JPH04284616A - Manufacture of solid electrolytic capacitor - Google Patents
Manufacture of solid electrolytic capacitorInfo
- Publication number
- JPH04284616A JPH04284616A JP3074128A JP7412891A JPH04284616A JP H04284616 A JPH04284616 A JP H04284616A JP 3074128 A JP3074128 A JP 3074128A JP 7412891 A JP7412891 A JP 7412891A JP H04284616 A JPH04284616 A JP H04284616A
- Authority
- JP
- Japan
- Prior art keywords
- electrolyte layer
- layer
- anode
- solid electrolytic
- electrolytic capacitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 27
- 239000007787 solid Substances 0.000 title claims abstract description 24
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- 239000003792 electrolyte Substances 0.000 claims abstract description 53
- 238000005520 cutting process Methods 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims description 23
- 239000007784 solid electrolyte Substances 0.000 claims description 4
- 239000000758 substrate Substances 0.000 abstract description 9
- 238000007789 sealing Methods 0.000 abstract description 5
- 239000010410 layer Substances 0.000 description 85
- 239000010408 film Substances 0.000 description 16
- 229920000128 polypyrrole Polymers 0.000 description 10
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 8
- 238000004080 punching Methods 0.000 description 8
- 229920003002 synthetic resin Polymers 0.000 description 6
- 239000000057 synthetic resin Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 238000006116 polymerization reaction Methods 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000000866 electrolytic etching Methods 0.000 description 1
- 238000012685 gas phase polymerization Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- PCCVSPMFGIFTHU-UHFFFAOYSA-N tetracyanoquinodimethane Chemical compound N#CC(C#N)=C1C=CC(=C(C#N)C#N)C=C1 PCCVSPMFGIFTHU-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Landscapes
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】この発明は、固体電解コンデンサ
の製造方法に関し、特に有機導電性化合物を利用したチ
ップ形の固体電解コンデンサにかかる。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a solid electrolytic capacitor, and more particularly to a chip-type solid electrolytic capacitor using an organic conductive compound.
【0002】0002
【従来の技術】近年の電子機器の小型化、プリント基板
への実装の効率化等の要請から電子部品のチップ化が進
められている。これに伴い、電解コンデンサのチップ化
、低背化の要請が高まっている。2. Description of the Related Art In recent years, electronic components have been made into chips due to the demand for smaller electronic devices and more efficient mounting on printed circuit boards. Along with this, there is an increasing demand for electrolytic capacitors to be made into chips and have a lower profile.
【0003】また、近年テトラシアノキノジメタン(T
CNQ)、ポリピロール等の有機導電性化合物を固体電
解コンデンサに応用したものが提案されている。これら
の有機導電性化合物を使用した固体電解コンデンサは、
従来の二酸化マンガン等の金属酸化物半導体からなる固
体電解質と比較して電導度が高く、特にポリピロールは
電解質がポリマー化しているため耐熱性にも優れること
から、チップ化に最適と言われている。In recent years, tetracyanoquinodimethane (T
It has been proposed that organic conductive compounds such as CNQ) and polypyrrole are applied to solid electrolytic capacitors. Solid electrolytic capacitors using these organic conductive compounds are
It has higher conductivity than conventional solid electrolytes made of metal oxide semiconductors such as manganese dioxide, and polypyrrole in particular has excellent heat resistance because the electrolyte is a polymer, so it is said to be ideal for chipping. .
【0004】このポリピロールは、ピロールの化学重合
、電解重合あるいは気相重合等によって陽極体表面に生
成されている。ところが、ポリピロール自体の機械的強
度は弱く、電極の引き出し構造によっては、接続工程中
にリード線等が電解質層を破壊してしまうことがあった
。あるいは、接続工程の後にリード線にかかる機械的な
ストレスが電解質層に影響を与え、所望の特性を得るこ
とが困難になることがあった。[0004] This polypyrrole is produced on the surface of the anode body by chemical polymerization, electrolytic polymerization, gas phase polymerization, etc. of pyrrole. However, the mechanical strength of polypyrrole itself is weak, and depending on the electrode lead-out structure, lead wires and the like may destroy the electrolyte layer during the connection process. Alternatively, mechanical stress applied to the lead wire after the connection process may affect the electrolyte layer, making it difficult to obtain desired characteristics.
【0005】そこで、陽極体の表面に酸化皮膜層、電解
質層及び導電層を生成し、導電層の表面に帯状の陰極体
を載置して、製造工程における電解質層へのストレスを
軽減することが考えられている。[0005] Therefore, an oxide film layer, an electrolyte layer, and a conductive layer are formed on the surface of the anode body, and a strip-shaped cathode body is placed on the surface of the conductive layer to reduce stress on the electrolyte layer during the manufacturing process. is being considered.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、このよ
うに陽極体の表面に電解質層等を形成した固体電解コン
デンサを製造する場合には、生産効率の向上を図るため
、板状の金属からなる基体に酸化皮膜層、電解質層及び
導電層を形成し、これを所望箇所で打抜き、あるいは切
断して個々の陽極体を形成している。[Problems to be Solved by the Invention] However, when manufacturing solid electrolytic capacitors in which an electrolyte layer or the like is formed on the surface of the anode body, in order to improve production efficiency, it is necessary to An oxide film layer, an electrolyte layer, and a conductive layer are formed on the material, and each anode body is formed by punching or cutting the material at desired locations.
【0007】ところが、この打抜き工程でのストレスが
電解質層に及び、所定の電気的特性を得ることが困難に
なってしまうことがあった。また打抜き工程でのストレ
スが大きい場合は、電解質層のみならず酸化皮膜層まで
もが破壊され、漏れ電流の増大等の不都合を招いていた
。[0007] However, the stress in this punching process is sometimes applied to the electrolyte layer, making it difficult to obtain predetermined electrical characteristics. Furthermore, if the stress in the punching process is large, not only the electrolyte layer but also the oxide film layer is destroyed, causing problems such as an increase in leakage current.
【0008】一方、このポリピロールは、水分によりそ
の電気的特性が変動し易くなる傾向がある。そのため、
ポリピロールからなる電解質層は外気から密封する必要
がある。このような課題は、コンデンサ本体の外表面を
、ディプ、インジェクション成形等の手段により、合成
樹脂層で被覆すれば解決できるが、外装樹脂層により固
体電解コンデンサの小型化、低背化が阻害されてしまう
。On the other hand, the electrical properties of this polypyrrole tend to change easily due to moisture. Therefore,
The electrolyte layer made of polypyrrole must be sealed from the outside air. These problems can be solved by covering the outer surface of the capacitor body with a synthetic resin layer by dip molding, injection molding, etc., but the outer resin layer hinders the miniaturization and height reduction of solid electrolytic capacitors. I end up.
【0009】そこで、前記のように、陽極体に帯状の陰
極体を載置して電解質層を密封する手段が有効となる。
しかし、板状の基体から個々の陽極体を打抜き等の手段
で形成する場合、そのストレスによって陽極体の表面が
変形し、陰極体を載置しても内部の電解質層等を充分に
密封することができなくなる場合があった。Therefore, as described above, it is effective to place a strip-shaped cathode body on the anode body to seal the electrolyte layer. However, when forming individual anode bodies from a plate-shaped base by means such as punching, the stress causes the surface of the anode body to deform, making it difficult to sufficiently seal the internal electrolyte layer etc. even when the cathode body is mounted. There were times when it became impossible to do so.
【0010】この発明の目的は、微細なチップ形の固体
電解コンデンサにおいて、陽極体表面の電解質層等の破
損を抑制するとともに、内部の密封性を良好にし、信頼
性の高い薄形の固体電解コンデンサを製造することにあ
る。An object of the present invention is to suppress damage to the electrolyte layer on the surface of an anode body in a fine chip-shaped solid electrolytic capacitor, improve internal sealing performance, and provide a highly reliable thin solid electrolytic capacitor. The purpose is to manufacture capacitors.
【0011】[0011]
【課題を解決するための手段】酸化皮膜層、電解質層及
び導電層が表面に順次生成された陽極体に帯状の陰極体
を載置した固体電解コンデンサの製造方法において、板
状の金属からなる基体に、予め複数の貫通孔を一定間隔
で設けるとともに、所望の箇所に固体電解質からなる電
解質層を形成したのち、各貫通孔間で基体を切断して陽
極体を形成することを特徴としている。[Means for Solving the Problems] A method for manufacturing a solid electrolytic capacitor in which a strip-shaped cathode body is mounted on an anode body on which an oxide film layer, an electrolyte layer, and a conductive layer are sequentially formed on the surface. The method is characterized in that a plurality of through holes are provided in advance at regular intervals in the base, an electrolyte layer made of solid electrolyte is formed at desired locations, and then the base is cut between each through hole to form the anode body. .
【0012】0012
【作用】図面に示したように、この発明では、分割して
個々の陽極体1となる基体20の所望の箇所に電解質層
3を形成する前に、予め基体20に複数の貫通孔21を
設け、電解質層3を形成したのちに各貫通孔21間で基
体20を切断している。そのため、電解質層3を生成す
る重合工程を、連続した基体20上で行うことができる
と同時に、個々の陽極体1に切断する工程では、各貫通
孔21間のみを切断するだけなので、基体20に生成さ
れた酸化皮膜層、電解質層3へのストレスを最小限に抑
制できる。[Operation] As shown in the drawings, in the present invention, a plurality of through holes 21 are formed in the base body 20 in advance before forming the electrolyte layer 3 at desired locations on the base body 20 which is divided into individual anode bodies 1. After forming the electrolyte layer 3, the base body 20 is cut between the through holes 21. Therefore, the polymerization process for producing the electrolyte layer 3 can be performed on the continuous base body 20, and at the same time, in the process of cutting into individual anode bodies 1, only between the through holes 21 are cut, so that the base body 20 can be The stress on the oxide film layer and electrolyte layer 3 generated during the process can be suppressed to a minimum.
【0013】また陽極体1の表面の凹凸をローラー、プ
レス等で平坦にし、密封性能を向上させる場合、従来で
あれば板状の基体20からの打抜いたのち、すなわち電
解質層3を生成する前後にこの工程を行う必要があった
。しかし、電解質層3を生成したのちではローラー等の
ストレスが電解質層3に悪影響を及ぼし、電解質層3を
生成する前でも微細な陽極体1を移送し、その表面を平
坦にすることは容易ではなかった。[0013] Furthermore, when the unevenness on the surface of the anode body 1 is flattened using a roller, press, etc. to improve the sealing performance, conventionally, the electrolyte layer 3 is formed after punching out the plate-shaped base body 20. I had to do this process before and after. However, after the electrolyte layer 3 is generated, stress from rollers etc. has a negative effect on the electrolyte layer 3, and it is not easy to transfer the fine anode body 1 and flatten its surface even before the electrolyte layer 3 is generated. There wasn't.
【0014】この発明による製造方法では、陽極体1は
基体20によって連結された状態となるため、ローラー
等により一括して陽極体1の表面を平坦に整形したのち
、電解質層3を生成する工程に移行させることが容易に
なる。そしてまた、各貫通孔21間の切断により個別の
陽極体1を形成するため、切断による凹凸の形成が最小
限に抑制される。In the manufacturing method according to the present invention, since the anode body 1 is connected by the base body 20, the step of forming the surface of the anode body 1 flatly using a roller or the like and then forming the electrolyte layer 3 is performed. It will be easier to move to Further, since individual anode bodies 1 are formed by cutting between the through holes 21, the formation of unevenness due to cutting is suppressed to a minimum.
【0015】[0015]
【実施例】以下この発明の実施例を図面にしたがい説明
する。図1及び図2は、この発明による固体電解コンデ
ンサの製造方法を説明する工程図、図3は実施例により
得られた固体電解コンデンサを示す斜視図である。また
図4はこの発明の実施例により得られた固体電解コンデ
ンサの概念構造を示す断面図、図5はこの発明の他の実
施例で使用する基体を示す平面図である。DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described below with reference to the drawings. 1 and 2 are process diagrams illustrating a method for manufacturing a solid electrolytic capacitor according to the present invention, and FIG. 3 is a perspective view showing a solid electrolytic capacitor obtained in an example. Further, FIG. 4 is a sectional view showing the conceptual structure of a solid electrolytic capacitor obtained according to an embodiment of the present invention, and FIG. 5 is a plan view showing a substrate used in another embodiment of the present invention.
【0016】図1(a)に示した板状の基体20は、ア
ルミニウム等の弁作用金属からなり、この基体20の所
望の箇所に、図1(b)に示すように、貫通孔21を一
定間隔で設ける。この実施例で貫通孔21は打抜きによ
り十字形に形成した。次いでこの基体20の表面をロー
ラーにより平坦状に整形し、基体20の残余部分の表面
に、表面積を拡大するためのエッチング処理、例えば電
解エッチング処理を施して粗面部を形成する。The plate-shaped base 20 shown in FIG. 1(a) is made of a valve metal such as aluminum, and through holes 21 are formed at desired locations on the base 20, as shown in FIG. 1(b). Provided at regular intervals. In this embodiment, the through hole 21 was formed into a cross shape by punching. Next, the surface of the base body 20 is shaped into a flat shape using a roller, and the remaining surface of the base body 20 is subjected to an etching process, for example, an electrolytic etching process, to enlarge the surface area to form a rough surface.
【0017】更に、エッチング処理を施された粗面部に
化成処理を施して酸化皮膜層を形成する。酸化皮膜層は
、アルミニウムからなる基体20の表層が酸化した酸化
アルミニウムからなり、陽極体1の誘電体となる。Furthermore, a chemical conversion treatment is performed on the etched rough surface portion to form an oxide film layer. The oxide film layer is made of aluminum oxide obtained by oxidizing the surface layer of the base body 20 made of aluminum, and serves as the dielectric of the anode body 1 .
【0018】そして、図1(c)に示したように、酸化
皮膜層上にポリピロールからなる電解質層3を生成する
。この電解質層3であるポリピロール層は、基体20を
酸化剤を含有するピロール溶液中に浸漬し、表面に化学
重合によるピロール薄膜を形成し、次いで基体20をピ
ロールを溶解した電解重合用の電解液中に浸漬するとと
もに電圧を印加して生成しており、生成されたポリピロ
ールの厚さは数μmないし数十μmとなる。Then, as shown in FIG. 1(c), an electrolyte layer 3 made of polypyrrole is formed on the oxide film layer. The polypyrrole layer, which is the electrolyte layer 3, is prepared by immersing the base 20 in a pyrrole solution containing an oxidizing agent to form a pyrrole thin film on the surface by chemical polymerization, and then immersing the base 20 in an electrolytic solution for electrolytic polymerization in which pyrrole is dissolved. The polypyrrole is produced by immersing it in the liquid and applying a voltage, and the thickness of the produced polypyrrole is several μm to several tens of μm.
【0019】次いで、電解質層3の表面に導電層4をス
クリーン印刷する。その結果基体20の表面は、図4に
示したような、電解質層3及び導電層4が順次生成され
た積層構造となる。導電層4は、カーボンペースト及び
銀ペーストからなる多層構造、もしくは導電性の良好な
金属粉を含有する導電性接着剤からなる単層構造の何れ
でもよい。Next, a conductive layer 4 is screen printed on the surface of the electrolyte layer 3. As a result, the surface of the base 20 has a laminated structure in which the electrolyte layer 3 and the conductive layer 4 are sequentially formed as shown in FIG. The conductive layer 4 may have a multilayer structure made of carbon paste and silver paste, or a single layer structure made of a conductive adhesive containing metal powder with good conductivity.
【0020】そして、表面に電解質層3等が生成された
基体20を、その貫通孔21間において打抜き等の手段
で切断し、図2(a)に示したような個別の陽極体1を
得る。なおこの切断においては、通常の打抜きの他に、
レーザーにより切断すると加工精度がより向上する。[0020] Then, the base body 20 on which the electrolyte layer 3 etc. have been formed is cut by means such as punching between the through holes 21 to obtain individual anode bodies 1 as shown in FIG. 2(a). . In this cutting, in addition to normal punching,
Cutting with a laser improves processing accuracy.
【0021】個別の陽極体1の表面には、図2(b)に
示すように、陰極体5を載置する。この陰極体5は、平
板状のアルミニウムもしくはその合金からなり、導電層
4と当接する表面周端には、エポキシ樹脂等の耐熱性合
成樹脂からなる絶縁層7が形成され、中央部には陰極体
5が露出した凹部を形成している。また陰極体5の端部
には半田付け可能な金属層、例えば銅等からなる陰極端
子6が接合されている。陽極体1と陰極体5とは、陽極
体1の電解質層3及び導電層4が陰極体5の凹部に収納
されるよう配置される。その結果、図4にも示したよう
に、陽極体1と陰極体5は絶縁層7を介して接合され、
電解質層3は導電層4を介して陰極体5と当接すること
になる。A cathode body 5 is placed on the surface of each anode body 1, as shown in FIG. 2(b). This cathode body 5 is made of flat aluminum or its alloy, and an insulating layer 7 made of a heat-resistant synthetic resin such as epoxy resin is formed on the peripheral edge of the surface in contact with the conductive layer 4, and a cathode body 5 is formed in the center. A recess is formed in which the body 5 is exposed. Further, a cathode terminal 6 made of a solderable metal layer, such as copper, is bonded to the end of the cathode body 5. The anode body 1 and the cathode body 5 are arranged so that the electrolyte layer 3 and the conductive layer 4 of the anode body 1 are housed in the recess of the cathode body 5. As a result, as shown in FIG. 4, the anode body 1 and the cathode body 5 are joined via the insulating layer 7,
Electrolyte layer 3 comes into contact with cathode body 5 via conductive layer 4 .
【0022】また、陽極体1の側面には、陽極引き出し
用の陽極端子2を溶接している。陽極端子2は、その断
面形状がL字形に形成されており、この実施例において
は、プリント基板の配線パターンに臨む先端部分に半田
付け可能な金属、例えば銅等を配置し、陽極体1と当接
する部分にアルミニウムを配置して接合したクラッド合
金を用い、陽極体1の側面にレーザー溶接した。Further, an anode terminal 2 for drawing out the anode is welded to the side surface of the anode body 1. The anode terminal 2 has an L-shaped cross section, and in this embodiment, a solderable metal, such as copper, is placed at the tip facing the wiring pattern of the printed circuit board, and the anode body 1 is connected to the anode terminal 2. A clad alloy in which aluminum was placed and bonded at the abutting portion was laser welded to the side surface of the anode body 1.
【0023】更に、陽極体1及び陰極体5の外表面に、
耐熱性の合成樹脂、例えばエポキシ樹脂を基体とするプ
リプレグからなるフィルム10を巻回し、その端部を陽
極体2の両端面から僅かに突出させるとともに、エポキ
シ樹脂等の合成樹脂層11を充填、固化させる。そして
、フィルム10の開口端に配置した合成樹脂層11の表
面から突出している陽極端子2及び陰極端子6を、陽極
体1の側面及び底面に沿って折り曲げて、陽極体1の底
面に密着させて、図3に示したような固体電解コンデン
サ30を得る。Furthermore, on the outer surfaces of the anode body 1 and the cathode body 5,
A heat-resistant synthetic resin, for example, a prepreg film 10 having an epoxy resin as a base, is wound around the film 10 so that its ends slightly protrude from both end surfaces of the anode body 2, and a synthetic resin layer 11 such as epoxy resin is filled. Let solidify. Then, the anode terminal 2 and cathode terminal 6 protruding from the surface of the synthetic resin layer 11 disposed at the open end of the film 10 are bent along the side and bottom surfaces of the anode body 1 and brought into close contact with the bottom surface of the anode body 1. Thus, a solid electrolytic capacitor 30 as shown in FIG. 3 is obtained.
【0024】以上のようにして形成された固体電解コン
デンサ30では、少なくとも陽極体1の電解質層3を、
基体20に貫通孔21が設けられたのちに生成するため
、貫通孔21を形成する工程でのストレスによる悪影響
が電解質層3に及ぶことがなくなる。また、各貫通孔2
1間を切断する場合には、貫通孔21間の僅かな部分を
切断するだけなので、その切断によるストレスも最小限
となる。また、この実施例のように、基体20に貫通孔
21を設けたのちに化成工程を施した場合は、基体20
上の酸化皮膜層の破損も最小限に抑制することができる
。In the solid electrolytic capacitor 30 formed as described above, at least the electrolyte layer 3 of the anode body 1 is
Since it is generated after the through-holes 21 are provided in the base body 20, the electrolyte layer 3 is not adversely affected by stress in the step of forming the through-holes 21. In addition, each through hole 2
When cutting between 1 and 2, only a small portion between the through holes 21 is cut, so the stress caused by the cutting is also minimized. Further, as in this embodiment, when the chemical conversion process is performed after providing the through holes 21 in the base 20, the base 20
Damage to the upper oxide film layer can also be minimized.
【0025】また電解質層3は、図4に示したように、
導電層4を介して陰極体5と表面において電気的に接触
させている。そのため、従来のようにリード線等による
ボンディング等の手段によらず接続させることができ、
この接続工程でのストレスも抑制できるようになる。ま
た、電解質層3及び導電層4は、陰極体5と表面におい
て電気的に接続されると同時に、陰極体5及び陰極体5
の絶縁層7によって外部から密封されることになる。Further, as shown in FIG. 4, the electrolyte layer 3
The surface is electrically contacted with the cathode body 5 via the conductive layer 4. Therefore, it is possible to connect without using conventional methods such as bonding with lead wires, etc.
Stress during this connection process can also be suppressed. Further, the electrolyte layer 3 and the conductive layer 4 are electrically connected to the cathode body 5 at the surface, and at the same time, the cathode body 5 and the cathode body
It is sealed from the outside by the insulating layer 7.
【0026】なお、陽極体1となる基体20に貫通孔2
1を形成する工程は、基体20にエッチング処理を施し
て粗面部を形成する工程の前後いずれであってもよい。
また陽極体1は、図示しないが、陰極体5の両面に配置
してもよく、この場合、陰極体5の両面に絶縁層7を設
け、それぞれの凹部に各陽極体1の電解質層3等を収納
することになる。このように陰極体5の両面に複数の陽
極体1を配置した場合は、静電容量が倍加するとともに
、両面に陽極体1が配置されることになるので、機械的
強度、密封性が更に向上する。Note that a through hole 2 is formed in the base body 20 which becomes the anode body 1.
The step of forming the substrate 1 may be performed either before or after the step of etching the base 20 to form the rough surface portion. Although not shown, the anode body 1 may be arranged on both sides of the cathode body 5. In this case, an insulating layer 7 is provided on both sides of the cathode body 5, and the electrolyte layer 3, etc. of each anode body 1 is provided in each recessed part. will be stored. When a plurality of anode bodies 1 are arranged on both sides of the cathode body 5 in this way, the capacitance is doubled, and since the anode bodies 1 are arranged on both sides, mechanical strength and sealing performance are further improved. improves.
【0027】また、基体20に設ける貫通孔21は、陽
極体1を基体20から分離切断するのに適した形状であ
るなら、他のどのような形状でもよい。例えば図5(a
)に示したように、基体20に短冊状の貫通孔22を設
け、図5(b)に示すように、この貫通孔22によって
囲まれた所望の部分に電解質層3等を形成する。その後
、各貫通孔22間を切断し個々の陽極体1(図面破線部
分)を得る。この実施例によれば、電解質層3を形成し
た後の基体20は、個々の陽極体1の角部となる部分に
おいて切断されることになる。そして、この陽極体1の
角部における切断工程のストレスは2方向に分散される
。そのため、先の実施例と比較して電解質層3へのスト
レスが更に軽減される。Further, the through hole 21 provided in the base body 20 may have any other shape as long as it is suitable for separating and cutting the anode body 1 from the base body 20. For example, Figure 5 (a
), a strip-shaped through hole 22 is provided in the base 20, and as shown in FIG. Thereafter, each of the through holes 22 is cut to obtain individual anode bodies 1 (indicated by broken lines in the figure). According to this embodiment, the base body 20 after forming the electrolyte layer 3 is cut at the corner portions of the individual anode bodies 1. The stress of the cutting process at the corners of the anode body 1 is dispersed in two directions. Therefore, the stress on the electrolyte layer 3 is further reduced compared to the previous embodiment.
【0028】[0028]
【発明の効果】以上のようにこの発明は、酸化皮膜層、
電解質層及び導電層が表面に順次生成された陽極体に帯
状の陰極体を載置した固体電解コンデンサの製造方法に
おいて、板状の金属からなる基体に、予め複数の貫通孔
を一定間隔で設けるとともに、所望の箇所に固体電解質
からなる電解質層を形成したのち、各貫通孔間で基体を
切断して陽極体を形成することを特徴としているので、
少なくとも基体から個々の陽極体を切断する工程では各
貫通孔間を切断するのみとなり、その機械的ストレスが
電解質層もしくは酸化皮膜層に及ぼす影響を最小限に抑
制することができる。そのため、電解質層、酸化皮膜層
等の破損が少なくなり、電気的特性を向上させることが
できる。またこの切断工程による陽極体表面の変形も少
なくなり、陽極体の密封精度も向上する。[Effects of the Invention] As described above, this invention provides an oxide film layer,
In a method for manufacturing a solid electrolytic capacitor in which a strip-shaped cathode body is placed on an anode body on which an electrolyte layer and a conductive layer are sequentially formed on the surface, a plurality of through holes are provided in advance at regular intervals in a base made of a plate-shaped metal. In addition, after forming an electrolyte layer made of a solid electrolyte at a desired location, the substrate is cut between each through hole to form an anode body.
At least in the process of cutting individual anode bodies from the base body, only cutting is performed between the through holes, and the influence of mechanical stress on the electrolyte layer or oxide film layer can be suppressed to a minimum. Therefore, damage to the electrolyte layer, oxide film layer, etc. is reduced, and electrical characteristics can be improved. Furthermore, the deformation of the anode body surface due to this cutting process is reduced, and the sealing accuracy of the anode body is also improved.
【0029】また、基体に貫通孔を形成したのちに電解
質層を形成するので、電解質層を形成する前に、基体の
寸法精度を高めるために表面の凹凸を整形しても、電解
質層への影響はない。そのため、切断した陽極体に陰極
体を載置すれば、電解質層等を密封することができ、所
望の電気的特性を長期にわたり維持することができるよ
うになる。Furthermore, since the electrolyte layer is formed after the through holes are formed in the substrate, even if the surface irregularities are shaped to improve the dimensional accuracy of the substrate before forming the electrolyte layer, there will be no damage to the electrolyte layer. There is no impact. Therefore, by placing a cathode body on the cut anode body, the electrolyte layer and the like can be sealed, and desired electrical characteristics can be maintained for a long period of time.
【0030】更に、陽極体の表面に電解質層等を形成す
る工程は、非貫通孔によって連結された基体上で一括し
て行うことができる。そのため、個々の微細な陽極体を
移送する必要がなく、生産性が向上する。Furthermore, the step of forming an electrolyte layer or the like on the surface of the anode body can be carried out all at once on the base bodies connected by non-through holes. Therefore, there is no need to transport individual fine anode bodies, improving productivity.
【図1】この発明による固体電解コンデンサの製造方法
を説明する工程図。FIG. 1 is a process diagram illustrating a method for manufacturing a solid electrolytic capacitor according to the present invention.
【図2】この発明による固体電解コンデンサの製造方法
を説明する工程図。FIG. 2 is a process diagram illustrating a method for manufacturing a solid electrolytic capacitor according to the present invention.
【図3】実施例により得られた固体電解コンデンサを示
す斜視図。FIG. 3 is a perspective view showing a solid electrolytic capacitor obtained in an example.
【図4】この発明の実施例により得た固体電解コンデン
サの概念構造を示す断面図。FIG. 4 is a sectional view showing the conceptual structure of a solid electrolytic capacitor obtained according to an example of the present invention.
【図5】この発明の別の実施例で使用する基体を示す平
面図。FIG. 5 is a plan view showing a substrate used in another embodiment of the invention.
1 陽極体 2 陽極端子 3 電解質層 4 導電層 5 陰極体 6 陰極端子 7 絶縁層 10 フィルム 11 合成樹脂層 20 基体 21 貫通孔 22 貫通孔 30 固体電解コンデンサ 1 Anode body 2 Anode terminal 3 Electrolyte layer 4 Conductive layer 5 Cathode body 6 Cathode terminal 7 Insulating layer 10 Film 11 Synthetic resin layer 20 Base 21 Through hole 22 Through hole 30 Solid electrolytic capacitor
Claims (1)
面に順次生成された陽極体に帯状の陰極体を載置した固
体電解コンデンサにおいて、板状の金属からなる基体に
、予め複数の貫通孔を一定間隔で設けるとともに、所望
の箇所に固体電解質からなる電解質層を形成したのち、
各貫通孔間で基体を切断して陽極体を形成することを特
徴とした固体電解コンデンサの製造方法。Claim 1. A solid electrolytic capacitor in which a strip-shaped cathode body is placed on an anode body on which an oxide film layer, an electrolyte layer, and a conductive layer are sequentially formed on the surface. After creating holes at regular intervals and forming an electrolyte layer made of solid electrolyte at desired locations,
A method for manufacturing a solid electrolytic capacitor, comprising cutting a base between each through hole to form an anode body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07412891A JP3149419B2 (en) | 1991-03-13 | 1991-03-13 | Method for manufacturing solid electrolytic capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07412891A JP3149419B2 (en) | 1991-03-13 | 1991-03-13 | Method for manufacturing solid electrolytic capacitor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04284616A true JPH04284616A (en) | 1992-10-09 |
JP3149419B2 JP3149419B2 (en) | 2001-03-26 |
Family
ID=13538249
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP07412891A Expired - Fee Related JP3149419B2 (en) | 1991-03-13 | 1991-03-13 | Method for manufacturing solid electrolytic capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3149419B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003197485A (en) * | 2001-12-27 | 2003-07-11 | Nippon Chemicon Corp | Chip solid electrolytic capacitor and manufacturing method therefor |
JP2006253412A (en) * | 2005-03-10 | 2006-09-21 | Tdk Corp | Solid electrolytic capacitor and manufacturing method thereof |
JP2011023699A (en) * | 2009-06-19 | 2011-02-03 | Sumitomo Metal Mining Co Ltd | Porous valve metal anode and method of manufacturing the same |
-
1991
- 1991-03-13 JP JP07412891A patent/JP3149419B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003197485A (en) * | 2001-12-27 | 2003-07-11 | Nippon Chemicon Corp | Chip solid electrolytic capacitor and manufacturing method therefor |
JP2006253412A (en) * | 2005-03-10 | 2006-09-21 | Tdk Corp | Solid electrolytic capacitor and manufacturing method thereof |
JP2011023699A (en) * | 2009-06-19 | 2011-02-03 | Sumitomo Metal Mining Co Ltd | Porous valve metal anode and method of manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP3149419B2 (en) | 2001-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100826391B1 (en) | Chip type solid electrolytic capacitor | |
TWI412048B (en) | Solid electrolytic capacitor and its manufacturing method | |
US7457103B2 (en) | Solid electrolytic capacitor which can easily be lowered in ESL | |
JP2006344936A (en) | Solid electrolytic capacitor | |
JP2002299161A (en) | Composite electronic component | |
JP3149419B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JPH04284617A (en) | Manufacture of solid electrolytic capacitor | |
JPH0684716A (en) | Manufacture of solid electrolytic capacitor | |
JP2003283086A (en) | Wiring board, manufacturing method of the wiring board and electronic component using the wiring board | |
JPH04276613A (en) | Fabrication of solid electrolytic capacitor | |
JP3378285B2 (en) | Structure of solid electrolytic capacitor and method of manufacturing solid electrolytic capacitor | |
JP2002110458A (en) | Solid electrolytic chip capacitor | |
JP2002110459A (en) | Solid electrolytic chip capacitor | |
JP2526281Y2 (en) | Solid electrolytic capacitors | |
JP2972304B2 (en) | Solid electrolytic capacitors | |
JP3294361B2 (en) | Structure of solid electrolytic capacitor and method of manufacturing solid electrolytic capacitor | |
JP2996314B2 (en) | Solid electrolytic capacitors | |
JPH05267107A (en) | Manufacture of solid electrolyte capacitor | |
JP2738183B2 (en) | Chip-shaped solid electrolytic capacitor | |
JP3433479B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JPH02301119A (en) | Manufacture of solid electrolytic capacitor | |
JPH06132178A (en) | Manufacture of solid electrolytic capacitor | |
JPH06132175A (en) | Solid electrolytic capacitor | |
JPH05144687A (en) | Manufacture of solid electrolytic capacitor | |
JPH06132460A (en) | Lead frame and manufacture thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080119 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090119 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090119 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100119 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100119 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110119 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |