JPH04321A - 降伏点伸びを有し、降伏比が低く、かつ低温靭性に優れた鋼管の製造方法 - Google Patents

降伏点伸びを有し、降伏比が低く、かつ低温靭性に優れた鋼管の製造方法

Info

Publication number
JPH04321A
JPH04321A JP23662290A JP23662290A JPH04321A JP H04321 A JPH04321 A JP H04321A JP 23662290 A JP23662290 A JP 23662290A JP 23662290 A JP23662290 A JP 23662290A JP H04321 A JPH04321 A JP H04321A
Authority
JP
Japan
Prior art keywords
yield ratio
strain
steel tube
low
yield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23662290A
Other languages
English (en)
Other versions
JP2815028B2 (ja
Inventor
Kouji Yamamoto
康士 山本
Kazumasa Yamazaki
一正 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2236622A priority Critical patent/JP2815028B2/ja
Publication of JPH04321A publication Critical patent/JPH04321A/ja
Application granted granted Critical
Publication of JP2815028B2 publication Critical patent/JP2815028B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、降伏点伸びを有し、降伏比が低く、かつ低温
靭性に優れた鋼管の製造方法に関するものである。
(従来の技術) 近年鉄鋼材料を扱う各分野にわたって、競争力向上のた
めの使用特性の向上、製造コストの低減など各種の要求
が高まっている。
このうち建築分野では、構造物の安全性向上のため、特
に耐震性向上のために降伏比の低下が望まれている。こ
れまでは主に厚板分野でこの要求が強かったが、最近で
は鋼管分野でこの要求かたかまっている。低降伏比を有
する厚鋼板の製造方法に関しては、種々の方法が検討さ
れているが、残念ながら鋼管の分野では、少なくとも建
築用として検討された例はほとんどないのが現状である
。例えば電縫鋼管は、ホットコイルを成形して製造する
が、成形の際の加工硬化により降伏比が上昇するため、
降伏比の低い鋼管の製造には、不利な製造方法とされて
いる。
(発明が解決しようとする課題) 建築用低降伏比鋼管として、引張り強さ40キロ以上で
降伏比75%以下という要求があるが、現状の製造方法
では製造が不可能である。
つまり、ホットコイルを丸く成形しただけで製造する非
調質型、いわゆるアズロール型では、その成形時の加工
硬化のために、また調質型いわゆるQT型では、その組
織が焼戻しマルテンサイトとなるため、降伏比75%以
下は達成されていない。
また、耐震構造用として必要な鋼材の材質特性として最
近、降伏比だけでなく応力−歪曲線の形状が注目されだ
した。つまり、鋼材が充分な塑性伸び能力を持つために
は、第1図、第2図で示したACの増加が必要であると
言われ始めている。そのためには、YRの低下はもちろ
んであるが、さらに降伏点伸びの増大によって達成でき
る。第1図、第2図を比較すると明かなように、耐震構
造用としては第2図のような鋼材が適しているといえる
。つまり耐震構造用としては、降伏点伸びを有し、かつ
降伏比の低い鋼管が必要である。
(課題を解決するための手段) そこで本発明者らは、降伏比を低下させるために、多数
の実験と詳細な検討を加えた結果、降伏比を低下させる
ためには、鋼のミクロ組織をフェライトと第2相の炭化
物の2相組織にする必要性を確認した。さらに、降伏比
を下げるためは、降伏点を下げ、引張り強さを高めるこ
とが重要であることも確認した。
さらに降伏点伸びを有するためには、A+〜Ac3間の
2相域で歪(加工処理)を付与し、フェライト中に生成
した転位を固溶炭素、固溶窒素でただちに固着し、その
後の急冷でフェライトと第2相の炭化物の2相組織とし
て、これにより降伏点伸びと低降伏比の両方を有する鋼
管の得られることを確認した。
本発明は、このような知見に基き、降伏点伸びを有し、
かつ低降伏比を有する鋼管の製造を可能にしたもので、
その要旨とするところは、低炭素鋼鋼管を、Ac5−2
00℃以上に加熱し、Ac5−200℃以上で歪付与を
開始し、Acs  200〜AC3−20℃で歪付与を
終了し、歪付与後直ちに、また歪付与後空冷した後、A
 C,−250〜Ac5−70℃の温度範囲から、15
t/sec以上の速度で冷却し、その後200〜600
℃の温度範囲で焼戻することを特徴とする、降伏点伸び
を有し、降伏比が低く、かつ低温靭性に優れた鋼管の製
造方法である。
(作   用) 本発明においては、加熱温度をAC1〜A(3変態点間
の高めにし、その後温間加工や水冷することによって、
パイプ成形の加工硬化の影響を除去しつつ、温間加工で
新たに歪を付与し、その時に発生した転位を直ちに固着
し、その後急冷することによって2相鋼化を達成するこ
とに成功している。
次に本発明の鋼管成形・加熱・温間加工・冷却・テンパ
ーの条件について述べる。
まず、鋼管の製造については、特に規定はなくどのよう
なものでも許容される。つまり、シームレス鋼管、UO
t!4管、スパイラル鋼管、電縫鋼管、鍛接鋼管等どの
ようなバイブ製造方法でも可である。これは、その後の
熱処理での加熱温度を加工歪が除去される温度に規定す
るためである。
次に成形後加熱温度をAC3−200℃以上にしたのは
、この温度範囲に加熱することによって、冷却後の2相
鋼化を達成しつつ鋼管製造の成形歪の除去を同時に狙っ
たためである。
その温度範囲で温間加工するのは、2相域で歪を付与し
、フェライト中に適量の転位を導入し、固溶炭素、固溶
窒素で直ちに固着し、その後の急冷によって生成する2
相鋼に降伏点伸びを持たせるためである。歪量としては
、0.1%以上あれば適量の転位を導入できると考えら
れるが、逆に歪量が多すぎると降伏点伸びはあるものの
降伏比が上昇しすぎるため、歪量は50%以下が望まし
い。歪付与の方法としては、長手方向、周方向、肉厚方
向およびその組み合わせ等、どの方向でも可である。つ
まり、単独の方向または複数の方向の加算が0.1%を
越えるような歪であればよい。また歪の種類としては、
引張り歪、圧縮歪とも可である。この温度範囲での加工
は通常温間サイジングであるが、その他引き抜き等の方
法も加えて、0.1%以上の歪を付与できれば、その方
法は特に問わない。
歪付与の終了温度をA as −200〜A cs  
20tにしたのは、冷却後の2相鋼化を狙ったためであ
り、さらにフェライト中の加工歪量の適正化を狙ったた
めである。すなわち、Act直上で角管成形後水冷する
と、2相鋼化するものの、フェライトの加工歪が多すぎ
るためにフェライトの強度が高く、結果的に低降伏比を
達成することができない。AC1〜AC3の中間よりも
高温、つまりAc3200℃より高温から冷却すること
によって、この2相鋼化と至適量化を両立できるため、
この温度を下限とした。温間加工での温度を高くしてい
くと、降伏比最下限を通過して今度は逆に降伏比が増加
していく。これはフェライトの面積率が減少してゆくた
めで、Ac3に近づくと降伏比が急激に増加する。これ
はフェライトの面積率がゼロに近づくためである。この
ことから、加工温度の上限として、Ac320℃を設定
した。A cs −200〜A c320℃に加熱後の
冷却は、再加熱時にオーステナイト化してCの濃化した
部分を焼入組織とすることで充分硬化させ、引張り強さ
を高め低降伏比を得るためである。冷却が不十分だと、
焼入組織が充分に硬化せず、結果として低降伏比が得ら
れないため、冷却速度を15℃/see以上に規定した
。通常は水冷であるが、冷却速度15t、/secが確
保できれば、その方法は問わない。
ところで、tI4f!によっては加熱後急冷だけでは靭
性のよくないものがあり、靭性改善のために急冷後焼戻
処理の必要な場合がある。その際焼戻温度としては、フ
ェライトと第2相の炭化物の2相組織について、その前
の急、冷で充分硬化した第2相部分をあまり高温で焼き
戻すと軟化しすぎ、これが引張り強さの低下つまり降伏
比の上昇の原因となるため、上限を600℃とした。し
かし焼戻温度が低くて、200℃以下になるとほとんど
焼戻の効果がなくなり、靭性が改善されない場合がある
ため、その下限を200℃とした。
また、歪付与後空冷までの間に(例えば設備制約上)空
?′41処理を入れざるを得ない場合がある。その場合
、あまり空冷し過ぎると導入された転位が消滅してしま
い、2相域で歪を付与した意味がなくなる。従って空冷
処理を入れる場合は、A cs−200−A cs  
20℃で歪付与を完了し、空冷後AC3250℃〜A 
cs −70℃から急冷することとした。
本発明は低炭素鋼に適用して好結果を得ることができる
。好ましい成分組成としては、C: 0.03〜0.3
0% St : 0.02〜0,50% Mn : 0.20〜2.00% A4 : 0.001〜0.100% N : 0.0005〜0.0100 を基本成分とする低炭素鋼、または前記基本成分の他に
強度鋼の要求特性によって、 Cu : 2.0%以下 Ni : 9.5%以下 Cr:5.5%以下 Mo:2.0%以下 Nb : 0.15%以下 V : 0.3%以下 Ti : 0.15%以下 B : 0.0003〜0.0030%Ca : 0.
0080%以下 の1種または2種以上添加してもよい。
Cuは強度上昇、耐食性向上に有用で添加されるが、2
.0%を越えて添加しても強度の上昇代がほとんどなく
なるので、含有量の上限は2.0%とする。
Niは低温靭性の改善に有用で添加されるが、高価な元
素であるため含有量は9.5%を上限とする。
Crは強度上昇や耐食性向上に有用で添加されるが、多
くなると低温靭性、溶接性を阻害するため含有量は5.
5%を上限とする。
MOは強度上昇に有用であるが、多くなると溶接性を阻
害するため含有量は2.0%を上限とする。
Nbはオーステナイト粒の細粒化や強度上昇に有用で添
加されるが、多くなると溶接性を阻害するので含有量の
上限は0.15%とする。
■は析出強化に有用であるが、多くなると溶接性を阻害
するため、含有量は0.3%を上限とする。
Tiはオーステナイト粒の細粒化に有用で添加されるが
、多くなると溶接性を阻害するため、含有量は0.15
%を上限とする。
Bは微量の添加によって、鋼の焼入性を著しく高める効
果を有する。この効果を有効に得るためには、少なくと
も0.0003%を添加することが必要である。しかし
過多に添加するとB化合物を生成して、靭性を劣化させ
るので、上限は0.0030%とする。
Caは硫化物系介在物の形態制御に有用で添加されるが
、多くなると鋼中介在物を形成し鋼の性質を悪化させる
ため、含有量はo、ooao%を上限とする。
(実 施 例) 第1表に供試材の化学成分を示し、第2表に鋼管または
鋼管のサイズ、熱処理条件と、得られた鋼管の機械的性
質を示す。
第2表で示した鋼管No、A1.Bl、C1,Di、E
l、Fl。
Gl、Hl、II、Jl、にl、LL、Ml、Nl、0
1.PI、Ql、R1,51,Tl。
tll、Vlはそれぞれ本発明実施鋼であり、本発明の
狙いとする低降伏比(降伏比70%以下)を達成してい
る。
これに対し、A2は加熱温度が高すぎるため降伏比が高
くなっている。A3は加熱温度が低すぎるため降伏比が
高くなっている。A4は加熱後の冷却速度が不足のため
降伏比が高くなっている。A5は焼戻温度が高すぎるた
め降伏比がたかくなっている。A6は歪量が不足のため
、降伏点伸びが出ていない。A7は歪量が多すぎるため
、降伏比が高くなっている。
また、B2は焼戻温度が低すぎるため、低温靭性が改善
されていない。
C2は冷却速度が不足のため降伏比が高くなっている。
B2は加熱温度が低すぎるため降伏比が高くなっている
(発明の効果) 以上詳細に説明した通り、本発明は40kgf/mm2
以上の高強度を有する低降伏比鋼管を、安価に製造可能
としたもので、産業上その効果は大である。
【図面の簡単な説明】
第1図は低YRであるが降伏点伸びがないためにAcの
面積の小さい場合のSSカーブの例を示す図、第2図は
低YRでかつ降伏点伸びを有するためにACの面積の大
きくなった場合のSSカーブの例を示す図である。 化4名 ストレン

Claims (1)

  1. 【特許請求の範囲】 1 低炭素鋼鋼管を、A_c_3−200℃以上に加熱
    し、A_c_3−200℃以上で歪付与を開始し、A_
    c_3−200〜A_c_3−20℃で歪付与を終了し
    た後、直ちに15℃/sec以上の速度で冷却し、その
    後200〜600℃の温度範囲で焼戻することを特徴と
    する、降伏点伸びを有し、降伏比が低く、かつ低温靭性
    に優れた鋼管の製造方法。 2 低炭素鋼鋼管を、A_c_3−200℃以上に加熱
    し、A_c_3−200℃以上で歪付与を開始し、A_
    c_3−200〜A_c_3−20℃で歪を付与し、そ
    の後空冷を行い、引き続きA_c_3−250〜A_c
    _3−70℃の温度範囲から15℃/sec以上の速度
    で冷却し、その後200〜600℃の温度範囲で焼戻す
    ることを特徴とする、降伏点伸びを有し、降伏比が低く
    、かつ低温靭性に優れた鋼管の製造方法。
JP2236622A 1989-09-21 1990-09-06 降伏点伸びを有し、降伏比が低く、かつ低温靭性に優れた鋼管の製造方法 Expired - Lifetime JP2815028B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2236622A JP2815028B2 (ja) 1989-09-21 1990-09-06 降伏点伸びを有し、降伏比が低く、かつ低温靭性に優れた鋼管の製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-245602 1989-09-21
JP24560289 1989-09-21
JP2236622A JP2815028B2 (ja) 1989-09-21 1990-09-06 降伏点伸びを有し、降伏比が低く、かつ低温靭性に優れた鋼管の製造方法

Publications (2)

Publication Number Publication Date
JPH04321A true JPH04321A (ja) 1992-01-06
JP2815028B2 JP2815028B2 (ja) 1998-10-27

Family

ID=26532765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2236622A Expired - Lifetime JP2815028B2 (ja) 1989-09-21 1990-09-06 降伏点伸びを有し、降伏比が低く、かつ低温靭性に優れた鋼管の製造方法

Country Status (1)

Country Link
JP (1) JP2815028B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003061740A (ja) * 2001-08-22 2003-03-04 Shinohara:Kk マスカラ容器における塗布用ブラシの絞り具
US6995106B2 (en) 2001-07-16 2006-02-07 Ngk Spark Plug Co., Ltd. Dielectric ceramic material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62158822A (ja) * 1986-01-07 1987-07-14 Nippon Steel Corp 硬さと降伏比の低い高強度鋼管の製造法
JPS63250418A (ja) * 1987-04-07 1988-10-18 Nippon Steel Corp 高強度低降伏比ラインパイプの製造方法
JPS644424A (en) * 1987-06-23 1989-01-09 Kobe Steel Ltd Manufacture of seam-welded tube for heat treatment excellent in workability

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62158822A (ja) * 1986-01-07 1987-07-14 Nippon Steel Corp 硬さと降伏比の低い高強度鋼管の製造法
JPS63250418A (ja) * 1987-04-07 1988-10-18 Nippon Steel Corp 高強度低降伏比ラインパイプの製造方法
JPS644424A (en) * 1987-06-23 1989-01-09 Kobe Steel Ltd Manufacture of seam-welded tube for heat treatment excellent in workability

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6995106B2 (en) 2001-07-16 2006-02-07 Ngk Spark Plug Co., Ltd. Dielectric ceramic material
JP2003061740A (ja) * 2001-08-22 2003-03-04 Shinohara:Kk マスカラ容器における塗布用ブラシの絞り具

Also Published As

Publication number Publication date
JP2815028B2 (ja) 1998-10-27

Similar Documents

Publication Publication Date Title
JPH04321A (ja) 降伏点伸びを有し、降伏比が低く、かつ低温靭性に優れた鋼管の製造方法
JPH0387317A (ja) 降伏比の低い鋼管または角管の製造方法
JPS6057490B2 (ja) 低降伏比の高張力鋼板の製造方法
JPH07150247A (ja) 建築用高強度低降伏比鋼管の製造方法
JP2706159B2 (ja) 溶接性の良好な低降伏比高張力鋼の製造方法
JPS602364B2 (ja) 低温靭性にすぐれた非調質高張力鋼板の製造法
JPH07150245A (ja) 高靭性で降伏比の低い厚肉鋼管の製造方法
JPS5952207B2 (ja) 低降伏比、高靭性、高張力鋼板の製造方法
JPH04320A (ja) 降伏点伸びを有し、かつ降伏比の低い鋼管の製造方法
JPH04319A (ja) 降伏点伸びを有し、降伏比が低く、かつ低温靭性に優れた角管の製造方法
JPH07188748A (ja) 建築用高強度低降伏比鋼管の製造方法
JPH0426719A (ja) 高強度、高延性13Crステンレス鋼の製造方法
JPH0445227A (ja) 低降伏比鋼材の製造法
JPH03219018A (ja) 降伏点伸びを有し、降伏比が低く、かつ低温靭性に優れた鋼管の製造方法
JPH03211231A (ja) 降伏点伸びを有し、かつ降伏比の低い角管の製造方法
JPH0559434A (ja) 降伏点伸びを有し、かつ降伏比の低い角管の製造方法
JPH03219016A (ja) 降伏点伸びを有し、降伏比が低く、かつ低温靭性に優れた角管の製造方法
JPH03219017A (ja) 降伏点伸びを有し、降伏比が低く、かつ低温靭性に優れた鋼管の製造方法
JPH03219015A (ja) 降伏点伸びを有し、降伏比が低く、かつ低温靭性に優れた角管の製造方法
JPH03219019A (ja) 降伏点伸びを有し、降伏比が低く、かつ低温靭性に優れた角管の製造方法
JPH0559440A (ja) 降伏点伸びを有し、降伏比が低く、かつ低温靭性に優れた角管の製造方法
JPS6046317A (ja) 耐硫化物割れ性の優れた鋼の製造方法
JPH0397811A (ja) 降伏比が低く、低温靭性に優れた角管の製造方法
JPH04128315A (ja) 耐震特性と耐火特性と低温靭性に優れた鋼管の製造方法
JPH04176818A (ja) 耐震特性に優れた鋼管または角管の製造方法