JPH04306881A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH04306881A
JPH04306881A JP9813991A JP9813991A JPH04306881A JP H04306881 A JPH04306881 A JP H04306881A JP 9813991 A JP9813991 A JP 9813991A JP 9813991 A JP9813991 A JP 9813991A JP H04306881 A JPH04306881 A JP H04306881A
Authority
JP
Japan
Prior art keywords
groove
oxide film
semiconductor substrate
diffusion layer
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9813991A
Other languages
Japanese (ja)
Other versions
JP3044814B2 (en
Inventor
Kou Noguchi
江 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3098139A priority Critical patent/JP3044814B2/en
Publication of JPH04306881A publication Critical patent/JPH04306881A/en
Application granted granted Critical
Publication of JP3044814B2 publication Critical patent/JP3044814B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To realize a fine transistor of high breakdown strength by a method wherein a gate electrode is formed in a groove provided to a semiconductor substrate, and a gate oxide film on the side wall of the groove is formed thicker than that on the base. CONSTITUTION:A groove is provided to a P-type semiconductor substrate 1, and a gate electrode 13 is provided inside the groove. A gate oxide film 11 formed on the side wall of the groove is thicker than that formed on the base of the groove. Source/drainregions are composed of a high concentration N-type diffusion layer 15 and an N well 5. The well 5 is made to slightly overlap the thin gate oxide film formed on the base of the groove. The end of the N well 5 at the thin gate oxide film is separated from the high concentration N-type diffusion layer 15 in the longitudinal direction, whereby a semiconductor device of this design can be enhanced in breakdown strength. Therefore, a gate electrode can be lessened in area. As an N well is located self-aligning with a gate electrode, a transistor which is high in breakdown strength and stable in characteristics can be realized.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は高耐圧を有する半導体装
置およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device having a high breakdown voltage and a method for manufacturing the same.

【0002】0002

【従来の技術】従来のMOS型高耐圧トランジスタは図
7(c)に示す構造になっている。
2. Description of the Related Art A conventional MOS type high voltage transistor has a structure shown in FIG. 7(c).

【0003】P型半導体基板20上にゲート酸化膜29
,31を介してゲート電極32がある。ゲート酸化膜厚
はゲート電極の端部が厚く、内部では薄くなっている。 ソース・ドレインの高濃度N型拡散層34がゲート電極
32の外側の半導体基板20内に形成されている。高濃
度N型拡散層34を覆うようにNウェル25がある。N
ウェル25はゲート酸化膜の薄い部分に至って形成され
る。
A gate oxide film 29 is formed on the P-type semiconductor substrate 20.
, 31, there is a gate electrode 32 therebetween. The gate oxide film is thicker at the ends of the gate electrode and thinner inside. Highly doped N-type diffusion layers 34 for source and drain are formed in the semiconductor substrate 20 outside the gate electrode 32 . An N well 25 is provided to cover the high concentration N type diffusion layer 34. N
Well 25 is formed down to the thin portion of the gate oxide film.

【0004】ソース・ドレイン拡散層が濃度の薄いNウ
ェルで覆われていること、およびNウェル上部ゲート酸
化膜厚が厚いことにより、ソース・ドレインの耐圧が高
い。
The breakdown voltage of the source and drain is high because the source/drain diffusion layer is covered with a lightly doped N-well and the gate oxide film above the N-well is thick.

【0005】次に従来例の製造方法を図5〜図7を参照
して説明する。
Next, a conventional manufacturing method will be explained with reference to FIGS. 5 to 7.

【0006】図5(a)に示すように、P型半導体基板
20に酸化膜21を形成する。レジスト22をマスクと
して基板にリンを約1×1013cm−2注入する。
As shown in FIG. 5(a), an oxide film 21 is formed on a P-type semiconductor substrate 20. As shown in FIG. Using the resist 22 as a mask, approximately 1×10 13 cm −2 of phosphorus is implanted into the substrate.

【0007】次に図5(b)に示すように、レジストを
除去し熱処理を施すことにより、リン24は拡散し、図
5(c)に示すように深さが数ミクロンのNウェル25
となる。基板上の酸化膜を除去し、酸化膜26、窒化膜
27を形成する。
Next, as shown in FIG. 5(b), by removing the resist and performing heat treatment, the phosphorus 24 is diffused, and as shown in FIG. 5(c), the N-well 24 with a depth of several microns is formed.
becomes. The oxide film on the substrate is removed, and an oxide film 26 and a nitride film 27 are formed.

【0008】次に図6(a)に示すように、窒化膜27
を所定の形状にエッチングする。次に熱酸化することに
より、図6(b)に示すように窒化膜のない基板上に素
子分離用の厚いフィールド酸化膜28を形成する。窒化
膜27、酸化膜26を除去した後、第1ゲート酸化膜2
9を約1000Å形成する。
Next, as shown in FIG. 6(a), a nitride film 27 is formed.
is etched into a predetermined shape. Next, by thermal oxidation, a thick field oxide film 28 for element isolation is formed on the substrate without the nitride film, as shown in FIG. 6(b). After removing the nitride film 27 and the oxide film 26, the first gate oxide film 2 is removed.
9 with a thickness of about 1000 Å.

【0009】次に、図6(c)に示すようにレジスト3
0をマスクとして第1ゲート酸化膜29の一部を除去す
る。レジスト30を除去した後、再び基板を酸化し図7
(a)に示すように約300Åの第2ゲート酸化膜31
を形成する。
Next, as shown in FIG. 6(c), the resist 3
A portion of the first gate oxide film 29 is removed using 0 as a mask. After removing the resist 30, the substrate is oxidized again, as shown in FIG.
As shown in (a), the second gate oxide film 31 has a thickness of approximately 300 Å.
form.

【0010】次に、図7(b)に示すようにポリシリを
堆積し、所定の形状にエッチングしゲート電極32とす
る。ゲート電極をマスクとしてヒ素注入33を高ドーズ
で行い、熱処理を施すことにより、図7(c)に示すよ
うに高濃度N型拡散層34を得る。
Next, as shown in FIG. 7(b), polysilicon is deposited and etched into a predetermined shape to form the gate electrode 32. By performing arsenic implantation 33 at a high dose using the gate electrode as a mask and performing heat treatment, a high concentration N-type diffusion layer 34 is obtained as shown in FIG. 7(c).

【0011】[0011]

【発明が解決しようとする課題】以上で説明した従来の
高耐圧トランジスタには以下に示す問題点がある。
The conventional high voltage transistor described above has the following problems.

【0012】まず、トランジスタのI−V特性のオフセ
ット防止のためには、Nウェルはゲート酸化膜の膜厚の
薄い領域とオーバーラップしている必要がある。しかし
、このオーバーラップ量が大きいと、耐圧が低下すると
いう問題がある。つまり、Nウェル端の位置制御の精度
は良くなければならない。従って、マスクの位置合わせ
のずれ、および拡散によるNウェルの横方向の広がり量
の不安定のためにトランジスタの耐圧、電流が不安定に
なる。
First, in order to prevent offset in the IV characteristics of the transistor, the N-well must overlap the thin region of the gate oxide film. However, if this amount of overlap is large, there is a problem that the withstand voltage decreases. In other words, the accuracy of position control at the end of the N well must be high. Therefore, the withstand voltage and current of the transistor become unstable due to misalignment of the mask and instability in the amount of lateral expansion of the N-well due to diffusion.

【0013】さらに高耐圧を確保するためには、Nウェ
ルの幅Cを広くする必要がある。Kが小さい時には、電
圧印加時にNウェル側の空乏層が高濃度N型拡散層に達
し、耐圧が制限されるためである。このため、トランジ
スタのソース・ドレイン間の距離が大きいという問題点
がある。
In order to further ensure a high breakdown voltage, it is necessary to widen the width C of the N-well. This is because when K is small, the depletion layer on the N-well side reaches the heavily doped N-type diffusion layer when voltage is applied, limiting the breakdown voltage. Therefore, there is a problem that the distance between the source and drain of the transistor is large.

【0014】ソース・ドレインの高濃度N型拡散層間の
距離を見積もってみる。図7(c)におけるNウェル−
Nウェル間距離(L)は、パンチスルー防止のために3
μm以上は必要である。Nウェル−高濃度N型拡散層間
の距離は耐圧を考慮すると、2μm以上必要である。従
って合計ではL+C+C=7μmとなる。
Let us estimate the distance between the source and drain high concentration N type diffusion layers. N-well in Figure 7(c)
The distance between N wells (L) is 3 to prevent punch-through.
A thickness of μm or more is required. Considering the breakdown voltage, the distance between the N well and the high concentration N type diffusion layer is required to be 2 μm or more. Therefore, the total is L+C+C=7 μm.

【0015】本発明の目的は、前記課題を解決した半導
体装置及びその製造方法を提供することにある。
[0015] An object of the present invention is to provide a semiconductor device and a manufacturing method thereof that solve the above problems.

【0016】[0016]

【課題を解決するための手段】前記目的を達成するため
、本発明に係る半導体装置においては、一導電型の半導
体基板と、前記半導体基板に設けられた溝と、前記溝の
底面部での膜厚が前記溝の側面部での膜厚よりも小さい
ゲート絶縁膜と、前記溝内に前記ゲート絶縁膜を介して
設けられたゲート電極と、前記溝に隣接する前記半導体
基板内に前記溝よりも深く設けられた逆導電型の低濃度
拡散層と、前記ゲート電極に隣接する前記低濃度拡散層
内に設けられた、前記溝よりも浅い逆導電型の高濃度拡
散層とを有するものである。
[Means for Solving the Problems] In order to achieve the above-mentioned object, a semiconductor device according to the present invention includes a semiconductor substrate of one conductivity type, a groove provided in the semiconductor substrate, and a groove formed at the bottom of the groove. a gate insulating film whose film thickness is smaller than that at the side surfaces of the trench; a gate electrode provided in the trench via the gate insulating film; and a trench in the semiconductor substrate adjacent to the trench. A low concentration diffusion layer of an opposite conductivity type provided deeper than the groove, and a high concentration diffusion layer of an opposite conductivity type provided in the low concentration diffusion layer adjacent to the gate electrode and shallower than the groove. It is.

【0017】また、本発明に係る半導体装置の製造方法
においては、一導電型の半導体基板に逆導電型の不純物
を導入する工程と、前記半導体基板に溝を形成する工程
と、熱処理を施すことで前記逆導電型の不純物を拡散さ
せ前記溝に隣接する前記半導体基板に前記溝よりも深い
逆導電型の低濃度拡散層を形成する工程と、前記溝の内
部を含む前記半導体基板表面に絶縁膜を形成する工程と
、前記絶縁膜に異方性エッチングを施すことにより前記
溝の底面部の絶縁膜は除去し、側面部には絶縁膜を残す
工程と、前記溝の底面部にゲート絶縁膜を形成する工程
と、少くとも前記溝の底面部を覆ってゲート電極を形成
する工程と、前記ゲート電極に隣接する前記半導体基板
表面に前記溝よりも浅い逆導電型の高濃度拡散層を形成
する工程とを有するものである。
The method for manufacturing a semiconductor device according to the present invention further includes the steps of introducing an impurity of an opposite conductivity type into a semiconductor substrate of one conductivity type, forming a groove in the semiconductor substrate, and performing heat treatment. a step of diffusing the impurity of the opposite conductivity type to form a low concentration diffusion layer of the opposite conductivity type deeper than the groove in the semiconductor substrate adjacent to the groove; and insulating the surface of the semiconductor substrate including the inside of the groove. a step of forming a film; a step of removing the insulating film at the bottom of the trench by anisotropic etching the insulating film, leaving an insulating film on the side surfaces; and a step of forming a gate insulator at the bottom of the trench. a step of forming a film, a step of forming a gate electrode covering at least a bottom portion of the trench, and a highly concentrated diffusion layer of an opposite conductivity type shallower than the trench on the surface of the semiconductor substrate adjacent to the gate electrode. It has a step of forming.

【0018】[0018]

【作用】ゲート電極の位置とNウェルの位置とが、基板
に形成した溝に対してそれぞれ自己整合的に形成したも
のである。
[Operation] The position of the gate electrode and the position of the N-well are formed in self-alignment with respect to the groove formed in the substrate.

【0019】[0019]

【実施例】次に本発明について図面を参照して説明する
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be explained with reference to the drawings.

【0020】(実施例1)図1〜図3は、本発明の実施
例1を工程順に示す断面図である。
(Embodiment 1) FIGS. 1 to 3 are cross-sectional views showing Embodiment 1 of the present invention in the order of steps.

【0021】まず本発明の半導体装置の構造を図3(c
)を用いて説明する。図において、1はP型半導体基板
、5はNウェル、8はフィールド酸化膜、11はゲート
酸化膜、13はゲート電極、15は高濃度N型拡散層で
ある。ゲート電極13は、半導体基板に開けられた溝1
4内に形成されている。ゲート酸化膜11は膜厚が比較
的厚い溝側部と膜厚が薄い底面部からなる。高濃度N型
拡散層15は、ゲート電極13とフィールド酸化膜8で
囲まれた基板領域に形成される。Nウェル5は溝よりも
深く、溝底面の薄いゲート酸化膜端とオーバーラップし
ている。
First, the structure of the semiconductor device of the present invention is shown in FIG.
). In the figure, 1 is a P-type semiconductor substrate, 5 is an N-well, 8 is a field oxide film, 11 is a gate oxide film, 13 is a gate electrode, and 15 is a heavily doped N-type diffusion layer. The gate electrode 13 is a groove 1 made in a semiconductor substrate.
It is formed within 4. The gate oxide film 11 consists of a relatively thick groove side portion and a thin bottom portion. Highly doped N-type diffusion layer 15 is formed in a substrate region surrounded by gate electrode 13 and field oxide film 8 . The N well 5 is deeper than the trench and overlaps the edge of the thin gate oxide film at the bottom of the trench.

【0022】次に本発明の半導体装置の製造方法を説明
する。まず図1(a)に示すように、P型半導体基板1
上に熱酸化により厚さ約2000Åの酸化膜2を形成す
る。
Next, a method for manufacturing a semiconductor device according to the present invention will be explained. First, as shown in FIG. 1(a), a P-type semiconductor substrate 1
An oxide film 2 having a thickness of about 2000 Å is formed thereon by thermal oxidation.

【0023】次に図1(b)に示すようにリン注入3を
エネルギー150keV、注入量1×1013cm−2
で行う。次に図面には示していないがレジストをマスク
として酸化膜2を所定形状に除去する。レジストを除去
した後、図1(b)に示すように酸化膜2をマスクとし
てP型半導体基板1に異方性エッチングで深さ2μm、
幅約3μmの溝4を形成する。
Next, as shown in FIG. 1(b), phosphorus implantation 3 was performed at an energy of 150 keV and an implantation amount of 1×1013 cm−2.
Do it with Next, although not shown in the drawings, the oxide film 2 is removed into a predetermined shape using a resist as a mask. After removing the resist, the P-type semiconductor substrate 1 is anisotropically etched to a depth of 2 μm using the oxide film 2 as a mask, as shown in FIG. 1(b).
A groove 4 having a width of about 3 μm is formed.

【0024】次に1000℃で数時間の熱処理を施し、
基板中のリン3を拡散させ、図1(c)に示すNウェル
5を形成する。熱処理の際に溝内に約500Åの酸化膜
6が形成される。次に窒化膜7を所定の形状で形成する
[0024] Next, heat treatment was performed at 1000°C for several hours,
Phosphorus 3 in the substrate is diffused to form an N well 5 shown in FIG. 1(c). During the heat treatment, an oxide film 6 of about 500 Å is formed in the trench. Next, a nitride film 7 is formed in a predetermined shape.

【0025】次に980℃スチーム雰囲気中で数時間の
熱処理をし、図2(a)に示す約6000Åのフィール
ド酸化膜8を形成する。窒化膜7を除去し、酸化膜6を
等方性エッチングすることにより、溝部以外の基板上に
厚さ約1000Åの酸化膜9を残す。
Next, heat treatment is performed for several hours in a 980° C. steam atmosphere to form a field oxide film 8 of about 6000 Å as shown in FIG. 2(a). By removing the nitride film 7 and isotropically etching the oxide film 6, an oxide film 9 with a thickness of about 1000 Å is left on the substrate other than the groove portion.

【0026】次に図2(b)に示すように厚さ約100
0Åの酸化膜10を減圧の化学的気相成長法により形成
する。溝部以外の基板上の酸化膜厚は、すでに下地にあ
った約1000Åの熱酸化膜との合計の2000Åとな
る。
Next, as shown in FIG. 2(b), the thickness is about 100 mm.
An oxide film 10 having a thickness of 0 Å is formed by chemical vapor deposition under reduced pressure. The total thickness of the oxide film on the substrate other than the groove portion is 2000 Å, including the thermal oxide film of about 1000 Å already on the base.

【0027】次に図2(c)に示すように溝底面上の酸
化膜がなくなる程度に、異方性エッチングで酸化膜10
を除去する。溝側面部と、溝部以外の基板表面には約1
000Åの酸化膜が残っている。
Next, as shown in FIG. 2(c), the oxide film 10 is removed by anisotropic etching to the extent that the oxide film on the bottom surface of the trench is removed.
remove. Approximately 1
An oxide film of 000 Å remains.

【0028】次に図3(a)に示すように900℃の酸
素雰囲気中で熱処理を行い300Åのゲート酸化膜11
を形成する。次にポリシリ12を約1μm成長する。
Next, as shown in FIG. 3A, heat treatment is performed in an oxygen atmosphere at 900° C. to form a gate oxide film 11 with a thickness of 300 Å.
form. Next, polysilicon 12 is grown to a thickness of about 1 μm.

【0029】次に図3(b)に示すように、ポリシリ1
2をレジスト等をマスクとして所定の形状にエッチング
しゲート電極13を得る。次にゲート電極13、フィー
ルド酸化膜8をマスクとしてヒ素注入14を70keV
、5×1015cm−2で行う。熱処理を行うと、図3
(c)に示すように、高濃度N型拡散層15が得られる
Next, as shown in FIG. 3(b), the polysilicon 1
2 is etched into a predetermined shape using a resist or the like as a mask to obtain a gate electrode 13. Next, using the gate electrode 13 and field oxide film 8 as a mask, arsenic implantation 14 is performed at 70 keV.
, 5 x 1015 cm-2. After heat treatment, Figure 3
As shown in (c), a highly doped N-type diffusion layer 15 is obtained.

【0030】上記実施例1でソース・ドレインの高濃度
N型拡散層間の距離を見積もってみる。Nウェル−Nウ
ェル間距離(図3(c)のL)は、およそ3μm以上で
ある必要がある。Nウェル端と高濃度N型拡散層との距
離はゲート電極13の溝に対する位置合わせの余裕分(
図3(c)のA)を見込めばよいので約0.5μmあれ
ばよい。従って、合計ではL+A+A=4μmとなる。
In Example 1, the distance between the highly doped N-type diffusion layers of the source and drain will be estimated. The N-well-to-N-well distance (L in FIG. 3(c)) needs to be approximately 3 μm or more. The distance between the N-well end and the heavily doped N-type diffusion layer is determined by the margin for alignment of the gate electrode 13 with respect to the groove (
Since A) in FIG. 3(c) is sufficient, approximately 0.5 μm is sufficient. Therefore, the total is L+A+A=4 μm.

【0031】一方、従来例では、先に述べたように7μ
m必要であった。本実施例により寸法は約60%に減る
ことになる。またNウェルの位置、およびゲート電極の
位置は溝に対し、自己整合的に決まるので、マスク工程
の位置合わせの精度に依存せず、耐圧値,電流−電圧特
性が安定しているという利点も有する。さらに、Nウェ
ル形成のための熱処理時のリンの拡散は、溝の側壁にそ
って進行するため、熱処理条件のばらつきがあったとし
ても、Nウェルのゲート酸化膜に対する位置はほとんど
変動しない。いわば、Nウェル端の位置も溝に自己整合
的と云える。この点もトランジスタ特性の安定化に寄与
する。
On the other hand, in the conventional example, as mentioned earlier, 7μ
m was necessary. This embodiment results in a size reduction of approximately 60%. In addition, since the position of the N-well and the position of the gate electrode are determined in a self-aligned manner with respect to the groove, there is the advantage that the withstand voltage value and current-voltage characteristics are stable without depending on the alignment accuracy of the mask process. have Furthermore, since the diffusion of phosphorus during the heat treatment for forming the N-well proceeds along the sidewalls of the trench, the position of the N-well with respect to the gate oxide film hardly changes even if there are variations in the heat treatment conditions. In other words, the position of the N-well end can also be said to be self-aligned with the groove. This point also contributes to stabilization of transistor characteristics.

【0032】(実施例2)図4は、本発明の第2の実施
例を説明するための工程順の断面図である。本実施例で
は、実施例1と同様に図1〜図2までを実施する。
(Embodiment 2) FIG. 4 is a cross-sectional view of the process order for explaining a second embodiment of the present invention. In this embodiment, the steps shown in FIGS. 1 to 2 are carried out in the same manner as in the first embodiment.

【0033】次に、図4(a)に示すように溝底面部に
ゲート酸化膜11を形成し、ポリシリ16を厚さ約2μ
mで形成する。
Next, as shown in FIG. 4(a), a gate oxide film 11 is formed on the bottom of the trench, and a polysilicon film 16 is formed to a thickness of about 2 μm.
Formed by m.

【0034】次に図面には示していないがレジストを塗
布し表面を平坦にしてからレジストとポリシリのエッチ
ング速度がほぼ等しい条件でエッチバックすることによ
り、ポリシリ表面を平坦にする。さらにエッチングを進
めて、図4(b)に示すように溝内部にのみポリシリが
残るようにする。溝内部のポリシリがゲート電極17と
なる。次にゲート電極およびフィールド酸化膜をマスク
としてヒ素注入18を70keV、5×1015cm−
2で行う。熱処理を施して、ヒ素を拡散することにより
、図4(c)に示すように高濃度N型拡散層19が形成
される。
Next, although not shown in the drawings, a resist is applied to flatten the surface and then etched back under conditions where the etching rates of the resist and the polysilicon are approximately equal, thereby flattening the polysilicon surface. Etching is further continued until the polysilicon remains only inside the groove, as shown in FIG. 4(b). The polysilicon inside the groove becomes the gate electrode 17. Next, using the gate electrode and field oxide film as a mask, arsenic implantation 18 was performed at 70 keV and 5 x 1015 cm-
Do it in 2. By performing heat treatment and diffusing arsenic, a high concentration N-type diffusion layer 19 is formed as shown in FIG. 4(c).

【0035】本実施例では、ゲート電極17が溝内部に
のみ存在するためゲート電極と溝との位置合わせの余裕
は考慮しないですむ。従って、Nウェルと高濃度N型拡
散層との距離(図4(c)のB)は約0.2μmでよい
。ソース・ドレインの高濃度N型拡散層の間隔はL+B
+B=3.4μmとなり、従来例の7μmに比べ48%
に減少できる。
In this embodiment, since the gate electrode 17 exists only inside the groove, there is no need to consider the alignment margin between the gate electrode and the groove. Therefore, the distance between the N-well and the heavily doped N-type diffusion layer (B in FIG. 4(c)) may be approximately 0.2 μm. The spacing between the source and drain high concentration N-type diffusion layers is L+B
+B = 3.4μm, 48% compared to the conventional example of 7μm
can be reduced to

【0036】上述の実施例1,2において、面積を小さ
くできる理由は、Nウェル−高濃度N型拡散層の横方向
の間隔が小さいからである。高耐圧トランジスタにおい
ては、耐圧を上げるために、この間隔を横方向に確保し
ているため、これが面積増大につながっている。
In the first and second embodiments described above, the area can be reduced because the lateral distance between the N well and the heavily doped N type diffusion layer is small. In high-voltage transistors, this interval is secured in the lateral direction in order to increase the breakdown voltage, which leads to an increase in area.

【0037】一方、本発明では、Nウェル−高濃度N型
拡散層間隔を縦方向にとっている。つまり、ドレインに
電圧を追加した時にゲート酸化膜端部のNウェル端から
伸びる空乏層は、溝の側壁に沿って高濃度N型拡散層に
至ることになる。
On the other hand, in the present invention, the distance between the N well and the high concentration N type diffusion layer is set in the vertical direction. In other words, when a voltage is applied to the drain, the depletion layer extending from the N-well end at the end of the gate oxide film reaches the heavily doped N-type diffusion layer along the sidewall of the trench.

【0038】このため、従来例では必要であった横方向
の間隔が、本発明では不要になっている。この点が面積
の大幅な低減に寄与しているのである。
[0038] Therefore, the lateral spacing that was necessary in the conventional example is no longer necessary in the present invention. This point contributes to a significant reduction in area.

【0039】また溝の深さをさらに深くし、Nウェルも
さらに深く形成すれば、Nウェル端と高濃度N型拡散層
との距離を大きくすることができる。従って、面積を増
大させることなく、耐圧のさらなる向上も実現できると
いう利点も有する。
Furthermore, by making the groove deeper and forming the N-well deeper, it is possible to increase the distance between the end of the N-well and the heavily doped N-type diffusion layer. Therefore, there is also the advantage that further improvement in breakdown voltage can be realized without increasing the area.

【0040】[0040]

【発明の効果】以上説明したように本発明は、面積が従
来例の40〜60%に低減できる。また、ゲート電極の
位置とNウェルの位置が、基板に形成した溝に対してそ
れぞれ自己整合的に形成されるので、耐圧、および電流
−電圧特性が安定しているという効果を有する。
As explained above, according to the present invention, the area can be reduced to 40 to 60% of the conventional example. Furthermore, since the positions of the gate electrode and the N-well are formed in a self-aligned manner with respect to the groove formed in the substrate, there is an effect that the withstand voltage and current-voltage characteristics are stable.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の実施例1を工程順に示す断面図である
FIG. 1 is a cross-sectional view showing a first embodiment of the present invention in order of steps.

【図2】本発明の実施例1を工程順に示す断面図である
FIG. 2 is a cross-sectional view showing Example 1 of the present invention in order of steps.

【図3】本発明の実施例1を工程順に示す断面図である
FIG. 3 is a cross-sectional view showing Example 1 of the present invention in order of steps.

【図4】本発明の実施例2を工程順に示す断面図である
FIG. 4 is a cross-sectional view showing a second embodiment of the present invention in order of steps.

【図5】従来例を工程順に示す断面図である。FIG. 5 is a cross-sectional view showing a conventional example in the order of steps.

【図6】従来例を工程順に示す断面図である。FIG. 6 is a cross-sectional view showing a conventional example in the order of steps.

【図7】従来例を工程順に示す断面図である。FIG. 7 is a cross-sectional view showing a conventional example in the order of steps.

【符号の説明】[Explanation of symbols]

1  P型半導体基板 2  酸化膜 3  リン注入 4  溝 5  Nウェル 6  酸化膜 7  窒化膜 8  フィールド酸化膜 9  酸化膜 10  酸化膜 11  ゲート酸化膜 12  ポリシリ 13  ゲート電極 14  ヒ素注入 15  高濃度N型拡散層 16  ポリシリ 17  ゲート電極 18  ヒ素注入 19  高濃度N型拡散層 20  P型半導体基板 21  酸化膜 22  レジスト 23  リン注入 24  リン 25  Nウェル 26  酸化膜 27  窒化膜 28  フィールド酸化膜 29  第1ゲート酸化膜 30  レジスト 31  第2ゲート酸化膜 32  ゲート電極 33  ヒ素注入 34  高濃度N型拡散層 1 P-type semiconductor substrate 2 Oxide film 3. Phosphorus injection 4 groove 5 N well 6 Oxide film 7 Nitride film 8 Field oxide film 9 Oxide film 10 Oxide film 11 Gate oxide film 12 Policy series 13 Gate electrode 14 Arsenic injection 15 High concentration N type diffusion layer 16 Policy series 17 Gate electrode 18 Arsenic injection 19 High concentration N-type diffusion layer 20 P-type semiconductor substrate 21 Oxide film 22 Resist 23 Phosphorus injection 24 Rin 25 N well 26 Oxide film 27 Nitride film 28 Field oxide film 29 First gate oxide film 30 Resist 31 Second gate oxide film 32 Gate electrode 33 Arsenic injection 34 High concentration N type diffusion layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  一導電型の半導体基板と、前記半導体
基板に設けられた溝と、前記溝の底面部での膜厚が前記
溝の側面部での膜厚よりも小さいゲート絶縁膜と、前記
溝内に前記ゲート絶縁膜を介して設けられたゲート電極
と、前記溝に隣接する前記半導体基板内に前記溝よりも
深く設けられた逆導電型の低濃度拡散層と、前記ゲート
電極に隣接する前記低濃度拡散層内に設けられた、前記
溝よりも浅い逆導電型の高濃度拡散層とを有することを
特徴とする絶縁ゲート型半導体装置。
1. A semiconductor substrate of one conductivity type, a groove provided in the semiconductor substrate, and a gate insulating film having a thickness smaller at a bottom surface of the groove than at a side surface of the groove; a gate electrode provided in the groove via the gate insulating film; a low concentration diffusion layer of an opposite conductivity type provided deeper than the groove in the semiconductor substrate adjacent to the groove; An insulated gate type semiconductor device comprising: a high concentration diffusion layer of an opposite conductivity type shallower than the groove and provided in the adjacent low concentration diffusion layer.
【請求項2】  一導電型の半導体基板に逆導電型の不
純物を導入する工程と、前記半導体基板に溝を形成する
工程と、熱処理を施すことで前記逆導電型の不純物を拡
散させ前記溝に隣接する前記半導体基板に前記溝よりも
深い逆導電型の低濃度拡散層を形成する工程と、前記溝
の内部を含む前記半導体基板表面に絶縁膜を形成する工
程と、前記絶縁膜に異方性エッチングを施すことにより
前記溝の底面部の絶縁膜は除去し、側面部には絶縁膜を
残す工程と、前記溝の底面部にゲート絶縁膜を形成する
工程と、少くとも前記溝の底面部を覆ってゲート電極を
形成する工程と、前記ゲート電極に隣接する前記半導体
基板表面に前記溝よりも浅い逆導電型の高濃度拡散層を
形成する工程とを有することを特徴とする絶縁ゲート型
半導体装置の製造方法。
2. A step of introducing an impurity of an opposite conductivity type into a semiconductor substrate of one conductivity type, a step of forming a groove in the semiconductor substrate, and a heat treatment to diffuse the impurity of the opposite conductivity type into the groove. forming a low concentration diffusion layer of a reverse conductivity type deeper than the groove in the semiconductor substrate adjacent to the groove; forming an insulating film on the surface of the semiconductor substrate including the inside of the groove; A step of removing the insulating film at the bottom of the trench by performing directional etching and leaving an insulating film on the side surfaces, a step of forming a gate insulating film at the bottom of the trench, and a step of forming a gate insulating film at the bottom of the trench; An insulation characterized by comprising the steps of: forming a gate electrode covering the bottom surface; and forming a highly concentrated diffusion layer of an opposite conductivity type shallower than the trench on the surface of the semiconductor substrate adjacent to the gate electrode. A method for manufacturing a gate type semiconductor device.
JP3098139A 1991-04-03 1991-04-03 Semiconductor device and manufacturing method thereof Expired - Fee Related JP3044814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3098139A JP3044814B2 (en) 1991-04-03 1991-04-03 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3098139A JP3044814B2 (en) 1991-04-03 1991-04-03 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH04306881A true JPH04306881A (en) 1992-10-29
JP3044814B2 JP3044814B2 (en) 2000-05-22

Family

ID=14211896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3098139A Expired - Fee Related JP3044814B2 (en) 1991-04-03 1991-04-03 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3044814B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005136366A (en) * 2003-10-28 2005-05-26 Dongbu Electronics Co Ltd Manufacturing method of transistor for semiconductor element
US7344935B2 (en) 2002-10-17 2008-03-18 Fuji Electric Co., Ltd. Method of manufacturing a semiconductor integrated circuit device
US7696569B2 (en) 2006-09-22 2010-04-13 Elpida Memory, Inc. Semiconductor device including a trench with a curved surface portion and method of manufacturing the same
WO2011024956A1 (en) * 2009-08-28 2011-03-03 独立行政法人産業技術総合研究所 Recessed gate type silicon carbide field effect transistor and method for manufacturing same
JP2011049410A (en) * 2009-08-28 2011-03-10 National Institute Of Advanced Industrial Science & Technology Inverter circuit and logic gate circuit using silicon carbide insulated gate field effect transistor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7344935B2 (en) 2002-10-17 2008-03-18 Fuji Electric Co., Ltd. Method of manufacturing a semiconductor integrated circuit device
US7445983B2 (en) 2002-10-17 2008-11-04 Fuji Electric Co., Ltd. Method of manufacturing a semiconductor integrated circuit device
US7445982B2 (en) 2002-10-17 2008-11-04 Fuji Electric Co., Ltd. Method of manufacturing a semiconductor integrated circuit device
JP2005136366A (en) * 2003-10-28 2005-05-26 Dongbu Electronics Co Ltd Manufacturing method of transistor for semiconductor element
JP4567969B2 (en) * 2003-10-28 2010-10-27 東部エレクトロニクス株式会社 Semiconductor device transistor manufacturing method
US7696569B2 (en) 2006-09-22 2010-04-13 Elpida Memory, Inc. Semiconductor device including a trench with a curved surface portion and method of manufacturing the same
WO2011024956A1 (en) * 2009-08-28 2011-03-03 独立行政法人産業技術総合研究所 Recessed gate type silicon carbide field effect transistor and method for manufacturing same
JP2011049410A (en) * 2009-08-28 2011-03-10 National Institute Of Advanced Industrial Science & Technology Inverter circuit and logic gate circuit using silicon carbide insulated gate field effect transistor
JP2011049408A (en) * 2009-08-28 2011-03-10 National Institute Of Advanced Industrial Science & Technology Recess gate type silicon carbide field effect transistor and method of manufacturing the same
US8835933B2 (en) 2009-08-28 2014-09-16 National Institute Of Advanced Industrial Science And Technology Recessed gate-type silicon carbide field effect transistor and method of producing same

Also Published As

Publication number Publication date
JP3044814B2 (en) 2000-05-22

Similar Documents

Publication Publication Date Title
JP4778127B2 (en) Lateral diffusion MOS transistor with trench source contact
US7550352B2 (en) MOS transistor having a recessed gate electrode and fabrication method thereof
US20030107081A1 (en) Extended drain metal oxide semiconductor field effect transistor with a source field plate and a method for fabricating the same
US5141891A (en) MIS-type semiconductor device of LDD structure and manufacturing method thereof
US6534365B2 (en) Method of fabricating TDMOS device using self-align technique
JPH11121739A (en) Semiconductor device and manufacture thereof
JPH02250331A (en) Semiconductor device and its manufacture
US5518944A (en) MOS transistor and its fabricating method
JPS6055665A (en) Manufacture of semiconductor device
US6635925B1 (en) Semiconductor device and method of manufacturing the same
JP3044814B2 (en) Semiconductor device and manufacturing method thereof
CN111987165B (en) Method for manufacturing lateral double-diffused transistor
KR0175367B1 (en) Semiconductor device and method of manufacturing the same
KR950001152B1 (en) Semiconductor device and manufacturing method thereof
JPH06177376A (en) Manufacture of mos field-effect semiconductor device
JP2741042B2 (en) Semiconductor device and manufacturing method thereof
JP3061157B2 (en) Method for forming semiconductor device
JPH07106557A (en) Semiconductor device and manufacture of the same
JPH036863A (en) Semiconductor device
KR940010543B1 (en) Fabricating method of mos transistor
JPH03132077A (en) Manufacture of semiconductor device
JPH0491481A (en) Mis field effect transistor
JPH06204472A (en) Manufacture of trench-type source/ drain mosfet
KR910009042B1 (en) Method of manufacturing a semiconductor device
KR0144882B1 (en) Method of manufacturing double-diffusion MOS field transistor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees