JPS58121588A - Cylindrical ceramic heater - Google Patents

Cylindrical ceramic heater

Info

Publication number
JPS58121588A
JPS58121588A JP306782A JP306782A JPS58121588A JP S58121588 A JPS58121588 A JP S58121588A JP 306782 A JP306782 A JP 306782A JP 306782 A JP306782 A JP 306782A JP S58121588 A JPS58121588 A JP S58121588A
Authority
JP
Japan
Prior art keywords
ceramic heater
ceramic
cylindrical body
conductive material
inorganic conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP306782A
Other languages
Japanese (ja)
Inventor
西尾 信二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Tokushu Togyo KK
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Nippon Tokushu Togyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd, Nippon Tokushu Togyo KK filed Critical NGK Spark Plug Co Ltd
Priority to JP306782A priority Critical patent/JPS58121588A/en
Publication of JPS58121588A publication Critical patent/JPS58121588A/en
Pending legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 ミックヒーターに関する。[Detailed description of the invention] Regarding Mick Heater.

従来筒状セラミックヒータ−は、細い棒状で小型且つ耐
熱性が高いことから、内燃機関のグローブラグ、ハンダ
ゴテ等に使用されてきた。
Conventional cylindrical ceramic heaters have been used in internal combustion engine glove lugs, soldering irons, etc. because they are thin rod-shaped, compact, and have high heat resistance.

これらの構造は第1図にその横断面図を示す如く、セラ
ミック筒状体/の主表面に、無機質導電材料よシなる配
線パターンコをシルクスクリーンを用いて厚膜手法によ
って印刷し、筒状体lおよび配線パターンコの表面を別
に製作したセラミックグリーンシートまたはペースト3
により被覆するもので第1図に示す如く、配線パターン
λは筒状体の表面に薄く拡がり、厚さを十分にとること
ができないため、特に配線パターンの縁辺では極めて薄
い層となり、断面積の割に表面積の大きいものであった
。更に被覆層3は熱伝達を良好にする目的で出来るだけ
薄くするのが好ましいが薄くすると高温において、その
気孔やビンホールにより大気が邊透し、配線パターンに
酸素が到遅し酸化を起し、抵抗値を次第に大きくする問
題があった @に耐熱衝撃性改良の目的でセラミックに
Si3N4やSiCを用いた時は、これらを緻密に焼結
することが難しく、またS L3N4においては、N2
ガス中で焼結するため、配線パターンに用いる無機質導
電材料は、各種金属の窒化物や炭化物や珪化物を用いる
ため電気抵抗が大きく、配線パターンが広い面積を占め
るため大気中の酸素の滲透にょシ酸化を起し抵抗値が大
きくなる難があった。
As shown in the cross-sectional view in Figure 1, these structures are made by printing a wiring pattern made of an inorganic conductive material on the main surface of a ceramic cylinder using a thick film method using a silk screen. Ceramic green sheet or paste 3 made separately for the surface of body 1 and wiring pattern 3
As shown in Figure 1, the wiring pattern λ spreads thinly over the surface of the cylindrical body and cannot be sufficiently thick, so it becomes an extremely thin layer especially at the edges of the wiring pattern, reducing the cross-sectional area. It had a relatively large surface area. Furthermore, it is preferable to make the coating layer 3 as thin as possible in order to improve heat transfer, but if it is made too thin, the air will penetrate through its pores and via holes at high temperatures, and oxygen will be delayed in the wiring pattern, causing oxidation and reducing the resistance. When Si3N4 and SiC are used as ceramics for the purpose of improving thermal shock resistance, it is difficult to sinter them densely, and in S L3N4, N2
Since the inorganic conductive material used for the wiring pattern is sintered in a gas, it has a high electrical resistance because it uses nitrides, carbides, and silicides of various metals, and the wiring pattern occupies a large area, so it is difficult to absorb oxygen from the atmosphere. There was a problem in that oxidation occurred and the resistance value increased.

本発明はこれを改良するた柁になされたもので第一図に
その横断面図を示す如く、筒状体//は凹溝/!を有し
、該凹溝に充填された無機質導電材料/2とこれを被覆
するセラミックの被樅層/3と図示しない/対の電極よ
りなるもので、発熱パターンは開口表面の小さい凹溝に
収納されているため断面積に比して表面積が小さく、酸
化抵抗を高め、且つ電気抵抗を小さくし筒状体//と被
覆層13の接着部分/4’も大きくし接着強度を高める
ものである。
The present invention has been made to improve this problem, and as shown in the cross-sectional view of FIG. 1, the cylindrical body // is the groove /! It consists of an inorganic conductive material /2 filled in the groove, a ceramic layer /3 covering it, and a pair of electrodes (not shown), and the heating pattern is formed in the small groove on the opening surface. Because it is housed, the surface area is small compared to the cross-sectional area, which increases oxidation resistance, reduces electrical resistance, and increases adhesive strength by increasing the bonding area /4' between the cylindrical body // and the coating layer 13. be.

次に本発明のセラミックヒータ−の具体的な製造法につ
いて述べる。筒状体//および被覆層/3はアルミナ磁
器や813N4 r SIC等の実質的に絶縁体である
ことが必要である。筒状体//はこれらの素地粉末に油
脂等の押出し用バインダを加えて混練く坏土となし、円
形の口金で凹溝に相当する凸部/rを内周に設けた口金
(第3図)により高圧で第グ図の形状に押出しだ後該凹
溝内にのみ凹溝1コより小さめの出口を有する口金より
無機質導電材料に周知の有機質結合剤を加えたペースト
を押出し、筒状体の凹Tel / 3に充填する。この
無機質導電材料は、W、Mo等の耐火性金属や特願昭6
3−1141772号にて出願した、Tj +Zr 、
Hf +La 、V+Nb +Ta 、Cr 、Mo 
、W等の窒化物と酸化物を混合した、Si:+N4のグ
リーンシートの金桟化に用いる無機質導電材料や、特願
昭タt−’I’l#33号にて出願しft Tj 、 
Zr 、 f−If +La+V+Nb +Ta +C
r +Mo 1w等の窒化物に炭化物を混合し、鉄族金
属と酸化物の結合材料を配合したSL+N4のグリーン
シートに用いる無機質導電材料でもよい。まだSiCの
筒状体に対しては、SiにFe +Ni 、 Coの少
量を加えた粉末による金属化面を形成する材料が特願昭
63−/I≠723号に出願されておシ、これらが利用
できる。被覆層13は配線パターンによって発生する熱
を有効に短時間に放出するため、緻密質で厚みの小さい
ことが好−ましい。このためには、S i3N4に媒溶
剤としてMgoやY2O3を加えたもの、またはSiC
にCやBを加えた粉末を有機質の結合剤や溶剤を加えて
泥漿としドクターブレード法により製造したグリーンシ
ートやローリング法により成形しノこグリーンシートを
熱または溶剤により、または加圧により接着することが
できる。才たは粉末に周知の有機質結合剤と溶剤を加え
た泥漿を直接コーティングし、乾燥してもよい。この時
無機質導電材料が、筒状体の凹部/夕を十分に満たして
ない場合には真空中で加圧することにより、筒状体凹部
/、!;、無機質導′亀材料/、2被覆層/3のすきま
を圧縮除去することが好ましい。次に乾燥後筒状体端面
で無機質導電材料の7端が露出した部分に無機質導電材
料を塗付し電極/乙とする。更に一端は相対する無機質
導電材料の端面を結ぶ凹溝を作成した凹溝中にに他端の
側面上で電極/4 、#を設ける。
Next, a specific method for manufacturing the ceramic heater of the present invention will be described. It is necessary that the cylindrical body // and the covering layer /3 be substantially insulating materials such as alumina porcelain or 813N4 r SIC. The cylindrical body // is made into a clay by adding an extrusion binder such as oil or fat to these base powders and kneading it, and is a circular base with a convex part /r corresponding to a groove on the inner periphery (third round base). After extruding the paste into the shape shown in Fig. 1 under high pressure using the inorganic conductive material and a well-known organic binder, the paste is extruded into the groove using a nozzle having an outlet smaller than one groove. Fill the body recess Tel / 3. This inorganic conductive material is made of refractory metals such as W and Mo, and
Tj +Zr, filed under No. 3-1141772,
Hf +La, V+Nb +Ta, Cr, Mo
, an inorganic conductive material that is a mixture of nitrides and oxides such as W and is used for forming a Si:+N4 green sheet into a metal frame, and patent application filed under Shota t-'I'l #33, ft Tj,
Zr, f-If +La+V+Nb +Ta +C
An inorganic conductive material used for the SL+N4 green sheet, which is a mixture of nitride such as r + Mo 1w with carbide and a binding material of iron group metal and oxide, may also be used. For SiC cylindrical bodies, a material that forms a metallized surface using a powder of Si with a small amount of Fe + Ni and Co has been applied for in Japanese Patent Application No. 1983-1≠723. is available. The covering layer 13 is preferably dense and thin in order to effectively release heat generated by the wiring pattern in a short period of time. For this purpose, Si3N4 with Mgo or Y2O3 added as a solvent, or SiC
A green sheet made by adding C or B to a powder is made into a slurry by adding an organic binder or solvent, and a green sheet manufactured by the doctor blade method or a green sheet formed by the rolling method is bonded by heat, a solvent, or by pressure. be able to. A slurry prepared by adding a well-known organic binder and a solvent may be directly coated on the powder or powder, and the slurry may be dried. At this time, if the inorganic conductive material does not sufficiently fill the recesses of the cylindrical body, it can be pressurized in a vacuum. It is preferable to compress and remove the gap between the inorganic conductive material/2 coating layer/3. Next, after drying, an inorganic conductive material is applied to the end surface of the cylindrical body where the seven ends of the inorganic conductive material are exposed to form an electrode/B. Further, electrodes /4 and # are provided on the side surface of the other end in the groove in which a groove connecting the opposing end surfaces of the inorganic conductive material is formed.

次に非酸化性雰囲気中で、筒状体、無機質導電材料、被
覆層の焼結温度に昇温し、全体を一体化したセラミック
ヒータ−とする。この正面図を第を図Aに、側面図を第
を図Bに示す。以下実施例により一例を説明するが不発
明はこれにより限定されるものではない。
Next, in a non-oxidizing atmosphere, the temperature of the cylindrical body, the inorganic conductive material, and the coating layer is raised to a sintering temperature to form a ceramic heater in which the entire body is integrated. This front view is shown in Figure A, and the side view is shown in Figure B. An example will be explained below with reference to Examples, but the invention is not limited thereto.

実施例/ 平均粒径コμのα−8rsN4.β−8i:+N<を/
:/に含むSi3N4粉末にざチのMgOを加えてボー
ルミルで混合し、油脂を加えて混練し坏土とする、これ
を第3図に斜視図を示す如き内周に凹溝/夕に相当する
凸部lどを有する押出用口金/りによって押出し、第一
図に斜視図を示す如き直径Im長さ♂0順の筒状体2/
を成形する。次に/端面に相対する凹溝を結ぶ凹ts、
2乙をプレス型にて仰反して設は筒状体2/を作成した
。この側面図を第6図に示す、凹溝/jは巾/鏑、深さ
O!順で合計r本である。次にTiN ! 0%。
Example/α-8rsN4. with average particle size μ. β-8i: +N</
:Add MgO to the Si3N4 powder contained in :/, mix it in a ball mill, add oil and knead it to make a clay, and form a concave groove on the inner periphery as shown in the perspective view in Figure 3. A cylindrical body 2/2 with a diameter Im and a length ♂0 is extruded by an extrusion die having a convex portion l etc., as shown in a perspective view in Fig.
to form. Next, a concave ts connecting the concave grooves facing the end face,
A cylindrical body 2/ was created by turning 2 O upside down in a press mold. This side view is shown in Fig. 6, where the concave groove /j is the width/kabura and the depth is O! There are a total of r books in this order. Next is TiN! 0%.

Tic / 3% 、 Hl 、20%、 Mo / 
0%+ Al2O33%を混合微粉砕1〜パイン油にて
済解し、エチルセルローズを加えて混練したペーストを
、細いノズルより押出して凹溝ir、一端の凹溝!乙に
充填して発熱配線パターンとした。また一端において第
≠図Bに示す如く各を本の配線パターンを連結して電極
/6を形成した。
Tic/3%, Hl, 20%, Mo/
0% + Al2O33% was mixed and pulverized with pine oil, ethyl cellulose was added and kneaded, and the paste was extruded through a thin nozzle to create a concave IR groove and a concave groove at one end! B was filled with heat generating wiring pattern. Further, at one end, as shown in Figure B, each was connected with a book wiring pattern to form an electrode/6.

次に平均粒径211のα−8i3N4 j 0%、β−
8i3 N4!O%を含む粉末にf%(7)■0を加え
メタクリル酸イソブチルエステル3%、ニトロセルロー
ズ/%、ジオクチルフタレート0.3%を加え、さらに
溶媒としてトリクロールエナレン、n−ブタノールを加
えてボールミルで混合し流動性あるスラリー状とする。
Next, α-8i3N4 j 0%, β-
8i3 N4! Add f%(7)■0 to the powder containing O%, add 3% of isobutyl methacrylate, nitrocellulose/%, and 0.3% of dioctyl phthalate, and further add trichlorenalene and n-butanol as a solvent. Mix in a ball mill to form a fluid slurry.

これを減圧脱泡後事板上に流し出して除熱し溶剤を発散
させて0.3rrrs厚さのグリーンシートとした。こ
れを前記筒状体2/の外側面および/端面に貼シ付は加
熱圧着した。この概略の側面図を第≠図Bに正面図を第
弘図Aに示す、これを乾燥後、N2中にて1100℃に
加熱して基板、配線パターン、被覆層を一体に焼結して
セラミックヒータ−Aとした。次に被覆層を/、!チの
BとO♂チのCを含むα−3iC粉末を微粉砕して、周
知のバインダを加えて坏土とし、厚さo、 t mのシ
ートにローリングにより成形し、無機質導電材料をTi
N?oq1.・、Al2O3i o%の組成の微粉末と
した以外、セラミックヒータ−Aと同様に成形し、jO
気圧のN2中にて/り00℃に加熱して焼結しセラミッ
クヒータ−Bとした。まだ基板に凹溝を設けることなく
、Aと同様に製作したものをセラミックヒータ−AR,
Bと同様に製作したものをセラミックヒータ−BRとし
、大気中で/ 000℃に200時間加熱した前後の抵
抗値の変化を第1表に示すO /′ / / / 7/ / 第1衣に示す如く、本発明によるセラミックヒータ−は
高温の使用後も抵抗値の変化が少なく、長寿命を示すが
、これは発熱体パターンの表面積が断面積に比して小さ
く、従って寺透して来る大気中の酸素による酸化を受は
難いためである。またiooσ℃と室温の間のヒートサ
イクルを500回繰り返した結果、AR,BRは基板と
被覆層の間にキ裂を生じたが、本発明によるA、Bは共
に異常を生じなかった。これはA、Bの基板と被覆層の
間の接着面積が従来品のAR,BRに比して大きいため
と考えられる。
After defoaming under reduced pressure, this was poured onto a plate to remove heat and evaporate the solvent, thereby forming a green sheet with a thickness of 0.3 rrrs. This was attached to the outer surface and/or end surface of the cylindrical body 2 by heat and pressure bonding. A schematic side view of this is shown in Figure B, and a front view is shown in Figure A. After drying, the board, wiring pattern, and coating layer were sintered together by heating to 1100°C in N2. It was designated as ceramic heater-A. Next, the coating layer/,! α-3iC powder containing B of H and C of O
N? oq1.・, Al2O3io It was molded in the same manner as ceramic heater A except that it was made into a fine powder with a composition of o%, and jO
Ceramic heater B was obtained by heating and sintering at 00° C. in N2 atmosphere at atmospheric pressure. Ceramic heater-AR was manufactured in the same manner as A without providing grooves on the substrate.
A ceramic heater BR was manufactured in the same manner as B, and the changes in resistance before and after heating it in the air at / 000°C for 200 hours are shown in Table 1. As shown, the ceramic heater according to the present invention exhibits a long life with little change in resistance even after use at high temperatures, but this is due to the fact that the surface area of the heating element pattern is small compared to the cross-sectional area. This is because it is difficult to be oxidized by oxygen in the atmosphere. Further, as a result of repeating the heat cycle between iooσ°C and room temperature 500 times, cracks occurred between the substrate and the coating layer in AR and BR, but no abnormality occurred in A and B according to the present invention. This is thought to be because the adhesion area between the substrates and the covering layer in A and B is larger than that in conventional products AR and BR.

なお、筒状体、21にかえて中央に透孔を有する管状体
とし、この管状体内面に導電性ペーストを塗付焼き付け
て、一方の電極とすればヒーターの熱容量小さく且つ急
熱急冷に強く、昇温速度の速いヒーターを提供できるも
のである。
In addition, if a tubular body with a through hole in the center is used instead of the cylindrical body 21, and a conductive paste is applied and baked on the inner surface of this tubular body and used as one electrode, the heat capacity of the heater is small and it is resistant to rapid heating and cooling. , it is possible to provide a heater with a fast temperature increase rate.

凹溝の形状もU字形、7字形にかえてもよい。The shape of the groove may also be changed to a U-shape or a 7-shape.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のセラミックヒータ−の断面図、第1図は
本発明のセラミックヒータ−の断面図、第3図は実施例
に用いる押出し口金、第V図Aは実施例の正面図、第を
図Bは実施例の側面図、第j図は実施例の押出し品、第
を図は押出品の端面に凹溝を設けたものの側面図である
II/) 憚a 図 2見 第6 図
FIG. 1 is a sectional view of a conventional ceramic heater, FIG. 1 is a sectional view of a ceramic heater of the present invention, FIG. 3 is an extrusion die used in an embodiment, FIG. Figure B is a side view of the example, Figure J is the extruded product of the example, and Figure 2 is a side view of the extruded product with grooves provided on the end surface.

Claims (1)

【特許請求の範囲】[Claims] (1)表面に凹溝を設けられたセラミック筒状体と該凹
溝に充填された無機質導電性材料よりなる発熱性配線パ
ターンとこれを被覆するセラミックの被覆層と/対の電
極よシなることを特徴とする筒状セラミックヒータ−0
(2)セラミック筒状体および/まだは被覆層が窒化珪
累および/または炭化珪素である特許請求の範囲第1項
記載のセラミックヒータ−0
(1) Consisting of a ceramic cylindrical body with grooves on its surface, a heat-generating wiring pattern made of an inorganic conductive material filled in the grooves, a ceramic coating layer covering this, and/or a pair of electrodes. Cylindrical ceramic heater-0 characterized by
(2) The ceramic heater according to claim 1, wherein the ceramic cylindrical body and/or the coating layer are silicon nitride and/or silicon carbide.
JP306782A 1982-01-12 1982-01-12 Cylindrical ceramic heater Pending JPS58121588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP306782A JPS58121588A (en) 1982-01-12 1982-01-12 Cylindrical ceramic heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP306782A JPS58121588A (en) 1982-01-12 1982-01-12 Cylindrical ceramic heater

Publications (1)

Publication Number Publication Date
JPS58121588A true JPS58121588A (en) 1983-07-19

Family

ID=11546981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP306782A Pending JPS58121588A (en) 1982-01-12 1982-01-12 Cylindrical ceramic heater

Country Status (1)

Country Link
JP (1) JPS58121588A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086787A (en) * 1983-10-17 1985-05-16 株式会社デンソー Ceramic heater
JPS61195580A (en) * 1985-02-22 1986-08-29 京セラ株式会社 Ceramic heater
JP2002175869A (en) * 2000-09-26 2002-06-21 Inoac Corp Ceramic heater
CN110521279A (en) * 2017-04-26 2019-11-29 京瓷株式会社 Heater

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086787A (en) * 1983-10-17 1985-05-16 株式会社デンソー Ceramic heater
JPS61195580A (en) * 1985-02-22 1986-08-29 京セラ株式会社 Ceramic heater
JP2002175869A (en) * 2000-09-26 2002-06-21 Inoac Corp Ceramic heater
JP4592924B2 (en) * 2000-09-26 2010-12-08 株式会社イノアックコーポレーション Ceramic heater
CN110521279A (en) * 2017-04-26 2019-11-29 京瓷株式会社 Heater
CN110521279B (en) * 2017-04-26 2021-11-23 京瓷株式会社 Heating device

Similar Documents

Publication Publication Date Title
JPS61104581A (en) Ceramic heater and manufacture thereof
CN110731543A (en) Preparation method of microporous ceramic heating element for atomizer
JPS58121588A (en) Cylindrical ceramic heater
JPH05286776A (en) Metal-ceramics composite structure and production therefor
JPS623115B2 (en)
JP3059117B2 (en) Ceramic circuit board
JPS623798B2 (en)
JPS6033265A (en) Silicon carbide electroconductive ceramics
JP2000299180A (en) Manufacture of ceramic heater
JP4259647B2 (en) Ceramic firing jig and manufacturing method thereof
JPH0336305B2 (en)
KR0141656B1 (en) Method for manufacturing ceramic heaters of rod or tube type
JP3053949B2 (en) Manufacturing method of aluminum nitride multilayer substrate
JP3099043B2 (en) Jig for ceramic firing and manufacturing method thereof
JPH02221162A (en) Production of aluminum nitride-based sintered body
JPS58135183A (en) Metallized ceramic resistor
JP2000193241A (en) Silicon nitride sintered body, and ceramic heater using it
JPS59141248A (en) Material for semiconductor substrate
JPH09270302A (en) Functional member and manufacturing method thereof
JP2784672B2 (en) Manufacturing method of aluminum nitride sintered body
JP2005033069A (en) Method for manufacturing thermal stress relaxation pad for thermoelectric converter
JPH0431367A (en) Production of aluminum nitride substrate
JPH10308301A (en) Resistance type temperature sensor
JP3396494B2 (en) Method of manufacturing ceramic substrate with through hole
JP3560069B2 (en) Low-temperature sintering ceramic substrate, its material, and its manufacturing method