JPH04320029A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04320029A
JPH04320029A JP8664491A JP8664491A JPH04320029A JP H04320029 A JPH04320029 A JP H04320029A JP 8664491 A JP8664491 A JP 8664491A JP 8664491 A JP8664491 A JP 8664491A JP H04320029 A JPH04320029 A JP H04320029A
Authority
JP
Japan
Prior art keywords
film
layer
melting point
point metal
high melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8664491A
Other languages
Japanese (ja)
Inventor
Masahiro Ito
伊藤 眞宏
Masuhide Ueno
上野 益秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP8664491A priority Critical patent/JPH04320029A/en
Publication of JPH04320029A publication Critical patent/JPH04320029A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a contact structure of high diffusion barrier performance by forming a film decomposed by reaction of a high melting point metal film and Si between a high melting point metal film and a silicon layer before nitriding treatment of a high melting point metal film. CONSTITUTION:An SiO2 9 is formed by thermal oxidation over the surface of a necessary region of a high-doped diffusion layer 5 exposed by contact hole formation, and a Ti film 5 is deposited over the whole surface by sputtering. R.T.A heat treatment is made in an N2 atmosphere for about 700 deg.C 30sec to nitrify most of the Ti layer 5 into a TiN film 7. At this time, a TiSi2 layer 6 is formed between the TiN film 7 and the high-doped diffusion layer 3. Thereafter, an Al film 8 is formed over the whole face, the part other than an unnecessary region is patterned together with the TiN film 7 by photoetching. Hereupon, the Ti layer 5 reduces the SiO2 layer 9 gradually, and some of the TiSi2 layer 6 is formed. This process enables suppression of restriction in nitride film thickness and deterioration in junction characteristics.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、半導体装置における
配線形成のためのコンタクト孔にバリア金属として窒化
した高融点金属膜を使用して形成する方法の改良に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a method for forming contact holes for forming wiring in a semiconductor device using a nitrided high melting point metal film as a barrier metal.

【0002】0002

【従来の技術】半導体素子の各導電層間にAl配線を行
う場合、従来コンタクトホール部で露出したSi基板上
の高濃度拡散層に直接Siを含有したスパッタAl膜を
接合させる方法が一般的であった。最近、接合形成後の
デバイス形成や、使用条件による熱履歴によって、Si
基板中へのAlの進入(スパイク)や、接合界面での高
抵抗なSi塊の析出によって、特性が劣化することが問
題になってきている。このため、図3に示すように、高
濃度拡散層3とAl膜8との間にAl或はSiの拡散を
制限する第2の金属膜(バリア金属膜)7を形成し、上
記問題を解決する方法が検討されている。
[Prior Art] When forming Al wiring between conductive layers of a semiconductor device, the conventional method is to bond a sputtered Al film containing Si directly to a high concentration diffusion layer on a Si substrate exposed at a contact hole. there were. Recently, Si
It has become a problem that the characteristics deteriorate due to the intrusion (spike) of Al into the substrate and the precipitation of high-resistance Si lumps at the bonding interface. Therefore, as shown in FIG. 3, a second metal film (barrier metal film) 7 for restricting the diffusion of Al or Si is formed between the high concentration diffusion layer 3 and the Al film 8 to solve the above problem. A solution is being considered.

【0003】その方法の1つとして図4に示すようにバ
リア金属膜として窒化チタン(TiN)膜7を高濃度拡
散層3と、Al膜8の間に形成する方法がある。この構
造の製造方法を図5に順に示す。まず、コンタクトホー
ル形成により、高濃度拡散層3の必要部分を露出した状
態から、図5(a)に示すように、全表面にTi膜5を
形成し、次に窒素(N2 )ガス雰囲気中で短時間の熱
処理を行い、Ti膜5とN2 ガスを反応させ図5(b
)に示すようにTiN膜7を形成し、バリア金属とし図
5(c)に示すように、Al配線8とともに不要なTi
N膜7を除去し、TiN膜による図4に示す構造を形成
するものである。
One of the methods is to form a titanium nitride (TiN) film 7 as a barrier metal film between the high concentration diffusion layer 3 and the Al film 8, as shown in FIG. A method for manufacturing this structure is shown in sequence in FIG. First, as shown in FIG. 5(a), a Ti film 5 is formed on the entire surface of the high-concentration diffusion layer 3 in a state in which a necessary portion of the high concentration diffusion layer 3 is exposed by forming a contact hole, and then in a nitrogen (N2) gas atmosphere. A short heat treatment is performed to cause the Ti film 5 to react with N2 gas, as shown in Fig. 5(b).
), a TiN film 7 is formed as a barrier metal, and as shown in FIG.
The N film 7 is removed and a TiN film structure shown in FIG. 4 is formed.

【0004】0004

【発明が解決しようとする課題】しかし前述の方法によ
れば、図5(b)に示すように、Ti膜5のN2 中の
熱処理によってTiN形成と同時にSi高濃度拡散層3
とTi膜5の間でシリサイト化反応が起こりTiSi2
 層6が形成される。
However, according to the above-mentioned method, as shown in FIG.
A silicite reaction occurs between TiSi2 and Ti film 5.
Layer 6 is formed.

【0005】ここでTiSi2 層6はTiN膜7に比
べて前述のAl或はSiの拡散を制限する能力が低い。 さらにTiSi2 層6の形成は、高濃度拡散層3中へ
のTiの拡散を促進し、TiSi2 膜6が厚い程接合
特性を劣化させる。
[0005] Here, the TiSi2 layer 6 has a lower ability to restrict the aforementioned diffusion of Al or Si than the TiN film 7. Furthermore, the formation of the TiSi2 layer 6 promotes the diffusion of Ti into the high concentration diffusion layer 3, and the thicker the TiSi2 film 6, the worse the junction characteristics.

【0006】この高濃度拡散層上のTiN膜7とTiS
i2 膜6の形成は図2に示すように進行する。図2(
a)に示すようにシリコン層1上に形成されたTi膜5
は、N2 雰囲気中での熱処理によって、その表面では
N2 との反応によりTiN膜7形成が起こる一方、シ
リコン層1との界面ではシリコンとTiの反応によりT
iSi2 膜6が形成される。これらの反応は図2(b
)に矢印で示すようにそれぞれ進行し、図2(c)に示
すように両者の反応に必要なTi膜がなくなった時点で
反応が終了する。
[0006] The TiN film 7 and TiS on this high concentration diffusion layer
Formation of the i2 film 6 proceeds as shown in FIG. Figure 2 (
A Ti film 5 formed on the silicon layer 1 as shown in a)
is heat-treated in a N2 atmosphere, and a TiN film 7 is formed on its surface due to a reaction with N2, while a TiN film 7 is formed at the interface with the silicon layer 1 due to a reaction between silicon and Ti.
An iSi2 film 6 is formed. These reactions are shown in Figure 2(b)
) as shown by the arrows, and the reaction ends when the Ti film necessary for both reactions is used up, as shown in FIG. 2(c).

【0007】TiN膜形成に必要な熱処理条件において
は、シリコン層とTiの反応は両者が接している以上少
なからずTiN膜形成と同時に起こるもので、従来例に
よる方法では、TiN膜形成に有利な条件としてもTi
N膜厚以上のTiSi2 膜が形成される。TiSi2
 膜は接合深さが同じであれば一般に厚い程接合特性が
悪化し易い。
Under the heat treatment conditions necessary for forming a TiN film, the reaction between the silicon layer and Ti occurs at the same time as the formation of the TiN film since they are in contact with each other. Ti as a condition
A TiSi2 film having a thickness of N or more is formed. TiSi2
Generally speaking, the thicker the film, the more likely the bonding characteristics will deteriorate if the bonding depth is the same.

【0008】このため、接合特性に影響を与えないよう
にTiSi2 の膜厚を決定するが、これによりTiN
膜厚が制限されることになり、Al又はSiの拡散の阻
止能力を左右している。
For this reason, the film thickness of TiSi2 is determined so as not to affect the bonding characteristics.
This limits the film thickness, which affects the ability to prevent Al or Si diffusion.

【0009】つまり十分な厚さのTiN膜を形成しよう
とすれば上記方法によれば、TiSi2 膜も厚くなり
、接合特性を劣化させてしまう結果となる。
In other words, if a sufficiently thick TiN film is to be formed using the above method, the TiSi2 film will also become thick, resulting in deterioration of the bonding characteristics.

【0010】さらにここで仮に接合特性の劣化を、Ti
Si2 形成時のTiの拡散に起因する形成条件の最適
化により抑制できたとしても、TiN膜厚を増やすため
には、スパッタするTi膜厚を厚くする必要があり、図
2(a)のように被覆性よくTi膜を形成することが可
能なコンタクト開口径が大きくなり、微細なコンタクト
を有する素子の形成が実現しにくくなる。
[0010] Furthermore, let us assume that the deterioration of the bonding properties is caused by Ti.
Even if the diffusion of Ti during Si2 formation can be suppressed by optimizing the formation conditions, in order to increase the TiN film thickness, it is necessary to increase the thickness of the sputtered Ti film, as shown in Figure 2 (a). The diameter of a contact opening that allows a Ti film to be formed with good coverage increases, making it difficult to form an element having fine contacts.

【0011】本発明は高融点金属の窒化反応と同時に起
こるシリサイド化反応を抑制し、シリサイド形成に関係
なく必要な窒化膜を形成することを目的とする。
An object of the present invention is to suppress the silicidation reaction that occurs simultaneously with the nitridation reaction of a high-melting point metal, and to form a necessary nitride film regardless of the formation of silicide.

【0012】0012

【課題を解決するための手段】この発明は前述の課題解
決のため、高融点金属膜の窒化処理に先立って高融点金
属膜とシリコン層の間に(高融点金属の酸化物よりも生
成エネルギーが高く、)高融点金属とSiの反応によっ
て分解される膜を形成することにより窒化膜形成時のシ
リサイド形成を抑制するようにしたものである。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention provides a structure between the high melting point metal film and the silicon layer (which has a higher generation energy than the oxide of the high melting point metal) before nitriding the high melting point metal film. By forming a film that has a high melting point and is decomposed by the reaction between the high melting point metal and Si, the formation of silicide during the formation of the nitride film is suppressed.

【0013】[0013]

【作用】本発明は前述のように、高融点金属膜とシリコ
ン層との間に第2の膜を形成するようにしたので、従来
コンタクト領域に熱窒化により導入する窒化膜バリア層
の形成において、シリサイド反応に起因する窒化膜厚の
制限や接合特性の劣化を十分抑えることが可能となり、
従来より拡散バリア性能の高いコンタクト形成が可能と
なる。
[Operation] As described above, the present invention forms a second film between the high melting point metal film and the silicon layer, so that it is difficult to form a nitride film barrier layer that is conventionally introduced into the contact region by thermal nitridation. This makes it possible to sufficiently suppress the limitations on nitride film thickness and the deterioration of bonding properties caused by silicide reactions.
It becomes possible to form contacts with higher diffusion barrier performance than before.

【0014】また、必要な窒化膜を得るのに必要な高融
点金属膜は従来例より大幅に薄くて済むことになり、被
覆性よく目的の構造を形成できる。
Furthermore, the refractory metal film required to obtain the necessary nitride film can be made much thinner than in the conventional example, and the desired structure can be formed with good coverage.

【0015】[0015]

【実施例】図1に本発明によるTiSi2 層の薄いT
iNバリア金属層を持つコンタクト形成方法の実施例を
示す。
[Example] Figure 1 shows a thin TiSi2 layer according to the present invention.
An example of a method for forming a contact with an iN barrier metal layer is shown.

【0016】まず、図1(a)に示すように高濃度拡散
層3の必要領域をコンタクトホール形成によって露出さ
せた表面に、約50ÅのSiO2 層9を熱酸化法によ
って形成し、続いて全面にTi膜5を約500Åスパッ
タ堆積する。
First, as shown in FIG. 1(a), a SiO2 layer 9 of about 50 Å is formed by thermal oxidation on the surface of the high concentration diffusion layer 3 where the required region is exposed by forming a contact hole, and then the entire surface is Then, a Ti film 5 of about 500 Å is deposited by sputtering.

【0017】その後図1(b)のように、N2 雰囲気
中で700℃30秒程度のR.T.A.熱処理を行い、
Ti層5の大部分を窒化しTiN膜7とする。このとき
TiN膜7と高濃度拡散層3との間には100Å以下の
TiSi2 層6が形成される。その後、図1(c)に
示すように全面にAl膜8を形成し、不要領域以外をホ
トリソエッチングによってTiN膜7とともにパタンニ
ングする。
Thereafter, as shown in FIG. 1(b), the R.I.C. T. A. Perform heat treatment,
Most of the Ti layer 5 is nitrided to form a TiN film 7. At this time, a TiSi2 layer 6 of 100 Å or less is formed between the TiN film 7 and the high concentration diffusion layer 3. Thereafter, as shown in FIG. 1(c), an Al film 8 is formed on the entire surface, and areas other than unnecessary areas are patterned together with the TiN film 7 by photolithography.

【0018】この方法によるTiN膜7とTiSi2 
膜6の形成は図6のように進行する。
TiN film 7 and TiSi2 formed by this method
Formation of the film 6 proceeds as shown in FIG.

【0019】まず、図6(a)のようにシリコン層1上
にSiO2 層9を介して形成されたTi層5は、N2
 中の熱処理によって、その表面からTiN層化が進む
。一方Ti層5とシリコン層1との間にはSiO2層9
が存在することにより、図2(b)に示したようにTi
N層と同様には反応しない。しかしここでTi層5は、
徐々にSiO2 層9を還元し、いくらかのTiSi2
 層6は形成される。
First, as shown in FIG. 6(a), the Ti layer 5 formed on the silicon layer 1 via the SiO2 layer 9 is
Due to the heat treatment inside, the formation of a TiN layer progresses from the surface. On the other hand, between the Ti layer 5 and the silicon layer 1 is a SiO2 layer 9.
Due to the presence of Ti, as shown in Fig. 2(b)
It does not react in the same way as the N layer. However, here, the Ti layer 5 is
Gradually reduce the SiO2 layer 9 and some TiSi2
Layer 6 is formed.

【0020】但し、このTiSi2 層6は図2(b)
に示した場合よりも非常に薄く結果としてTiSi2 
層6に比べTiN層7の形成が早くなることになる。そ
して図6(c)に示すように、SiO2 層9が全て還
元された時点ではTiN層7はTiSi2 層6に比べ
て十分厚く形成されることになる。
However, this TiSi2 layer 6 is as shown in FIG. 2(b).
The resulting TiSi2 is much thinner than the case shown in
This means that the TiN layer 7 is formed more quickly than the layer 6. As shown in FIG. 6(c), when the SiO2 layer 9 is completely reduced, the TiN layer 7 is formed to be sufficiently thicker than the TiSi2 layer 6.

【0021】つまり従来例で示したTiSi2 反応は
SiO2 層9の存在により、抑制されその分TiN反
応が起こり易くなり、同じTi膜から従来例よりも厚い
TiN層を形成することができる。さらにSiO2層9
はTiSi2 層となる為コンタクト抵抗は上昇せず、
また基板側へのTi原子の拡散も抑制できることにより
接合特性の劣化もおさえることができる。
In other words, the TiSi2 reaction shown in the conventional example is suppressed by the presence of the SiO2 layer 9, making it easier for the TiN reaction to occur, making it possible to form a thicker TiN layer from the same Ti film than in the conventional example. Furthermore, SiO2 layer 9
Since it becomes a TiSi2 layer, the contact resistance does not increase,
Furthermore, since diffusion of Ti atoms toward the substrate side can be suppressed, deterioration of bonding characteristics can also be suppressed.

【0022】従って接合特性の劣化を抑えて必要な拡散
バリアTiN層7を形成し易くなり、従来より良好なコ
ンタクトを形成することができる。
Therefore, it becomes easier to form the necessary diffusion barrier TiN layer 7 while suppressing the deterioration of the bonding characteristics, and it is possible to form a better contact than before.

【0023】ここでTiSi2 反応を抑制するために
用いたSiO2 層9は使用する高融点金属の酸化物の
生成エネルギーよりも生成エネルギーが高く、結果とし
て還元されTiSi2 或はその他の導電物層となるも
のであればこれに限らない。またこのSiO2 層9は
必要な厚さのものを形成するためなら熱酸化に限らずC
VD、スパッタなどの他の方法を用いることができる。 さらにこのSiO2 層膜厚は50Å程度が望ましいが
目的の構造を得ることができればこれに限らない。
The SiO2 layer 9 used here to suppress the TiSi2 reaction has a formation energy higher than that of the oxide of the high melting point metal used, and is reduced as a result to become a TiSi2 or other conductive material layer. It is not limited to this. Moreover, in order to form this SiO2 layer 9 to the necessary thickness, it is not necessary to use thermal oxidation.
Other methods such as VD, sputtering, etc. can be used. Furthermore, the thickness of this SiO2 layer is preferably about 50 Å, but is not limited to this as long as the desired structure can be obtained.

【0024】またAl膜8は低抵抗な素子間配線のため
に用いているものでありこの製造方法においてはAl以
外の配線材料においても応用可能である。
Furthermore, the Al film 8 is used for low-resistance wiring between elements, and this manufacturing method can also be applied to wiring materials other than Al.

【0025】[0025]

【発明の効果】以上詳細に説明したように、この発明に
よれば従来コンタクト領域に熱窒化により導入する窒化
膜バリア層の形成において、シリサイド反応に起因する
窒化膜厚の制限や接合特性の劣化を十分抑えることが可
能となり、従来より拡散バリア性能の高いコンタクト構
造を形成することが可能となる。
As explained in detail above, according to the present invention, in the formation of a nitride film barrier layer conventionally introduced into a contact region by thermal nitridation, limitations on nitride film thickness and deterioration of bonding characteristics due to silicide reaction can be avoided. can be sufficiently suppressed, and it becomes possible to form a contact structure with higher diffusion barrier performance than before.

【0026】また、必要な窒化膜を得るのに必要な高融
点金属膜は従来例より大幅に薄くてすむことになり、被
覆性よく目的の構造を形成でき、コンタクト開口径を小
さくできるという利点がある。
In addition, the refractory metal film required to obtain the necessary nitride film can be made much thinner than in the conventional example, which has the advantage that the desired structure can be formed with good coverage and the diameter of the contact opening can be reduced. There is.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の実施例の製造工程断面図FIG. 1: Cross-sectional view of the manufacturing process of an embodiment of the present invention

【図2】従来
例の欠点説明図
[Fig. 2] Diagram explaining the drawbacks of the conventional example

【図3】従来例説明図(その1)[Fig. 3] Illustration of conventional example (Part 1)

【図4】従来例説明図(その2)[Fig. 4] Illustration of conventional example (Part 2)

【図5】従来例の製造工程断面図[Figure 5] Cross-sectional view of the conventional manufacturing process

【図6】TiN,TiSi2 膜説明図[Figure 6] TiN, TiSi2 film explanatory diagram

【符号の説明】[Explanation of symbols]

1    シリコン基板 2    素子分離絶縁膜 3    高濃度拡散層 4    中間絶縁膜 5    Ti膜 6    TiSi2 膜 7    TiN膜 8    Al膜 9    SiO2 膜 1 Silicon substrate 2 Element isolation insulating film 3 High concentration diffusion layer 4 Intermediate insulation film 5 Ti film 6 TiSi2 film 7 TiN film 8 Al film 9 SiO2 film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  少なくともその一部がシリコン半導体
基板表面と接するように形成された高融点金属膜を、窒
素ガス雰囲気中での熱処理反応によってその表面を窒化
チタン膜に変換する半導体装置の製造方法において、前
記熱処理前に、前記シリコン半導体基板表面と前記高融
点金属膜との間に、がい高融点金属とシリコンとの反応
を遅らせる性質の膜を形成しておくことを特徴とする半
導体装置の製造方法。
1. A method for manufacturing a semiconductor device, in which the surface of a high melting point metal film formed so that at least a portion thereof is in contact with the surface of a silicon semiconductor substrate is converted into a titanium nitride film by a heat treatment reaction in a nitrogen gas atmosphere. A semiconductor device characterized in that, before the heat treatment, a film having a property of delaying the reaction between the high melting point metal and silicon is formed between the surface of the silicon semiconductor substrate and the high melting point metal film. Production method.
【請求項2】  前記高融点金属と前記シリコンとの反
応を遅らせる性質の膜をSiO2 膜とすることを特徴
とする請求項1記載の半導体装置の製造方法。
2. The method of manufacturing a semiconductor device according to claim 1, wherein the film having a property of delaying the reaction between the high melting point metal and the silicon is an SiO2 film.
【請求項3】  前記高融点金属をチタンとすることを
特徴とする請求項1又は2記載の半導体装置の製造方法
3. The method of manufacturing a semiconductor device according to claim 1, wherein the high melting point metal is titanium.
JP8664491A 1991-04-18 1991-04-18 Manufacture of semiconductor device Pending JPH04320029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8664491A JPH04320029A (en) 1991-04-18 1991-04-18 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8664491A JPH04320029A (en) 1991-04-18 1991-04-18 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04320029A true JPH04320029A (en) 1992-11-10

Family

ID=13892739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8664491A Pending JPH04320029A (en) 1991-04-18 1991-04-18 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04320029A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0631309A2 (en) * 1993-06-28 1994-12-28 Kawasaki Steel Corporation Semiconductor device with contact structure and method of manufacturing the same
US5834846A (en) * 1995-01-10 1998-11-10 Kawasaki Steel Corporation Semiconductor device with contact structure and method of manufacturing the same
US6001729A (en) * 1995-01-10 1999-12-14 Kawasaki Steel Corporation Method of forming wiring structure for semiconductor device
KR100310468B1 (en) * 1994-07-07 2001-12-15 박종섭 Method for forming metal barrier film of semiconductor device
CN104916533A (en) * 2014-03-11 2015-09-16 北大方正集团有限公司 Semiconductor device electrode and manufacturing method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0631309A2 (en) * 1993-06-28 1994-12-28 Kawasaki Steel Corporation Semiconductor device with contact structure and method of manufacturing the same
EP0631309A3 (en) * 1993-06-28 1995-06-07 Kawasaki Steel Co Semiconductor device with contact structure and method of manufacturing the same.
US5652180A (en) * 1993-06-28 1997-07-29 Kawasaki Steel Corporation Method of manufacturing semiconductor device with contact structure
KR100310468B1 (en) * 1994-07-07 2001-12-15 박종섭 Method for forming metal barrier film of semiconductor device
US5834846A (en) * 1995-01-10 1998-11-10 Kawasaki Steel Corporation Semiconductor device with contact structure and method of manufacturing the same
US6001729A (en) * 1995-01-10 1999-12-14 Kawasaki Steel Corporation Method of forming wiring structure for semiconductor device
CN104916533A (en) * 2014-03-11 2015-09-16 北大方正集团有限公司 Semiconductor device electrode and manufacturing method thereof

Similar Documents

Publication Publication Date Title
EP0213197A1 (en) A method in the manufacture of integrated circuits.
JPH08116057A (en) Manufacture of tin gate electrode on semiconductor device
JPH04320029A (en) Manufacture of semiconductor device
JP3486118B2 (en) Method for manufacturing semiconductor device
JPH08321612A (en) Method of manufacturing semiconductor device
JPH06204170A (en) Semiconductor device and its manufacture
JPH08204188A (en) Semiconductor device and its manufacture
JP2554634B2 (en) Method for manufacturing semiconductor device
JP2871943B2 (en) Method for manufacturing semiconductor device
JP2001015754A (en) Method for forming conductive line of semiconductor device
JPH0513600A (en) Method for manufacture of semiconductor device
JPH05160068A (en) Manufacture of semiconductor device
JPS61135156A (en) Semiconductor device and manufacture thereof
JPH04340712A (en) Manufacture of semiconductor device
JP2555754B2 (en) Thin film formation method
JP2000156356A (en) Manufacture of semiconductor device
JPH07183515A (en) Manufacture of semiconductor device
JPH041497B2 (en)
KR100511899B1 (en) method of forming gate for semiconductor device
JPH05136398A (en) Manufacture of semiconductor device
JPH06112157A (en) Semiconductor device and manufacture therefor
JPH10223561A (en) Manufacture of semiconductor device
KR100342826B1 (en) Method for forming barrier metal layer of semiconductor device
KR0179826B1 (en) Method of forming metal interconnector in semiconductor device
JPH09330930A (en) Manufacture of semiconductor device