により配線基板8の表面に形成した被覆樹脂層7を硬化させることで、所望の形状の被覆樹脂層7を形成することができる。   In forming the coating resin layer 7, the coating resin layer 7 is formed by screen printing, and the coating resin layer 7 formed on the surface of the wiring substrate 8 is cured by heat or light, so that the coating resin having a desired shape is formed. Layer 7 can be formed.

また、導電体層3の形成は上記方法に限られるものではなく、例えば、所定形状の貫通孔を有するセラミックグリーンシートとVIA導体並びに配線層が形成されたセラミックグリーンシートを積層した後、導体ペーストをスクリーン印刷法やディスペンサーを用いて充填し、乾燥させることによっても作製可能である。   In addition, the formation of the conductor layer 3 is not limited to the above method. For example, after laminating a ceramic green sheet having through holes of a predetermined shape and a ceramic green sheet on which a VIA conductor and a wiring layer are formed, a conductor paste Can also be produced by filling and drying using a screen printing method or a dispenser.

なお、被覆金属層4、被覆セラミック層5を形成する為のペーストをスクリーン印刷等で被覆することで、絶縁体層1と導電体層3の界面における微細な隙間を埋めることが出来、界面組織の緻密化をより確実に達成できるのである。例えば、前記方法と同様に作製された複合積層体に対して、複合積層体表面に存在する絶縁体層1aと導電体層3aの界面を覆うように、被覆金属層4や被覆セラミック層5となるペーストをスクリーン印刷法にて作製し、被覆金属層成形体14や被覆セラミック層成形体15を形成する。また、この後に加圧により、配線基板8の平滑性を向上させることも可能である。次に、被覆金属層成形体14や被覆セラミック層成形体15が形成された複合積層体を湿潤の非酸化性雰囲気中で焼結させ、前記と同様の方法にて、被覆金属層4や被覆セラミック層5を覆うように被覆樹脂層7を形成する。   In addition, by covering the paste for forming the coated metal layer 4 and the coated ceramic layer 5 by screen printing or the like, a fine gap at the interface between the insulator layer 1 and the conductor layer 3 can be filled. The densification of the can be achieved more reliably. For example, the coated metal layer 4 and the coated ceramic layer 5 are formed so as to cover the interface between the insulator layer 1a and the conductor layer 3a existing on the surface of the composite laminate with respect to the composite laminate produced in the same manner as the above method. The resulting paste is produced by a screen printing method, and the coated metal layer molded body 14 and the coated ceramic layer molded body 15 are formed. In addition, the smoothness of the wiring board 8 can be improved by pressurization thereafter. Next, the composite laminate on which the coated metal layer molded body 14 and the coated ceramic layer molded body 15 are formed is sintered in a wet non-oxidizing atmosphere, and the coated metal layer 4 and the coated layer are coated in the same manner as described above. A coating resin layer 7 is formed so as to cover the ceramic layer 5.

また、特に、被覆セラミックス層5を設けた場合には、被覆樹脂層7を形成する前の複合焼結体を作製する焼成工程における、焼成冷却時の熱応力に対し、強度の高い被覆セラミックス層5が存在することで複合焼結部材の割れを抑制できる。前記、被覆金属層成形体14を形成した複合積層体に、更に被覆金属層成形体14を覆うように、スクリーン印刷等により被覆セラミック層成形体15を形成することが好ましい。   In particular, when the coated ceramic layer 5 is provided, the coated ceramic layer has high strength against thermal stress during firing cooling in the firing step for producing a composite sintered body before forming the coated resin layer 7. The presence of 5 can suppress cracking of the composite sintered member. It is preferable to form the coated ceramic layer formed body 15 by screen printing or the like so as to cover the coated metal layer formed body 14 further on the composite laminate formed with the coated metal layer formed body 14.

(絶縁体層作製)
酸化アルミニウム粉末(平均粒径1.8μm)に対して、MnOを5質量%、SiOを3質量%、MgOを0.5質量%の割合で添加混合した後、さらに、成形用有機樹脂としてアクリル系樹脂を10質量%、トルエンを溶媒として添加し、ボールミルで24時間混合してスラリーを調製した。このスラリーを用いてドクターブレード法によって縦300mm×横300mm×厚さ230μmの絶縁層成形体10であるセラミックグリーンシートを作製した。
(Insulator layer fabrication)
After adding and mixing 5% by mass of MnO 2 , 3% by mass of SiO 2 and 0.5% by mass of MgO with respect to the aluminum oxide powder (average particle size 1.8 μm), an organic resin for molding is further added. As a slurry, 10% by mass of an acrylic resin and toluene as a solvent were added and mixed by a ball mill for 24 hours to prepare a slurry. Using this slurry, a ceramic green sheet, which is the insulating layer molded body 10 having a length of 300 mm, a width of 300 mm, and a thickness of 230 μm, was produced by a doctor blade method.

また、この絶縁層成形体10には、平均粒径が3μmの銅粉末50体積%に、平均粒径が2μmのタングステン粉末50体積%、印刷用有機樹脂としてアクリル系バインダを4質量%、可塑剤としてフタル酸ジブチルを10質量%の割合で混合した金属ペーストを調製し、上記シートの表面に、スクリーン印刷法により、所定のパターンに印刷塗布する。また、前記シートにマイクロドリルによって直径が120μmのスルーホールを形成し、スルーホール内に前記金属ペーストを充填することによってVIAを形成した。   In addition, this insulating layer molded body 10 includes 50% by volume of copper powder having an average particle diameter of 3 μm, 50% by volume of tungsten powder having an average particle diameter of 2 μm, 4% by mass of an acrylic binder as an organic resin for printing, plastic A metal paste in which dibutyl phthalate is mixed at a ratio of 10% by mass is prepared as an agent, and is printed on the surface of the sheet in a predetermined pattern by screen printing. Further, a through hole having a diameter of 120 μm was formed in the sheet by a micro drill, and the metal paste was filled in the through hole to form a VIA.

(導電体層作製)
一方、平均粒径が3μmの銅粉末50体積%に、平均粒径が2μmのタングステン粉末50体積%、成形用有機樹脂としてアクリル系樹脂を2質量%、溶剤としてトルエンを添加し、ボールミルで24時間混合してスラリーを調製した。このスラリーを用いてドクターブレード法によって縦300mm×横300mm×厚さ230μmの導電体層成形体13である金属シートを作製した。
(Conductor layer preparation)
On the other hand, 50% by volume of copper powder having an average particle size of 3 μm, 50% by volume of tungsten powder having an average particle size of 2 μm, 2% by mass of an acrylic resin as an organic resin for molding, and toluene as a solvent were added. A slurry was prepared by mixing for a period of time. Using this slurry, a metal sheet as the conductor layer molded body 13 having a length of 300 mm, a width of 300 mm, and a thickness of 230 μm was prepared by a doctor blade method.

(被覆金属層の作成)
被覆金属層としてはMo(平均粒径1.8μm)粉末に対して酸化アルミニウム粉末(平均粒径1.8μm)5質量%、成形用有機樹脂としてアクリル系樹脂とセルロース系樹脂1.8質量%にアセトンを溶媒として添加し、ボールミルで24時間混合してスラリーを調製した後溶剤を揮発させペーストを作製した。
(Creating metal coating)
The coating metal layer is 5% by mass of aluminum oxide powder (average particle size 1.8 μm) with respect to the Mo (average particle size 1.8 μm) powder, and the acrylic resin and cellulose resin 1.8% by mass as the organic resin for molding. Acetone was added to as a solvent and mixed for 24 hours by a ball mill to prepare a slurry, and then the solvent was volatilized to prepare a paste.

(被覆セラミック層の作製)
被覆セラミック層としては、絶縁層成形体10と同一材料を用いることが望ましく、酸化アルミニウム粉末(平均粒径1.8μm)に対して、MnOを5質量%、SiOを3質量%、MgOを0.5質量%の割合で添加混合した後、さらに、成形用有機樹脂としてアクリル系樹脂を3質量%、アセトンを溶媒として添加し、ボールミルで24時間混合してスラリーを調製した後溶剤を揮発させペーストを作製した。
(Preparation of coated ceramic layer)
As the covering ceramic layer, it is desirable to use the same material as the insulating layer molded body 10, and 5% by mass of MnO 2 , 3% by mass of SiO 2 , MgO with respect to the aluminum oxide powder (average particle size 1.8 μm). Was added and mixed at a ratio of 0.5% by mass, and 3% by mass of acrylic resin as an organic resin for molding and acetone as a solvent were added and mixed for 24 hours with a ball mill to prepare a slurry. The paste was made to evaporate.

(配線基板の作製)
次に、絶縁層成形体10に対して、図3に示すようなパンチング装置によって、中央部に縦10mm×横30mmの大きさの貫通穴を形成した。
(Production of wiring board)
Next, a through hole having a size of 10 mm in length and 30 mm in width was formed in the central portion of the insulating layer molded body 10 by a punching apparatus as shown in FIG.

次に、貫通穴を形成した絶縁層成形体10の上に、導電体層成形体13を積層した後、パンチング装置における押し金型35を下げ、押し金型35の下面が絶縁層成形体10の表面と同一平面となるところまで下ろした。   Next, after the conductor layer molded body 13 is laminated on the insulating layer molded body 10 in which the through holes are formed, the pressing die 35 in the punching apparatus is lowered, and the lower surface of the pressing mold 35 is the insulating layer molded body 10. It was lowered to the same plane as the surface.

押し金型35を上げ、絶縁層成形体10を確認した結果、絶縁層成形体10の貫通穴部分に、導電体層成形体13が埋め込まれた構造の複合成形体9が形成されていた。その後、絶縁層成形体10と導電体層成形体13の接合界面部にペーストを印刷にて塗布し、被覆金属層成形体14並びに被覆セラミック層成形体15を有する複合成形体9を作製した。   As a result of raising the pressing die 35 and confirming the insulating layer molded body 10, the composite molded body 9 having a structure in which the conductor layer molded body 13 was embedded in the through hole portion of the insulating layer molded body 10 was formed. Thereafter, a paste was applied by printing to the joint interface portion between the insulating layer molded body 10 and the conductor layer molded body 13 to produce a composite molded body 9 having the coated metal layer molded body 14 and the coated ceramic layer molded body 15.

また、被覆金属層成形体14並びに被覆セラミック層成形体15のない複合成形体9も同時に作製した。   Moreover, the composite molded body 9 without the coated metal layer molded body 14 and the coated ceramic layer molded body 15 was also produced at the same time.

このようにして、図4(a)〜(e)に示すような複合成形体9を作製した。   Thus, a composite molded body 9 as shown in FIGS. 4A to 4E was produced.

次に、上記のようにして作製した複合成形体9a、さらに同様にして作製された貫通穴に導電体層3が埋め込まれた複合成形体9bを積層するとともに、導電体層と複合化されていない通常の配線パターンが形成された他の成形体のシート6a、6b、6cの延べ5層のシートを、密着液を用いて積層し、図1(a)に示すような積層体を作製した。また、積層にあたっては、積層体に対して、60度の温度に加熱しながら、5MPaの圧力を印加し、仮積層を行った後、静水圧プレス機にて60度の温度に加熱しながら、9MPaの圧力を印加し、積層した。   Next, the composite molded body 9a manufactured as described above, and the composite molded body 9b in which the conductor layer 3 is embedded in the through hole manufactured in the same manner are stacked, and combined with the conductor layer. Sheets 6a, 6b, and 6c of other molded articles on which no ordinary wiring pattern was formed were laminated using an adhesion liquid to produce a laminate as shown in FIG. 1 (a). . Moreover, in laminating, while heating to a temperature of 60 degrees with respect to the laminated body, after applying a pressure of 5 MPa and performing temporary lamination, while heating to a temperature of 60 degrees with a hydrostatic press, A pressure of 9 MPa was applied for lamination.

得られた積層体を1350℃で1時間焼成し、配線基板8を作製した。   The obtained laminated body was baked at 1350 ° C. for 1 hour to produce a wiring board 8.

(被覆樹脂層の形成)
配線基板8の導電体層3と絶縁体層1の表面境界部、あるいは被覆金属層4、被覆セラミック層5を覆うように表1に示す厚み、ヤング率の被覆樹脂層7で被覆して、150℃で2時間の熱硬化を行い、被覆樹脂層7を設けた配線基板8を作製した。
(Formation of coating resin layer)
Covering with the coating resin layer 7 having the thickness and Young's modulus shown in Table 1 so as to cover the surface boundary between the conductor layer 3 and the insulator layer 1 of the wiring board 8 or the coating metal layer 4 and the coating ceramic layer 5, Thermal curing was performed at 150 ° C. for 2 hours, and a wiring board 8 provided with the coating resin layer 7 was produced.

また、比較例として、被覆樹脂層7を設けない配線基板も作製した。   Further, as a comparative example, a wiring board without the coating resin layer 7 was also produced.

作製した試料を−40〜150℃の温度サイクル信頼性に投入し、1000サイクル後の配線基板の表面観察と導体抵抗測定を行った。また、配線基板表面のクラックは
信頼性後の配線基板を蛍光探傷液に浸漬させ、洗浄した後に発色の有無により判断した。
The prepared sample was put into a temperature cycle reliability of −40 to 150 ° C., and the surface of the wiring board after 1000 cycles and the conductor resistance were measured. Further, cracks on the surface of the wiring board were judged by the presence or absence of color after the wiring board after reliability was immersed in a fluorescent flaw detection liquid and washed.

更に、配線基板にスクリーン印刷により半田ペーストを印刷し、印刷後のカスレを4倍率の双眼顕微鏡にて確認した。   Furthermore, a solder paste was printed on the wiring board by screen printing, and the blur after printing was confirmed with a binocular microscope with 4 magnifications.

尚、腐食の判定基準はセラミックからなる絶縁体層と略同一厚みの導電体層の抵抗変化率が5%以上試料を腐食発生品と判断した。

Figure 0004610185
The criterion for corrosion was that a sample having a resistance change rate of 5% or more of a conductor layer having substantially the same thickness as the insulator layer made of ceramic was judged as a corrosion-generated product.
Figure 0004610185

本発明の範囲外である被覆樹脂層が形成されていない試料No.1では、界面部のクラックがすべての試料において確認され、また、界面部に金属の腐食が観察された。   Sample No. in which the coating resin layer which is outside the scope of the present invention is not formed. In No. 1, cracks at the interface were confirmed in all samples, and metal corrosion was observed at the interface.

また、本発明の範囲外である被覆樹脂層が形成されていない試料No.17、19では、被覆金属層、あるいは被覆セラミック層により、界面部のクラック並びに腐食が激減しているものの、被覆樹脂層を設けた本発明の試料と比較すると若干信頼性が低下している。   In addition, Sample No. in which the coating resin layer outside the scope of the present invention was not formed. In Nos. 17 and 19, although cracks and corrosion at the interface portion are drastically reduced by the coated metal layer or the coated ceramic layer, the reliability is slightly lowered as compared with the sample of the present invention provided with the coated resin layer.

一方、本発明の試料No.2〜16、18ではいずれも、腐食が全く認められなかった。   On the other hand, sample no. In any of 2-16 and 18, no corrosion was observed.

以下に、本発明の試料について、詳細に説明する。   Below, the sample of this invention is demonstrated in detail.

被覆樹脂層の厚みが10μm以上の試料では、信頼性後の基板表面のクラックの発生が全く、認められなかった。   In the sample having a coating resin layer thickness of 10 μm or more, no occurrence of cracks on the substrate surface after reliability was observed.

被覆樹脂層の厚みが150μmの試料No.8では実装の為に用いるハンダペーストの印刷において所定部位への印刷ができず、または均一な塗布厚みが確保できずに、部品実装不良が発生した。   Sample No. with a coating resin layer thickness of 150 μm. In No. 8, in the printing of the solder paste used for mounting, it was not possible to print on a predetermined part, or a uniform coating thickness could not be ensured, and component mounting failure occurred.

また、樹脂のヤング率が1GPaの場合にはハンダ印刷や実装工程時にスクラッチによる剥がれが発生した。   Further, when the Young's modulus of the resin was 1 GPa, peeling due to scratch occurred during the solder printing or mounting process.

本発明における配線基板の形態を説明するための断面図である。It is sectional drawing for demonstrating the form of the wiring board in this invention. 本発明における配線基板の形態を説明するための断面図である。It is sectional drawing for demonstrating the form of the wiring board in this invention. 本発明における複合成形体の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the composite molded object in this invention. 本発明における複合成形体の形態を説明するための断面図である。It is sectional drawing for demonstrating the form of the composite molded object in this invention.

符号の説明Explanation of symbols

1・・・絶縁体層
3・・・導電体層
4・・・被覆金属層
5・・・被覆セラミック層
6・・・その他の絶縁体層
7・・・被覆樹脂層
8・・・配線基板
DESCRIPTION OF SYMBOLS 1 ... Insulator layer 3 ... Conductor layer 4 ... Cover metal layer 5 ... Cover ceramic layer 6 ... Other insulator layers 7 ... Cover resin layer 8 ... Wiring board

Claims (17)

ラミックスからなる絶縁体層を備えてなる絶縁基板を複数積層してなり、一方の最外の絶縁基板が、前記絶縁体層内に該絶縁体層と略同一厚みの導電体層を備えなる配線基板であって、
前記一方の最外の絶縁基板における前記配線基板の表面側の前記絶縁体層と前記導電体層との表面境界部、樹脂を含有する被覆樹脂層で被覆されていることを特徴とする配線基板。
By stacking a plurality of insulating substrate made includes an insulating layer made of ceramics, one of the outermost of the insulating substrate is provided with a conductive layer of the insulator layer and substantially the same thickness on the insulator layer A wiring board comprising:
Front surface boundary between the insulator layer and the conductor layer on the surface side of the wiring board in the outermost insulating substrate of the one, characterized in that it is coated with a coating resin layer containing a resin Wiring board.
ラミックスからなる絶縁体層を備えてなる絶縁基板を複数積層してなり、一方の最外の絶縁基板が、前記絶縁体層内に該絶縁体層と略同一厚みの導電体層を備えなる配線基板であって、
前記一方の最外の絶縁基板における前記配線基板の表面側の前記絶縁体層と前記導電体層との表面境界部、金属を含有する被覆金属層と、樹脂を含有する被覆樹脂層とで順次被覆されていることを特徴とする配線基板。
By stacking a plurality of insulating substrate made includes an insulating layer made of ceramics, one of the outermost of the insulating substrate is provided with a conductive layer of the insulator layer and substantially the same thickness on the insulator layer A wiring board comprising:
Front surface boundary between the insulator layer and the conductor layer on the surface side of the wiring board in the outermost insulating substrate of the one is, and the coating metal layer containing a metal, and a coating resin layer containing a resin A wiring board characterized by being sequentially coated with .
ラミックスからなる絶縁体層を備えてなる絶縁基板を複数積層してなり、一方の最外の絶縁基板が、前記絶縁体層内に該絶縁体層と略同一厚みの導電体層を備えなる配線基板であって、
前記一方の最外の絶縁基板における前記配線基板の表面側の前記絶縁体層と前記導電体層との表面境界部、セラミックを含有する被覆セラミック層と、樹脂を含有する被覆樹脂層とで順次被覆されていることを特徴とする配線基板。
By stacking a plurality of insulating substrate made includes an insulating layer made of ceramics, one of the outermost of the insulating substrate is provided with a conductive layer of the insulator layer and substantially the same thickness on the insulator layer A wiring board comprising:
Front surface boundary between the insulator layer and the conductor layer on the surface side of the wiring board in the outermost insulating substrate of the one is, and the coated ceramic layer containing ceramic, and the coating resin layer containing a resin A wiring board characterized by being sequentially coated with .
ラミックスからなる絶縁体層を備えてなる絶縁基板を複数積層してなり、一方の最外の絶縁基板が、前記絶縁体層内に該絶縁体層と略同一厚みの導電体層を備えなる配線基板であって、
前記一方の最外の絶縁基板における前記配線基板の表面側の前記絶縁体層と前記導電体層との表面境界部、金属を含有する被覆金属層と、セラミックを含有する被覆セラミック層と、樹脂を含有する被覆樹脂層とで順次被覆されていることを特徴とする配線基板。
By stacking a plurality of insulating substrate made includes an insulating layer made of ceramics, one of the outermost of the insulating substrate is provided with a conductive layer of the insulator layer and substantially the same thickness on the insulator layer A wiring board comprising:
Front surface boundary between the insulator layer and the conductor layer on the surface side of the wiring board in the outermost insulating substrate of the one is, and the coating metal layer containing a metal, a coated ceramic layer containing ceramics A wiring board which is sequentially coated with a coating resin layer containing a resin.
ラミックスからなる絶縁体層を備えてなる絶縁基板を複数積層してなり、一方の最外の絶縁基板が、前記絶縁体層内に該絶縁体層と略同一厚みの導電体層を備えなる配線基板であって、
前記一方の最外の絶縁基板における前記配線基板の表面側の前記絶縁体層と前記導電体層との表面境界部、セラミックを含有する被覆セラミック層と、金属を含有する被覆金属
層と、樹脂を含有する被覆樹脂層とで順次被覆されていることを特徴とする配線基板。
By stacking a plurality of insulating substrate made includes an insulating layer made of ceramics, one of the outermost of the insulating substrate is provided with a conductive layer of the insulator layer and substantially the same thickness on the insulator layer A wiring board comprising:
Front surface boundary between the insulator layer and the conductor layer on the surface side of the wiring board in the outermost insulating substrate of the one is, and the coated ceramic layer containing ceramic, a coating metal layer containing a metal A wiring board which is sequentially coated with a coating resin layer containing a resin.
前記被覆樹脂層の厚みが10〜100μmであることを特徴とする請求項1乃至5のうちいずれかに記載の配線基板。   6. The wiring board according to claim 1, wherein the coating resin layer has a thickness of 10 to 100 [mu] m. 前記被覆樹脂層の25℃におけるヤング率が3〜10GPaであることを特徴とする請求項1乃至6のうちいずれかに記載の配線基板。   The wiring board according to claim 1, wherein the coating resin layer has a Young's modulus at 25 ° C. of 3 to 10 GPa. セラミックスからなる絶縁体層を備えてなる絶縁基板を複数積層してなり、一方の最外の絶縁基板が、前記絶縁体層内に該絶縁体層と略同一厚みの導電体層を備えてなる配線基板の製造方法であって、
前記一方の最外の絶縁基板が、絶縁体層成形体と略同一厚みの導電体層成形体を、絶縁体層成形体を貫通するように形成して複合成形体を作製する複合成形体作製工程と、前記複合成形体を焼成して、前記絶縁体層と略同一厚みの前記導電体層が、前記絶縁体層内に形成された前記絶縁基板を作製する絶縁基板作製工程と、前記配線基板の表面側となる前記絶縁体層と前記導電体層との表面境界部を、樹脂を含有する被覆樹脂層で被覆する樹脂被覆工程と、を具備することにより作製されることを特徴とする配線基板の製造方法。
A plurality of insulating substrates each including an insulating layer made of ceramics are stacked, and one outermost insulating substrate includes a conductive layer having substantially the same thickness as the insulating layer in the insulating layer. A method for manufacturing a wiring board, comprising:
Preparation of composite molded body in which said one outermost insulating substrate forms a conductor molded body having substantially the same thickness as that of the insulating layer molded body so as to penetrate through the insulating layer molded body. a step, by firing the composite compact, the insulator layer and the conductive layer having substantially the same thickness, and the insulating substrate fabricating step of fabricating the insulating substrate formed on said insulator layer, said wiring the front surface boundary of the insulating layer serving as a surface side of the substrate and the conductor layer, and characterized by being manufactured by comprising the resin coating step of coating a coating resin layer containing a resin, a A method of manufacturing a wiring board.
前記複合成形体作製工程と、前記絶縁基板作製工程との間に、前記複合成形体と他の記絶縁体層成形体とを積層する積層工程を具備することを特徴とする請求項8に記載の配線基板の製造方法。 The composite molded body manufacturing process according to claim 8, wherein between the insulating substrate manufacturing process, characterized by comprising a laminating step of laminating said composite molding and other serial insulator layer molded article Wiring board manufacturing method. セラミックスからなる絶縁体層を備えてなる絶縁基板を複数積層してなり、一方の最外の絶縁基板が、前記絶縁体層内に該絶縁体層と略同一厚みの導電体層を備えてなる配線基板の製造方法であって、
前記一方の最外の絶縁基板が、絶縁体層成形体と略同一厚みの導電体層成形体を、前記絶縁体層成形体を貫通するように形成し、前記配線基板の表面側となる前記絶縁体層成形体と前記導電体層成形体との表面境界部を被覆金属層成形体で被覆して複合成形体を作製する複合成形体作製工程と、前記複合成形体を焼成して、前記絶縁体層と略同一厚みの前記導電体層が、前記絶縁体層内に形成され、前記配線基板の表面側となる前記導電体層と前記絶縁体層の表面境界部が被覆金属層で覆われた絶縁基板を作製する絶縁基板作製工程と、前記被覆金属層を樹脂を含有する被覆樹脂層で被覆する樹脂被覆工程と、を具備することにより作製されることを特徴とする配線基板の製造方法。
A plurality of insulating substrates each including an insulating layer made of ceramics are stacked, and one outermost insulating substrate includes a conductive layer having substantially the same thickness as the insulating layer in the insulating layer. A method for manufacturing a wiring board, comprising:
Wherein said one outermost insulating substrate is a conductive layer molded article of the insulating layer moldings substantially the same thickness, the formed so as to penetrate the insulator layer molded body, the surface side of the wiring substrate a composite molded body preparing step of preparing a composite shaped body the front surface boundary between the conductor layer formed body and the insulator layer molded article coated with a coating metal layer formed body, and sintering the composite compact, the insulator layer and the conductive layer having substantially the same thickness, the formed in the insulator layer, the conductor layer and the insulating layer and the surface boundary is coated metal layer serving as the surface side of the wiring substrate an insulating substrate fabricating step of fabricating the insulating substrate covered with, the coating metal layer is a resin coating step of coating a coating resin layer containing a resin, characterized by being produced by having a wire A method for manufacturing a substrate.
前記複合成形体作製工程と、前記絶縁基板作製工程との間に、前記複合成形体と他の絶縁体層成形体とを積層する積層工程を具備することを特徴とする請求項10に記載の配線基板の製造方法。 The composite molded body manufacturing process, between the insulating substrate manufacturing process according to claim 10, characterized in that it comprises a laminating step of laminating said composite molding and another insulating layer moldings A method for manufacturing a wiring board. セラミックスからなる絶縁体層を備えてなる絶縁基板を複数積層してなり、一方の最外の絶縁基板が、前記絶縁体層内に該絶縁体層と略同一厚みの導電体層を備えてなる配線基板の製造方法であって、
前記一方の最外の絶縁基板が、絶縁体層成形体と略同一厚みの導電体層成形体を、前記絶縁体層成形体を貫通するように形成し、前記配線基板の表面側となる前記絶縁体層成形体と前記導電体層成形体との表面境界部を被覆セラミック層成形体で被覆して複合成形体を作製する複合成形体作製工程と、前記複合成形体を焼成して、前記絶縁体層と略同一厚みの前記導電体層が、前記絶縁体層内に形成され、前記配線基板の表面側となる前記導電体層と前記絶縁体層の表面境界部被覆セラミック層で覆われた絶縁基板を作製する絶縁基板作製工程と、前記被覆セラミック層を樹脂を含有する被覆樹脂層で被覆する樹脂被覆工程と、を具備することにより作製されることを特徴とする配線基板の製造方法。
A plurality of insulating substrates each including an insulating layer made of ceramics are stacked, and one outermost insulating substrate includes a conductive layer having substantially the same thickness as the insulating layer in the insulating layer. A method for manufacturing a wiring board, comprising:
Wherein said one outermost insulating substrate is a conductive layer molded article of the insulating layer moldings substantially the same thickness, the formed so as to penetrate the insulator layer molded body, the surface side of the wiring substrate a composite molded body preparing step of preparing a composite shaped body the front surface boundary between the conductor layer formed body and the insulator layer molded article coated with a coated ceramic layer molded body, and sintering the composite compact, the insulator layer and the conductive layer having substantially the same thickness, the formed in the insulator layer, the conductor layer and the insulating layer and the surface boundary is coated ceramic layer of the surface side of the wiring substrate an insulating substrate fabricating step of fabricating the insulating substrate covered with, the coated ceramic layer and a resin coating step of coating a coating resin layer containing a resin, characterized by being produced by having a wire A method for manufacturing a substrate.
前記複合成形体作製工程と、前記絶縁基板作製工程との間に、前記複合成形体と他の絶縁体層成形体とを積層する積層工程を具備することを特徴とする請求項12に記載の配線基板の製造方法。 The composite molded body manufacturing process, between the insulating substrate manufacturing process according to claim 12, characterized in that it comprises a laminating step of laminating said composite molding and another insulating layer moldings A method for manufacturing a wiring board. セラミックスからなる絶縁体層を備えてなる絶縁基板を複数積層してなり、一方の最外の絶縁基板が、前記絶縁体層内に該絶縁体層と略同一厚みの導電体層を備えてなる配線基板の製造方法であって、
前記一方の最外の絶縁基板が、絶縁体層成形体と略同一厚みの導電体層成形体を、前記絶縁体層成形体を貫通するように形成し、前記配線基板の表面側となる前記絶縁体層成形体と前記導電体層成形体との表面境界部を、被覆金属層成形体と被覆セラミック層成形体とで順次、被覆して複合成形体を作製する複合成形体作製工程と、前記複合成形体を焼成して、前記絶縁体層と略同一厚みの前記導電体層が、前記絶縁体層内に形成され、前記配線基板の表面側となる前記導電体層と前記絶縁体層の表面境界部被覆金属層と被覆セラミック層とで順次、覆われた絶縁基板を作製する絶縁基板作製工程と、前記被覆セラミック層を、樹脂を含有する被覆樹脂層で被覆する樹脂被覆工程と、を具備することにより作製されることを特徴とする配線基板の製造方法。
A plurality of insulating substrates each including an insulating layer made of ceramics are stacked, and one outermost insulating substrate includes a conductive layer having substantially the same thickness as the insulating layer in the insulating layer. A method for manufacturing a wiring board, comprising:
Wherein said one outermost insulating substrate is a conductive layer molded article of the insulating layer moldings substantially the same thickness, the formed so as to penetrate the insulator layer molded body, the surface side of the wiring substrate the front surface boundary between the conductor layer formed body and the insulator layer molded body successively in the coating metal layer formed body and the covering ceramic layer molded body, the composite molding manufacturing step of manufacturing a composite molded article coated , said composite shaped body was fired, the insulator layer and the conductive layer having substantially the same thickness, the formed in the insulator layer, wherein said conductor layer serving as the surface side of the wiring board insulator sequentially surface boundary between the layers in the coating metal layer and the coated ceramic layer, and the insulating substrate fabricating step of fabricating a covered insulated substrate, the coated ceramic layer, the resin is coated with a coating resin layer containing a resin-coated distribution characterized in that it is produced by comprising the step, Method of manufacturing a substrate.
前記複合成形体作製工程と、前記絶縁基板作製工程との間に、前記複合成形体と他の絶縁体層成形体とを積層する積層工程を具備することを特徴とする請求項14に記載の配線基板の製造方法。 The composite molded body manufacturing process, between the insulating substrate manufacturing process according to claim 14, characterized in that it comprises a laminating step of laminating said composite molding and another insulating layer moldings A method for manufacturing a wiring board. セラミックスからなる絶縁体層を備えてなる絶縁基板を複数積層してなり、一方の最外の絶縁基板が、前記絶縁体層内に該絶縁体層と略同一厚みの導電体層を備えてなる配線基板の製造方法であって、
前記一方の最外の絶縁基板が、絶縁体層成形体と略同一厚みの導電体層成形体を、前記絶縁体層成形体を貫通するように形成し、前記配線基板の表面側となる前記絶縁体層成形体と前記導電体層成形体との表面境界部を、被覆セラミック層成形体と被覆金属層成形体とで順次、被覆して複合成形体を作製する複合成形体作製工程と、前記複合成形体を焼成して、前記絶縁体層と略同一厚みの前記導電体層が、前記絶縁体層内に形成され、前記配線基板の表面側となる前記導電体層と前記絶縁体層の表面境界部被覆セラミック層と被覆金属層とで順次、覆われた絶縁基板を作製する絶縁基板作製工程と、前記被覆金属層を、樹脂を含有する被覆樹脂層で被覆する樹脂被覆工程と、を具備することにより作製されることを特徴とする配線基板の製造方法。
A plurality of insulating substrates each including an insulating layer made of ceramics are stacked, and one outermost insulating substrate includes a conductive layer having substantially the same thickness as the insulating layer in the insulating layer. A method for manufacturing a wiring board, comprising:
Wherein said one outermost insulating substrate is a conductive layer molded article of the insulating layer moldings substantially the same thickness, the formed so as to penetrate the insulator layer molded body, the surface side of the wiring substrate the front surface boundary between the conductor layer formed body and the insulator layer molded body successively in the coated ceramic layer formed body and the coating metal layer molded article, a composite molded product producing step of producing a composite molded article coated , said composite shaped body was fired, the insulator layer and the conductive layer having substantially the same thickness, the formed in the insulator layer, wherein said conductor layer serving as the surface side of the wiring board insulator sequentially surface boundary between the layers in the coated ceramic layer and the coating metal layer, an insulating substrate fabricating step of fabricating a covered insulated substrate, said coating metal layer, a resin coated with a coating resin layer containing a resin-coated wiring board characterized by being manufactured by comprising the steps, the Manufacturing method.
複合成形体作製工程と、絶縁基板作製工程との間に、前記複合成形体と他の絶縁体層成形体とを積層する積層工程を具備することを特徴とする請求項16に記載の配線基板の製造方法。 The lamination process which laminates | stacks the said composite molded object and another insulator layer molded object between the pre- composite molded object preparation process and the pre- insulation board | substrate preparation process is comprised, It comprises. A method for manufacturing a wiring board.
JP2003427987A 2003-12-24 2003-12-24 Wiring board and manufacturing method thereof Expired - Fee Related JP4610185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003427987A JP4610185B2 (en) 2003-12-24 2003-12-24 Wiring board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003427987A JP4610185B2 (en) 2003-12-24 2003-12-24 Wiring board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005191102A JP2005191102A (en) 2005-07-14
JP4610185B2 true JP4610185B2 (en) 2011-01-12

Family

ID=34787105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003427987A Expired - Fee Related JP4610185B2 (en) 2003-12-24 2003-12-24 Wiring board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4610185B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI311451B (en) * 2005-11-30 2009-06-21 Murata Manufacturing Co Ceramic substrate, electronic device, and manufacturing method of ceramic substrate
CN105828515A (en) * 2016-04-13 2016-08-03 苏州晶品新材料股份有限公司 Thermoelectrically separated combined type circuit board photoelectric engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677280U (en) * 1993-03-30 1994-10-28 日本碍子株式会社 Ceramic multilayer board
JPH08125341A (en) * 1994-10-25 1996-05-17 Hitachi Ltd Electronic circuit device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677280U (en) * 1993-03-30 1994-10-28 日本碍子株式会社 Ceramic multilayer board
JPH08125341A (en) * 1994-10-25 1996-05-17 Hitachi Ltd Electronic circuit device

Also Published As

Publication number Publication date
JP2005191102A (en) 2005-07-14

Similar Documents

Publication Publication Date Title
CN101416570B (en) Multilayer ceramic substrate, method for producing the same and electronic component
US20080268637A1 (en) Electrically conductive composition for via-holes
KR100462289B1 (en) Conductive paste, Ceramic multilayer substrate, and Method for manufacturing ceramic multilayer substrate
JP2006060147A (en) Ceramic electronic component and capacitor
JP2010525544A (en) Conductive composition for via hole
JP4535098B2 (en) Manufacturing method of multilayer ceramic electronic component
JPH06100377A (en) Production of multilayer ceramic board
JP4610185B2 (en) Wiring board and manufacturing method thereof
JP2006210536A (en) Method of manufacturing electronic component and wiring board therewith
US6846375B2 (en) Method of manufacturing multilayer ceramic wiring board and conductive paste for use
KR100800509B1 (en) Conductive paste and multi-layer ceramic substrate
JP4048974B2 (en) Method for manufacturing electronic component including multilayer ceramic substrate
JP2007221115A (en) Manufacturing method of conductor paste and multilayer ceramic substrate
JP2008030995A (en) Multilayered ceramic substrate and its manufacturing method as well as composite green sheet for manufacturing multilayered ceramic substrate
WO2009151006A1 (en) Method for producing ceramic molded body
JP2004087990A (en) Composite and its production method, and production of ceramic substrate
JP5052380B2 (en) Manufacturing method of ceramic wiring board
JP4336164B2 (en) Method for manufacturing composite sheet, method for manufacturing composite laminate, and method for manufacturing ceramic substrate
JP2011146444A (en) Component to be built in board and method of manufacturing the same, and wiring board
JP4412891B2 (en) Method for producing composite and composite laminate, and method for producing ceramic substrate
JP2008159726A (en) Multilayer wiring substrate
JP2004241432A (en) Multilayered ceramic board and its manufacturing method
JP2004095753A (en) Method for manufacturing multi-layer ceramic substrate
JPH10335526A (en) Circuit substrate and manufacture thereof
JP4658465B2 (en) Glass ceramic multilayer wiring board with built-in capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4610185

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees