JPH04286127A - Manufacture of insulated-gate field-effect transistor - Google Patents

Manufacture of insulated-gate field-effect transistor

Info

Publication number
JPH04286127A
JPH04286127A JP3050061A JP5006191A JPH04286127A JP H04286127 A JPH04286127 A JP H04286127A JP 3050061 A JP3050061 A JP 3050061A JP 5006191 A JP5006191 A JP 5006191A JP H04286127 A JPH04286127 A JP H04286127A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
gate
insulating film
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3050061A
Other languages
Japanese (ja)
Inventor
Tetsuo Izawa
哲夫 伊澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3050061A priority Critical patent/JPH04286127A/en
Publication of JPH04286127A publication Critical patent/JPH04286127A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To eliminate easy arrival of dopant at a gate oxide film through a lower semiconductor layer by forming a gate electrode in a multilayer structure of a semiconductor layer of a lower layer and a semiconductor or metal layer of an upper layer, and interposing a layer insulating film having a diffusion blocking capacity between the layers of the electrode layers. CONSTITUTION:A substrate is heat treated by a RTA(Rapid Thermal Annealing) using a lamp. In this case, an SiO2 film 5 between thin gate layers is melted to disappear in upper first and lower second polycrystalline Si layers 4 and 5. Boron implanted in the layer 4 is diffused at once in the layer 4 to reach a gate oxide film 3, and a p<+> type polycrystalline Si gate electrode 10 is formed. Since the RTA is conducted in an extremely short time, the boron in the layer 4 does not pass through the gate oxide film and arrive at the surface of an n-type Si substrate 1.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は絶縁ゲート型電界効果ト
ランジスタの製造方法に関し、より具体的には、素子を
微細化し、多結晶シリコンゲート電極の薄膜化が進行し
た際、ゲート電極への不純物のドーピングを精度良く行
い、且つ特にCMOS回路においてpMOSトランジス
タを表面チャネル型とし、p型多結晶シリコンをゲート
電極に採用する際、ゲート電極に導入されるドーパント
の基板への突き抜けを回避して、高性能の素子を安定的
に製造する手段を提供するものである。
[Industrial Application Field] The present invention relates to a method for manufacturing an insulated gate field effect transistor, and more specifically, when devices are miniaturized and polycrystalline silicon gate electrodes become thinner, impurities in the gate electrodes are reduced. In particular, when a pMOS transistor is a surface channel type in a CMOS circuit and p-type polycrystalline silicon is used as a gate electrode, the dopant introduced into the gate electrode is prevented from penetrating into the substrate. This provides a means to stably manufacture high-performance devices.

【0002】0002

【従来の技術】従来、シリコンウエーハ上に形成する絶
縁ゲート型電界効果トランジスタは、閾値電圧を低く設
定することが容易なことからゲート電極材料として多結
晶シリコンが用いられ、この多結晶シリコンゲート電極
は、フォスフィン(PH3) 若しくはオキシ塩化燐(
POCl3) の熱分解により燐を気相拡散させてn型
にドーピングしていた。
Conventionally, insulated gate field effect transistors formed on silicon wafers use polycrystalline silicon as the gate electrode material because it is easy to set a low threshold voltage. is phosphine (PH3) or phosphorus oxychloride (
By thermal decomposition of POCl3), phosphorus was diffused in the vapor phase and doped into n-type.

【0003】一方、同一基板にnMOSトランジスタと
pMOSトランジスタの両方を形成する相補型MOS(
CMOS)回路においては、通常、nMOSトランジス
タのゲート電極とpMOSトランジスタのゲート電極に
は共に前述のn型多結晶シリコンが用いられる。このた
め、pMOSトランジスタの閾値電圧を0V近傍に設定
するためには、pMOSトランジスタのチャネル領域の
表面付近を軽くp型にしておく必要がある。このとき、
pMOSトランジスタのチャネルは基板表面よりやや内
部に形成され、埋込みチャネル型となる。この埋込みチ
ャネル型トランジスタには、チャネルが基板表面に形成
される表面チャネル型に比してキャリアの移動度が大き
くなって、トランジスタの駆動能力を大きくできるとい
う利点がある。しかしながら、チャネルが深いために、
トランジスタのチャネル長を短くした時に、閾値電圧が
低下するとか、パンチスルー降伏が生じ易くなる等の所
謂短チャネル効果を生じ易いという欠点がある。
On the other hand, complementary MOS (
In a CMOS (CMOS) circuit, the aforementioned n-type polycrystalline silicon is usually used for both the gate electrode of an nMOS transistor and the gate electrode of a pMOS transistor. Therefore, in order to set the threshold voltage of the pMOS transistor to around 0V, it is necessary to make the vicinity of the surface of the channel region of the pMOS transistor slightly p-type. At this time,
The channel of the pMOS transistor is formed slightly inside the substrate surface and is of a buried channel type. This buried channel type transistor has the advantage that carrier mobility is higher than that of a surface channel type transistor in which a channel is formed on the surface of a substrate, so that the driving ability of the transistor can be increased. However, due to the deep channel,
There is a drawback that when the channel length of a transistor is shortened, a so-called short channel effect is likely to occur, such as a decrease in threshold voltage or an increase in the likelihood of punch-through breakdown.

【0004】そこで、上述の埋込みチャネル型のゲート
長の縮小が困難であるという欠点を回避するために、C
MOS回路において、pMOSトランジスタをそのゲー
ト電極にp型多結晶シリコンを用いて表面チャネル型と
する方法が提供された。
Therefore, in order to avoid the drawback that it is difficult to reduce the gate length of the buried channel type, C.
In a MOS circuit, a method has been proposed in which a pMOS transistor is made into a surface channel type by using p-type polycrystalline silicon for its gate electrode.

【0005】[0005]

【発明が解決しようとする課題】表面チャネル型pMO
Sトランジスタにおいては、多結晶シリコンゲート電極
をp型にするためのドーパントには硼素(B)が用いら
れるが、硼素はn型不純物の燐(P) や砒素(As)
と異なり、拡散における〔シリコン/酸化膜〕界面の偏
析係数が1よりも小さく、多結晶シリコンゲート電極中
に導入した硼素が熱処理工程で下層のゲート酸化膜に吸
い取られるという現象がある。この現象は、素子寸法が
大きく従ってゲート酸化膜が厚いときには、たとえその
ゲート酸化膜中に硼素が吸い取られたとしても、硼素の
酸化膜中の拡散係数がシリコンのそれに比して1桁以上
小さいために特に問題とならない。しかしながら、逆に
素子寸法が縮小され、従ってゲート酸化膜が薄くなった
場合、ゲート酸化中に取り込まれた硼素はゲート酸化膜
を通過して半導体基板表面に到達し、n型であった半導
体基板の表面をp型に反転させ、閾値電圧を正にシフト
させてしまうという問題を生ずる。このようにゲート電
極材料中のドーパントがゲート絶縁膜を通って半導体基
板表面に達してしまう現象は、ドーパントの突き抜けと
仮称される。
[Problem to be solved by the invention] Surface channel type pMO
In S transistors, boron (B) is used as a dopant to make the polycrystalline silicon gate electrode p-type, but boron is also used as an n-type impurity such as phosphorus (P) or arsenic (As).
In contrast, the segregation coefficient at the [silicon/oxide film] interface during diffusion is smaller than 1, and there is a phenomenon in which boron introduced into the polycrystalline silicon gate electrode is absorbed by the underlying gate oxide film during the heat treatment process. This phenomenon is caused by the fact that when the device size is large and the gate oxide film is thick, even if boron is absorbed into the gate oxide film, the diffusion coefficient of boron in the oxide film is more than an order of magnitude smaller than that of silicon. Therefore, it is not a particular problem. However, if the device dimensions are reduced and the gate oxide film becomes thinner, the boron incorporated during gate oxidation passes through the gate oxide film and reaches the semiconductor substrate surface, causing the n-type semiconductor substrate to pass through the gate oxide film. This causes a problem in that the surface of the transistor is inverted to p-type and the threshold voltage is shifted positively. This phenomenon in which the dopant in the gate electrode material passes through the gate insulating film and reaches the surface of the semiconductor substrate is tentatively referred to as dopant penetration.

【0006】そこで本発明は、素子寸法がサブハーフミ
クロンからサブクォータミクロンに縮小され、それに伴
ってゲート絶縁膜の厚さが極度に薄く形成されるpMO
Sトランジスタに対し、硼素ドープによるp型多結晶シ
リコンゲート電極を用いて表面チャネル型にする際に、
前述の熱処理時におけるゲート電極から基板面への硼素
の突き抜けを防ぎ、高性能のCMOS集積回路を安定し
て提供することを目的とする。
Therefore, the present invention aims to reduce the device size from sub-half micron to sub-quarter micron, and the thickness of the gate insulating film is accordingly extremely thin.
When making an S transistor into a surface channel type using a boron-doped p-type polycrystalline silicon gate electrode,
The purpose of this invention is to prevent boron from penetrating from the gate electrode to the substrate surface during the heat treatment described above, and to stably provide a high-performance CMOS integrated circuit.

【0007】[0007]

【課題を解決するための手段】上記課題は、半導体基板
上にゲート絶縁膜を形成する工程と、該ゲート絶縁膜上
に、最下層が半導体層からなり、且つ各層間に厚さ1n
m乃至3nmの層間絶縁膜を介して積層された複数の半
導体層、若しくは半導体層と金属層からなる多層ゲート
電極を形成する工程と、該多層ゲート電極の少なくとも
該最下層の半導体層を除く半導体層若しくは金属層に、
該最下層の半導体層に導電性を付与するためのドーパン
トを導入する工程と、該半導体基板を1050℃以上に
加熱し、該多層ゲート電極の該層間絶縁膜を該層間絶縁
膜の上下に接する半導体或いは金属層内に溶解、消失せ
しめると共に、該最下層の半導体層に上層の半導体若し
くは金属層から該ドーパントを固相拡散させる工程とを
有する本発明による絶縁ゲート型電界効果トランジスタ
の製造方法によって解決される。
[Means for Solving the Problems] The above-mentioned problems include a step of forming a gate insulating film on a semiconductor substrate, and a step of forming a gate insulating film on the gate insulating film, the bottom layer of which is a semiconductor layer, and a thickness of 1 nm between each layer.
A step of forming a multilayer gate electrode consisting of a plurality of semiconductor layers or a semiconductor layer and a metal layer stacked via an interlayer insulating film with a thickness of 3 nm to 3 nm, and a semiconductor layer other than at least the bottom semiconductor layer of the multilayer gate electrode. layer or metal layer,
A step of introducing a dopant to impart conductivity to the lowermost semiconductor layer, and heating the semiconductor substrate to 1050° C. or higher, and bringing the interlayer insulating film of the multilayer gate electrode into contact with the top and bottom of the interlayer insulating film. According to the method for manufacturing an insulated gate field effect transistor according to the present invention, the dopant is dissolved and disappeared in the semiconductor or metal layer, and the dopant is solid-phase diffused from the upper semiconductor or metal layer into the lowermost semiconductor layer. resolved.

【0008】[0008]

【作用】即ち本発明では、ゲート電極を下層の半導体層
(例えば多結晶シリコン層)と上層の半導体若しくは金
属層(例えば多結晶シリコン層)との多層構造とし、こ
の電極層の層間にドーパント(例えば硼素)の拡散係数
がシリコンより小さく拡散阻止能力を有する層間絶縁膜
(例えばSiO2膜)を介在させる。このため、上層の
半導体若しくは金属層と層間絶縁膜の界面(例えば多結
晶シリコン/SiO2の界面)におけるドーパント(例
えば硼素)の偏析係数が1より小さくとも、層間絶縁膜
(例えばSiO2膜)が前記のようにドーパントの拡散
阻止能力を持っているので、製造工程途中の熱処理工程
によりドーパント(例えば硼素) は容易には下層の半
導体層(例えば多結晶シリコン層)を経てゲート酸化膜
まで到達しない。
[Operation] That is, in the present invention, the gate electrode has a multilayer structure consisting of a lower semiconductor layer (for example, a polycrystalline silicon layer) and an upper semiconductor or metal layer (for example, a polycrystalline silicon layer), and a dopant ( For example, an interlayer insulating film (for example, a SiO2 film) having a diffusion coefficient of boron (for example, boron) smaller than that of silicon and having a diffusion blocking ability is interposed. Therefore, even if the segregation coefficient of the dopant (e.g., boron) at the interface between the upper semiconductor or metal layer and the interlayer insulating film (e.g., polycrystalline silicon/SiO2 interface) is smaller than 1, the interlayer insulating film (e.g., SiO2 film) Because it has the ability to prevent dopant diffusion, the dopant (e.g., boron) does not easily reach the gate oxide film through the underlying semiconductor layer (e.g., polycrystalline silicon layer) due to the heat treatment process during the manufacturing process.

【0009】また、最近の透過型電子顕微鏡を用いた研
究によれば、多結晶シリコン層間に挟まれた1nmから
3nm弱のごく薄いSiO2膜は、1050℃以上の高
温で熱処理すると、その熱処理が数秒の短時間であって
も、消失してしまうことが分かった。この現象の機構は
未だに明確ではないが、酸化物を構成する酸素原子が、
多結晶シリコン中に溶解してしまったものと想像される
[0009] Furthermore, according to recent research using a transmission electron microscope, when a very thin SiO2 film of 1 nm to just under 3 nm sandwiched between polycrystalline silicon layers is heat-treated at a high temperature of 1050°C or higher, the heat treatment will deteriorate. It turns out that it disappears even for a short period of a few seconds. The mechanism of this phenomenon is still unclear, but the oxygen atoms that make up the oxide
It is assumed that it has dissolved into polycrystalline silicon.

【0010】以上の点から本発明においては、ゲート電
極を、前記のようにドーパントの拡散阻止能力を持ち、
且つ上記のように高温で半導体や金属に溶解除去される
ようなごく薄い層間絶縁膜を介して下層の半導体層と、
上層の半導体若しくは金属層とが積層された多層構造と
なし、下層の半導体層に導電性を付与するためのドーパ
ントは、上層の半導体若しくは金属層にイオン注入法、
気相成長法あるいは固相拡散法により導入される。その
ため以後の製造工程途中の熱処理(層間絶縁膜の成長、
層間絶縁膜のリフロー等)におけるドーパントの半導体
基板面への突き抜けは、前記ゲートの層間絶縁膜により
阻止される。そして工程の最後の高温熱処理として10
50℃以上の温度で数秒の短時間熱処理(RTA:Ra
pid Thermal Annealing) を施
しゲートの層間絶縁膜を溶解消失させ、ドーパントを下
層の半導体層に拡散させ下層半導体層に導電性を付与す
る。この熱処理はごく短時間であるので、ドーパントが
ゲート酸化膜を突き抜けて半導体基板面に達することは
なく、トランジスタに閾値変動を生ずることがない。
In view of the above points, in the present invention, the gate electrode has a dopant diffusion blocking ability as described above,
In addition, as mentioned above, the lower semiconductor layer is connected to the underlying semiconductor layer through a very thin interlayer insulating film that is dissolved and removed by semiconductors and metals at high temperatures.
It has a multilayer structure in which the upper semiconductor or metal layer is laminated, and the dopant for imparting conductivity to the lower semiconductor layer is ion-implanted into the upper semiconductor or metal layer.
It is introduced by vapor phase growth method or solid phase diffusion method. Therefore, heat treatment during the subsequent manufacturing process (growth of interlayer insulating film,
Penetration of the dopant into the semiconductor substrate surface during reflow of the interlayer insulating film, etc.) is prevented by the interlayer insulating film of the gate. And as a high temperature heat treatment at the end of the process, 10
Short-time heat treatment (RTA: Ra
The interlayer insulating film of the gate is dissolved and disappeared by thermal annealing, and the dopant is diffused into the underlying semiconductor layer to impart conductivity to the underlying semiconductor layer. Since this heat treatment is for a very short time, the dopant does not penetrate through the gate oxide film and reach the semiconductor substrate surface, and no threshold fluctuation occurs in the transistor.

【0011】[0011]

【実施例】以下本発明を、一実施例について、図1(a
) 〜(d) 及び図2(a) 〜(d) に示す工程
断面図を参照し具体的に説明する。なお、全図を通じ同
一対象物は同一符合で示す。
[Example] The present invention will be described below with reference to an example shown in FIG.
) to (d) and process cross-sectional views shown in FIGS. 2(a) to (d). Note that the same objects are indicated by the same reference numerals throughout the figures.

【0012】図1(a) 参照 本発明の方法によりpチャネル絶縁ゲート型電界効果ト
ランジスタ(pMOS)を形成するに際しては、通常通
り、例えば選択酸化(LOCOS) 法によりn型シリ
コン(Si)基板1面に素子形成領域101 を画定表
出するフィールド酸化膜2を形成する。
Refer to FIG. 1(a) When forming a p-channel insulated gate field effect transistor (pMOS) by the method of the present invention, an n-type silicon (Si) substrate 1 is formed by, for example, selective oxidation (LOCOS) method as usual. A field oxide film 2 defining and exposing an element formation region 101 is formed on the surface.

【0013】図1(b) 参照 次いで、通常通り熱酸化により素子形成領域101 上
にゲート酸化膜3を例えば7nmの膜厚に形成する。
Referring to FIG. 1(b), a gate oxide film 3 is then formed to a thickness of, for example, 7 nm on the element formation region 101 by thermal oxidation as usual.

【0014】図1(c) 参照 次いで、基板の全面上に、下層のゲート電極層になる第
1の多結晶Si層4をCVD 法により例えば20nm
の膜厚で形成し、次いで前記第1の多結晶Si層4上に
熱酸化或いはCVD 法によりゲート層間絶縁膜となる
薄いSiO2膜5を例えば1nmの膜厚で形成し、次い
でその上に上層のゲート電極層となる第2の多結晶Si
層6をCVD法により例えば 100nmの膜厚で形成
する。
Referring to FIG. 1(c), next, a first polycrystalline Si layer 4, which will become the lower gate electrode layer, is formed on the entire surface of the substrate to a thickness of, for example, 20 nm by CVD.
Then, on the first polycrystalline Si layer 4, a thin SiO2 film 5, which will become a gate interlayer insulating film, is formed with a thickness of, for example, 1 nm by thermal oxidation or CVD method, and then an upper layer is formed on it. The second polycrystalline Si becomes the gate electrode layer of
Layer 6 is formed with a thickness of, for example, 100 nm by CVD.

【0015】図1(d) 参照 次いで、エッチング手段にリアクティブイオンエッチン
グ法を用いる通常のリソグラフィ法により、前記第2の
多結晶Si層6、SiO2膜5及び第1の多結晶Si層
4を順次パターニングし、第1の多結晶Si層4からな
る下層ゲート電極層上に厚さ1nmの薄いSiO2膜5
からなるゲート電極層間絶縁膜を介して第2の多結晶S
i層6からなる上層ゲート電極層が積層された多層ゲー
ト電極110 を形成する。
Referring to FIG. 1(d), the second polycrystalline Si layer 6, the SiO2 film 5, and the first polycrystalline Si layer 4 are then etched by a normal lithography method using reactive ion etching as an etching means. A thin SiO2 film 5 with a thickness of 1 nm is formed on the lower gate electrode layer made of the first polycrystalline Si layer 4 by sequential patterning.
A second polycrystalline S via a gate electrode interlayer insulating film consisting of
A multilayer gate electrode 110 is formed in which an upper gate electrode layer consisting of the i-layer 6 is laminated.

【0016】図2(a) 参照 次いで、上記多層ゲート電極110 をマスクにして素
子形成領域101に表出する基板1中に硼素イオン(B
+ ) を加速エネルギー5KeV 、ドーズ量2×1
0−2でイオン注入し、ソース領域用 B+ 注入領域
107S及びドレイン領域用 B+ 注入領域107D
を形成する。なおこの際、多層ゲート電極110 上層
の第2の多結晶Si層6にも同様のドーズ量で B+ 
が注入される。106 は B+ 注入領域を示す。
Referring to FIG. 2A, next, using the multilayer gate electrode 110 as a mask, boron ions (B
+ ) with acceleration energy of 5KeV and dose of 2×1
Ion implantation is performed at 0-2 to form a B+ implanted region 107S for the source region and a B+ implanted region 107D for the drain region.
form. At this time, the second polycrystalline Si layer 6 on the multilayer gate electrode 110 is also treated with B+
is injected. 106 indicates the B+ implantation region.

【0017】図2(b) 参照 次いで、通常通り、基板全面上にCVD 法により厚さ
 200nm程度の層間SiO2膜8、及び厚さ 30
0nm程度の層間燐珪酸ガラス(PSG) 膜9を順次
堆積する。そしてここで通常通り 850℃の窒素雰囲
気中においてPSG 膜9のアニール処理を行い、この
際同時にソース領域用 B+ 注入領域107S及びド
レイン領域用 B+ 注入領域107Dの B+ の活
性化、再分布が行われて、n+ 型ソース領域7A及び
n+ 型ドレイン領域7Bが形成される。また第2の多
結晶Si層6に注入された B+ も活性化し拡散して
ゲート層間のSiO2膜5に達し、若干量が下層の第1
の多結晶Si層4内へ滲み出すが、その量は極めて少な
い。(6nはn+ 型第2の多結晶Si層) 図2(c) 参照 次いでランプを用いたRTA(Rapid Therm
al Annealing) により、基板に1100
℃、5秒の熱処理を施す。この時、薄いゲート層間のS
iO2膜5は上下の第1、第2の多結晶Si層4及び6
に溶解、消失し、第2の多結晶Si層4に注入されてい
る硼素が一気に第1の第1の多結晶Si層4内へ拡散し
ゲート酸化膜3に達し、p+型多結晶Siゲート電極1
0が形成される。なおこのRTA処理は極めて短時間で
あるので、第1の第1の多結晶Si層4内の硼素がゲー
ト酸化膜3を突き抜けてn型Si基板1面に達すること
はなく、従ってゲート下部領域のn型不純物濃度は初期
のまま維持されて閾値の変動は生じない。
Referring to FIG. 2(b), next, as usual, an interlayer SiO2 film 8 with a thickness of about 200 nm and an interlayer SiO2 film 8 with a thickness of 30 nm are formed on the entire surface of the substrate by CVD.
An interlayer phosphosilicate glass (PSG) film 9 of about 0 nm in thickness is sequentially deposited. Then, as usual, the PSG film 9 is annealed in a nitrogen atmosphere at 850° C. At this time, B+ is activated and redistributed in the B+ implanted region 107S for the source region and the B+ implanted region 107D for the drain region. Thus, an n+ type source region 7A and an n+ type drain region 7B are formed. In addition, B+ implanted into the second polycrystalline Si layer 6 is also activated and diffused to reach the SiO2 film 5 between the gate layers, and a small amount of B+ is absorbed into the first layer below.
oozes into the polycrystalline Si layer 4, but the amount is extremely small. (6n is the n+ type second polycrystalline Si layer) See Figure 2(c) Next, RTA using a lamp (Rapid Thermal
1100 on the board by
Heat treatment is performed at ℃ for 5 seconds. At this time, S between the thin gate layers
The iO2 film 5 consists of upper and lower first and second polycrystalline Si layers 4 and 6.
The boron implanted into the second polycrystalline Si layer 4 diffuses into the first polycrystalline Si layer 4 and reaches the gate oxide film 3, forming a p+ type polycrystalline Si gate. Electrode 1
0 is formed. Note that since this RTA treatment is extremely short, boron in the first polycrystalline Si layer 4 does not penetrate through the gate oxide film 3 and reach the n-type Si substrate 1 surface, so that the boron in the first polycrystalline Si layer 4 does not penetrate into the gate lower region. The n-type impurity concentration is maintained at the initial value, and the threshold value does not change.

【0018】図2(d) 参照 次いで、通常の集積回路製造工程に従い層間PSG 膜
9及び層間SiO2膜8にコンタクトホールを形成しア
ルミニウム等からなるソース配線11S 及びドレイン
配線11D を形成し本発明に係る表面チャネル型pM
OSトランジスタが完成する。
Referring to FIG. 2(d), contact holes are then formed in the interlayer PSG film 9 and the interlayer SiO2 film 8 according to the usual integrated circuit manufacturing process, and source wiring 11S and drain wiring 11D made of aluminum or the like are formed. Such surface channel type pM
The OS transistor is completed.

【0019】以上実施例においては、本発明をn型Si
基板にpMOSトランジスタのみを形成する場合につい
て説明したが、本発明は、CMOS工程において上記各
工程間でnMOSトランジスタを製造する工程が挿入さ
れても、全く同様に実施することができる。
In the above embodiments, the present invention was applied to n-type Si.
Although the case where only a pMOS transistor is formed on a substrate has been described, the present invention can be implemented in exactly the same way even if a step of manufacturing an nMOS transistor is inserted between the above steps in a CMOS process.

【0020】なお本発明の方法において上層のゲート電
極層には、高融点金属若しくは高融点金属珪化物例えば
タングステンシリサイド(WSi2)等も用いられる、
同様の効果が得られる。また上層のゲート電極層は1層
に限られるものではない。
In the method of the present invention, a refractory metal or a refractory metal silicide such as tungsten silicide (WSi2) may also be used for the upper gate electrode layer.
A similar effect can be obtained. Furthermore, the number of upper gate electrode layers is not limited to one layer.

【0021】なおまた、ゲート層間絶縁膜には窒化珪素
等も使用できる。
Furthermore, silicon nitride or the like can also be used for the gate interlayer insulating film.

【0022】[0022]

【発明の効果】以上説明したように本発明によれば、p
MOSトランジスタを、p型ポリシリコンゲートを用い
、表面チャネル型トランジスタとして機能させる場合に
も、ゲート電極にドープした硼素が基板内に突き抜けを
起こし閾値の変動を生ずることがない。従ってpMOS
トランジスタを表面チャネル化してCMOS回路が構成
できるので、CMOS回路をクォータミクロン領域まで
微細化しても、短チャネル効果を生ずることなく安定に
高性能集積回路を供給することが可能になる。
[Effects of the Invention] As explained above, according to the present invention, p
Even when a MOS transistor is made to function as a surface channel transistor using a p-type polysilicon gate, boron doped in the gate electrode does not penetrate into the substrate and cause threshold fluctuation. Therefore pMOS
Since a CMOS circuit can be constructed by converting a transistor into a surface channel, even if the CMOS circuit is miniaturized to the quarter-micron region, it becomes possible to stably provide a high-performance integrated circuit without causing short channel effects.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  本発明の方法の一実施例の工程断面図(そ
の1)
[Fig. 1] Process cross-sectional diagram of one embodiment of the method of the present invention (Part 1)

【図2】  本発明の方法の一実施例の工程断面図(そ
の2)
[Fig. 2] Process sectional view of an embodiment of the method of the present invention (Part 2)

【符号の説明】 1  n型Si基板 2  フィールド酸化膜 3  ゲート酸化膜 4  第1の多結晶Si層 5  薄いSiO2膜 6  第2の多結晶Si層 7S  n+ 型ソース領域 7D  n+ 型ドレイン領域 8  層間SiO2膜 9  層間PSG 膜 10  n+ 型多結晶Siゲート電極11S   ソ
ース配線 11D   ドレイン配線 101   素子形成領域 106   B+ 注入領域 107S  ソース領域用B+ 注入領域107D  
ドレイン領域用B+ 注入領域110   多層ゲート
電極
[Explanation of symbols] 1 n-type Si substrate 2 field oxide film 3 gate oxide film 4 first polycrystalline Si layer 5 thin SiO2 film 6 second polycrystalline Si layer 7S n+ type source region 7D n+ type drain region 8 interlayer SiO2 film 9 Interlayer PSG film 10 N+ type polycrystalline Si gate electrode 11S Source wiring 11D Drain wiring 101 Element formation region 106 B+ injection region 107S B+ injection region 107D for source region
B+ injection region 110 for drain region Multilayer gate electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  半導体基板上にゲート絶縁膜を形成す
る工程と、該ゲート絶縁膜上に、最下層が半導体層から
なり、且つ各層間に厚さ1nm乃至3nmの層間絶縁膜
を介して積層された複数の半導体層、若しくは半導体層
と金属層からなる多層ゲート電極を形成する工程と、該
多層ゲート電極の少なくとも該最下層の半導体層を除く
半導体層若しくは金属層に、該最下層の半導体層に導電
性を付与するためのドーパントを導入する工程と、該半
導体基板を1050℃以上に加熱し、該多層ゲート電極
の該層間絶縁膜を該層間絶縁膜の上下に接する半導体或
いは金属層内に溶解、消失せしめると共に、該最下層の
半導体層に上層の半導体若しくは金属層から該ドーパン
トを固相拡散させる工程とを有することを特徴とする絶
縁ゲート型電界効果トランジスタの製造方法。
1. A step of forming a gate insulating film on a semiconductor substrate, and stacking layers on the gate insulating film, the bottom layer of which is a semiconductor layer, and an interlayer insulating film with a thickness of 1 nm to 3 nm interposed between each layer. forming a multilayer gate electrode consisting of a plurality of semiconductor layers or a semiconductor layer and a metal layer; A step of introducing a dopant to impart conductivity to the layer, and heating the semiconductor substrate to a temperature of 1050° C. or higher, and forming the interlayer insulating film of the multilayer gate electrode into a semiconductor or metal layer that contacts above and below the interlayer insulating film. A method for manufacturing an insulated gate field effect transistor, comprising the steps of: dissolving and dissipating the dopant into the lowermost semiconductor layer, and solid-phase diffusing the dopant from the upper semiconductor or metal layer into the lowermost semiconductor layer.
【請求項2】  前記半導体基板がn型シリコンよりな
り、前記半導体層が多結晶シリコンよりなり、前記絶縁
膜が酸化シリコン膜よりなり、且つ前記ドーパントが硼
素よりなることを特徴とする請求項1記載の絶縁ゲート
型電界効果トランジスタの製造方法。
2. The semiconductor substrate is made of n-type silicon, the semiconductor layer is made of polycrystalline silicon, the insulating film is made of silicon oxide film, and the dopant is made of boron. A method of manufacturing the insulated gate field effect transistor described above.
JP3050061A 1991-03-15 1991-03-15 Manufacture of insulated-gate field-effect transistor Withdrawn JPH04286127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3050061A JPH04286127A (en) 1991-03-15 1991-03-15 Manufacture of insulated-gate field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3050061A JPH04286127A (en) 1991-03-15 1991-03-15 Manufacture of insulated-gate field-effect transistor

Publications (1)

Publication Number Publication Date
JPH04286127A true JPH04286127A (en) 1992-10-12

Family

ID=12848488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3050061A Withdrawn JPH04286127A (en) 1991-03-15 1991-03-15 Manufacture of insulated-gate field-effect transistor

Country Status (1)

Country Link
JP (1) JPH04286127A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100450723B1 (en) * 1999-06-04 2004-10-01 인터내셔널 비지네스 머신즈 코포레이션 Method for forming a semiconductor device and method for delayed doping

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100450723B1 (en) * 1999-06-04 2004-10-01 인터내셔널 비지네스 머신즈 코포레이션 Method for forming a semiconductor device and method for delayed doping

Similar Documents

Publication Publication Date Title
KR920009745B1 (en) Manufacturing method of semiconductor
US4463492A (en) Method of forming a semiconductor device on insulating substrate by selective amorphosization followed by simultaneous activation and reconversion to single crystal state
US5393676A (en) Method of fabricating semiconductor gate electrode with fluorine migration barrier
US5726459A (en) GE-SI SOI MOS transistor and method of fabricating same
JPH10189970A (en) Manufacture of semiconductor device
KR20030003690A (en) Semiconductor device and method of fabrication
KR920009372B1 (en) Manufacturing method of semiconductor device
US6410409B1 (en) Implanted barrier layer for retarding upward diffusion of substrate dopant
JP3356629B2 (en) Method of manufacturing lateral MOS transistor
TW201013846A (en) Depletion-free MOS using atomic-layer doping
US6630386B1 (en) CMOS manufacturing process with self-amorphized source/drain junctions and extensions
JPS6360549B2 (en)
JPH04287332A (en) Manufacture of semiconductor element
JPH04286127A (en) Manufacture of insulated-gate field-effect transistor
JP3714757B2 (en) Manufacturing method of MIS type semiconductor device
JPH03209834A (en) Manufacture of mis semiconductor device
JP2000049334A (en) Semiconductor device and fabrication thereof
JP2626485B2 (en) Method for manufacturing semiconductor device
JPH1187699A (en) Semiconductor device and fabrication thereof
KR100240272B1 (en) Method of manufacturing semiconductor device
JPH042168A (en) Mos type field effect transistor and manufacture thereof
KR100604045B1 (en) Method for fabricating the poly silicon gate of semiconductor device
US7670936B1 (en) Nitridation of gate oxide by laser processing
JPH05218069A (en) Mos transistor and manufacture thereof
JPH0637097A (en) Semiconductor device and manufacture thereof

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514