JP2006344936A - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor Download PDF

Info

Publication number
JP2006344936A
JP2006344936A JP2006118994A JP2006118994A JP2006344936A JP 2006344936 A JP2006344936 A JP 2006344936A JP 2006118994 A JP2006118994 A JP 2006118994A JP 2006118994 A JP2006118994 A JP 2006118994A JP 2006344936 A JP2006344936 A JP 2006344936A
Authority
JP
Japan
Prior art keywords
layer
solid electrolytic
electrolytic capacitor
anode
conductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006118994A
Other languages
Japanese (ja)
Other versions
JP4757698B2 (en
Inventor
Katsuhiro Yoshida
勝洋 吉田
Koji Sakata
幸治 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2006118994A priority Critical patent/JP4757698B2/en
Publication of JP2006344936A publication Critical patent/JP2006344936A/en
Application granted granted Critical
Publication of JP4757698B2 publication Critical patent/JP4757698B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid electrolytic capacitor which maintains a low ESL, avoids difficulties in characteristic deterioration at through-hole formation and extraction of anode terminals, and can easily be produced. <P>SOLUTION: Since this multi-terminal capacitor adopts a structure such that in addition to no through-hole provided to a device 7, copper layers 8 for a positive electrode mounting terminal 13 are not formed just below mounting terminals but formed concentratingly to an end of the device 7, and a positive electrode mounting terminal layer 12 and the copper layers 8 are connected therefrom by metallic plating or the like. Thereafter, the positive electrode mounting terminal layer 12 is partially exposed in the case of coating the positive electrode mounting terminal layer 12 by a solder resist layer 15, and the part is used for positive electrode mounting terminal 13. Consequently, the connection of the positive electrode mounting terminal 13 and the base metal 1 of the device 7 can be established at the end of the device 7, which has a relatively wide area, irrespective of the pitch between the mounting terminals or the number of the mounting terminals. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、主として電気・電子・通信分野での機器の電源回路に用いられると共に、複数の実装用電極を有する固体電解コンデンサに関する。   The present invention relates to a solid electrolytic capacitor that is mainly used in a power supply circuit of a device in the electric, electronic, and communication fields and has a plurality of mounting electrodes.

近年、電子機器の小型・薄型化、高機能化が進展しているが、それを実現させる有力な手法の1つとして回路駆動周波数の高周波化が挙げられる。これに対応するため固体電解コンデンサにおいては、インダクタンス(以降、ESLと呼称)の低減が大きな課題となりつつある。   In recent years, electronic devices have been reduced in size, thickness, and functionality, and one of the promising methods for realizing them is to increase the circuit drive frequency. In order to cope with this, in solid electrolytic capacitors, reduction of inductance (hereinafter referred to as ESL) is becoming a major issue.

ESLを増大させる原因として、デバイス内部の導電体の透磁率、デバイス内部から実装用端子までの配線長・配線形状等があるが、正極及び負極の実装電極端子の距離を近づけ、ループインダクタンスと呼ばれる正負の端子間に発生するインダクタンス成分を低減させ、更に実装端子を増やして正負の端子を一次元的に交互に配置するか、或いは二次元的に千鳥に配置するという手法が近年多く採用されている(以降、これらの低ESL化を目的とした複数の実装端子を有するコンデンサを多端子コンデンサと称し、又伝送線路素子の場合は多端子伝送線路素子と称する)。 The causes of increasing ESL include the magnetic permeability of the conductor inside the device, the wiring length / wiring shape from the inside of the device to the mounting terminal, etc., but the distance between the positive and negative mounting electrode terminals is reduced, which is called loop inductance In recent years, a method of reducing the inductance component generated between the positive and negative terminals and increasing the number of mounting terminals to alternately arrange the positive and negative terminals one-dimensionally or two-dimensionally in a staggered manner has been widely adopted in recent years. (Hereinafter, a capacitor having a plurality of mounting terminals for the purpose of reducing ESL is referred to as a multi-terminal capacitor, and in the case of a transmission line element, it is referred to as a multi-terminal transmission line element).

前者の例として、積層セラミックコンデンサの1品種として量産されているIDC(Inter_Digitated_Capacitors)があり、また、後者の例としては、同じく積層セラミックコンデンサのLICA(Low_Inductance_Decoupling_Capacitor_Arrays)、電解コンデンサタイプのものとしては、多端子コンデンサ(特許文献1)等が挙げられる。積層セラミックコンデンサタイプのデバイスと固体電解コンデンサタイプのデバイスは基本構造が異なっている。   As an example of the former, there is IDC (Inter_Digitated_Capacitors) that is mass-produced as one type of multilayer ceramic capacitor, and as an example of the latter, LICA (Low_Inductance_Decoupling_Capacitor_Arrays), which is also a multilayer ceramic capacitor, is an electrolytic capacitor type. Examples thereof include a terminal capacitor (Patent Document 1). Multilayer ceramic capacitor type devices and solid electrolytic capacitor type devices have different basic structures.

図8は上述した特許文献1に係る固体電解コンデンサタイプの多端子コンデンサの基本構造を示した製品外観の斜視図及びそれを破断した局部の断面図である。   FIG. 8 is a perspective view of the appearance of the product showing the basic structure of the solid electrolytic capacitor type multi-terminal capacitor according to Patent Document 1 described above, and a cross-sectional view of a local portion of the product.

この特許文献1に係る多端子コンデンサの場合、正極実装端子23及び負極実装端子24が千鳥に配置されることにより、低ESL化が図られたもので、千鳥状の端子配置を実現するために、負極実装端子24については、素子部27の母材金属29及び固体電解質形成後の多孔質部30に絶縁部31を設けた後、その中にスルーホール25を形成し、その内部を導電体26で充填することで素子部27の陰極導体層28と負極実装端子24を接続し、正極実装端子23については、素子部27の母材金属29上に直接形成した構造としている。尚、素子部27にあっての陰極導体層28側の面は外装樹脂32で覆われている。このデバイス構造の場合、製品全体のループインダクタンスは正負の実装端子23,24の距離が短くなり、又端子数が増加するに従ってESLが低減するようになっている。 In the case of the multi-terminal capacitor according to Patent Document 1, the positive electrode mounting terminal 23 and the negative electrode mounting terminal 24 are arranged in a staggered manner to achieve low ESL, and in order to realize a staggered terminal arrangement. As for the negative electrode mounting terminal 24, an insulating part 31 is provided in the base metal 29 of the element part 27 and the porous part 30 after the solid electrolyte is formed, and then a through hole 25 is formed therein, and the inside thereof is a conductor. 26, the cathode conductor layer 28 of the element portion 27 and the negative electrode mounting terminal 24 are connected, and the positive electrode mounting terminal 23 is formed directly on the base metal 29 of the element portion 27. The surface on the cathode conductor layer 28 side in the element portion 27 is covered with an exterior resin 32. In the case of this device structure, the loop inductance of the entire product is such that the ESL decreases as the distance between the positive and negative mounting terminals 23 and 24 becomes shorter and the number of terminals increases.

特開2002−343686号公報(段落[0014]乃至[0018]、段落[0029]及び[0030]、図1及び図3)JP 2002-343686 A (paragraphs [0014] to [0018], paragraphs [0029] and [0030], FIGS. 1 and 3)

上述した特許文献1に係わる固体電解コンデンサタイプの多端子コンデンサの場合、素子部を貫通するスルーホールについては、電解コンデンサの特徴である多孔質部と母材金属に開孔部を形成し、その部分に絶縁性樹脂を充填・硬化した後、樹脂部の中心に最初の開孔部の直径を越えない大きさの開孔部を形成し、その内部をメッキ等の導電体で被覆・充填することで形成しているが、ここでの2回目の開孔部を形成する際、機械的・熱的ストレスにより樹脂部に亀裂が生じたり、或いは孔周辺部の多孔質部にダメージを与える等により製品の漏れ電流特性を劣化させることが多い。又、スルーホールが多くなるとESLは下がるものの、素子の容量に寄与する部分の面積も同時に低下し、低容量のコンデンサとなってしまうという問題がある他、母材金属として使用するアルミニウム,タンタル等に対してはメッキによる電極形成が難しい金属であるため、正極実装端子の形成にメッキ工法を用いることは困難であること、更にメッキ工法を無理に適用したとしても実装端子と母材金属の間に長期信頼性に耐える電気的接続部を形成することは容易ではないこと、導電性樹脂による電極形成も可能性はあるものの、特殊な材料が必要であり、且つ接続信頼性の面でやはり難点があること等の理由により、通常アルミニウム及びタンタルを使用する電解コンデンサでは正極側の端子と母材金属を接続するために、抵抗溶接や超音波溶接等の溶接を用いているが、図8に示したような小径の端子を多数個溶接するのは技術的難易度が非常に高く、量産には不向きであるといった製造面での難点がある。   In the case of the solid electrolytic capacitor type multi-terminal capacitor according to Patent Document 1 described above, with respect to the through hole penetrating the element portion, an opening is formed in the porous portion and the base metal, which are the characteristics of the electrolytic capacitor, After filling and curing the insulating resin in the part, an opening with a size not exceeding the diameter of the first opening is formed at the center of the resin, and the inside is covered and filled with a conductor such as plating. However, when forming the second opening here, the resin part is cracked by mechanical or thermal stress, or the porous part around the hole is damaged. This often degrades the leakage current characteristics of the product. In addition, although the ESL decreases as the number of through holes increases, the area of the portion contributing to the capacitance of the element also decreases at the same time, and there is a problem that it becomes a low-capacitance capacitor. Since it is difficult to form electrodes by plating, it is difficult to use the plating method to form the positive electrode mounting terminal, and even if the plating method is forcibly applied, the mounting terminal and the base metal However, it is not easy to form an electrical connection that can withstand long-term reliability, and although there is a possibility of forming an electrode with a conductive resin, a special material is required, and it is still difficult in terms of connection reliability For electrolytic capacitors that normally use aluminum and tantalum, resistance welding or the like is used to connect the positive electrode terminal to the base metal. Although welding such as sonic welding is used, it is technically difficult to weld a large number of small-diameter terminals as shown in FIG. 8, and there is a manufacturing difficulty that is unsuitable for mass production. is there.

要するに特許文献1に代表される周知の固体電解コンデンサの場合、低ESL化の目的で端子構造が検討されているものの、実際にはスルーホール形成時のコンデンサへのダメージ、或いは正極実装端子と母材金属との接続の困難性等の理由により量産化が困難であり、容易に製造できないという問題がある。   In short, in the case of a known solid electrolytic capacitor represented by Patent Document 1, although the terminal structure has been studied for the purpose of lowering ESL, in reality, damage to the capacitor during the formation of a through hole, or the positive electrode mounting terminal and the mother There is a problem that it is difficult to mass-produce due to the difficulty of connection with the metal material, and it cannot be easily manufactured.

本発明は、このような問題点を解決すべくなされたもので、低ESLを保ち、スルーホール形成時の特性劣化、陽極端子の取り出しの困難性を回避し得る構造を有する特性と量産性との両立が可能な固体電解コンデンサを提供することにある。   The present invention has been made to solve such problems, and has characteristics and mass productivity that have a structure that can maintain low ESL, avoid characteristic deterioration during through-hole formation, and difficulty in taking out the anode terminal. An object of the present invention is to provide a solid electrolytic capacitor capable of satisfying both requirements.

本発明によれば、表面を拡面化した板状又は箔状の弁作用金属から成る母材,及び該母材の表面に形成された該母材金属成分の酸化物から成る誘電体層を備えた陽極体と、前記陽極体が絶縁部により第1の領域と第2の領域とに分離され、該第1の領域,該第2の領域にそれぞれ陰極導体層及び陽極導体部を形成することにより得られる素子部を有する固体電解コンデンサにおいて、素子部の2つの主面の少なくとも片方の面上に、第1の絶縁層,陽極導体部と電気的に接続されている陽極導体層,及び第2の絶縁層の3層からなる複合層が設けられ、複合層にあっての第2の絶縁層には、陽極導体層を部分的に露出させるための複数の開口部が形成され、第1の絶縁層には、陽極導体部と陽極導体層を接続する複数の第1の孔部が形成され、3層の複合層には、陰極導体層を外部と電気的に接続させるために複合層を貫通すると共に、内壁面が前記陽極導体層の露出を防ぐための絶縁性樹脂で被覆された複数の第2の孔部が形成され、更に、複数の第1の孔部及び第2の孔部を介して素子部と外部とを電気的に接続する構造を持つ固体電解コンデンサが得られる。   According to the present invention, there is provided a base material made of a plate-like or foil-like valve action metal having an enlarged surface, and a dielectric layer made of an oxide of the base metal component formed on the surface of the base material. The anode body provided and the anode body are separated into a first region and a second region by an insulating portion, and a cathode conductor layer and an anode conductor portion are formed in the first region and the second region, respectively. In the solid electrolytic capacitor having an element portion obtained by the above, a first insulating layer, an anode conductor layer electrically connected to the anode conductor portion on at least one of the two main surfaces of the element portion, and A composite layer comprising three layers of the second insulating layer is provided, and a plurality of openings for partially exposing the anode conductor layer are formed in the second insulating layer in the composite layer. A plurality of first holes for connecting the anode conductor portion and the anode conductor layer are formed in one insulating layer. The three-layer composite layer penetrates the composite layer to electrically connect the cathode conductor layer to the outside, and has a plurality of inner walls coated with an insulating resin for preventing the anode conductor layer from being exposed. A solid electrolytic capacitor having a structure in which the second hole portion is formed and the element portion and the outside are electrically connected through the plurality of first hole portions and the second hole portion is obtained.

又、本発明によれば、上記固体電解コンデンサにおいて、複数の第1の孔部及び複数の第2の孔部は、内部にそれぞれ導体部を有し、第1の孔部は、導体部を介して陽極導体部と陽極導体層を電気的に接続し、第2の孔部は、導体部を介して陰極導体層を電気的に外部に露出させることにより素子部の陽極導体部と該陰極導体層とを外部と電気的に接続する構造を持つ固体電解コンデンサが得られる。   According to the present invention, in the solid electrolytic capacitor, the plurality of first holes and the plurality of second holes each have a conductor portion therein, and the first hole portion includes the conductor portion. The anode conductor portion and the anode conductor layer are electrically connected to each other, and the second hole portion electrically exposes the cathode conductor layer to the outside via the conductor portion, thereby the anode conductor portion of the element portion and the cathode A solid electrolytic capacitor having a structure in which the conductor layer is electrically connected to the outside can be obtained.

更に、本発明によれば、上記何れかの固体電解コンデンサにおいて、陽極導体層を外部に露出させるための複数の開口部同士と陰極導体層を外部と接続させる複数の第2の孔部同士とは、それぞれ最短距離で隣接しない配置とされた構造を持つ固体電解コンデンサが得られる。   Furthermore, according to the present invention, in any one of the solid electrolytic capacitors described above, a plurality of openings for exposing the anode conductor layer to the outside and a plurality of second holes for connecting the cathode conductor layer to the outside Can be obtained as a solid electrolytic capacitor having a structure that is not adjacent to each other at the shortest distance.

加えて、本発明によれば、上記固体電解コンデンサにおいて、複合層にあっての陽極導体層は、陰極導体層から導出された第2の孔部と該第2の孔部の外周を取り巻く絶縁部を除く全面に及ぶ大きさである固体電解コンデンサが得られる。   In addition, according to the present invention, in the solid electrolytic capacitor, the anode conductor layer in the composite layer includes the second hole portion derived from the cathode conductor layer and the insulation surrounding the outer periphery of the second hole portion. A solid electrolytic capacitor having a size covering the entire surface excluding the portion can be obtained.

又、本発明によれば、上記固体電解コンデンサにおいて、素子部の2つの主面における少なくとも片方の面は、陰極導体層として銅から成る構造である固体電解コンデンサが得られる。   According to the present invention, in the solid electrolytic capacitor, a solid electrolytic capacitor having a structure in which at least one of the two main surfaces of the element portion is made of copper as a cathode conductor layer can be obtained.

更に、本発明によれば、上記何れか一つの固体電解コンデンサにおいて、陽極体にあっての母材金属を成す弁作用金属は、アルミニウム,ニオブ,タンタル或いはそれらの合金を用いて成る固体電解コンデンサが得られる。   Furthermore, according to the present invention, in any one of the above solid electrolytic capacitors, the valve action metal forming the base metal in the anode body is made of aluminum, niobium, tantalum or an alloy thereof. Is obtained.

加えて、本発明によれば、アルミニウムによる陽極体上に誘電体,導電性高分子,陰極から構成されるコンデンサ素子と該コンデンサ素子の2つの主面における少なくとも片方の面に銅箔及びガラスを含有するエポキシ樹脂又は液晶ポリマーを設けて成る層構造を有し、且つ該コンデンサ素子の外周部に対してガラスを含有するエポキシ樹脂又は液晶ポリマーを封口して得られると共に、線膨張係数が16〜25(ppm/℃)の範囲にある固体電解コンデンサが得られる。   In addition, according to the present invention, a capacitor element composed of a dielectric, a conductive polymer, and a cathode on an aluminum anode body and copper foil and glass on at least one of the two main surfaces of the capacitor element. It has a layer structure comprising an epoxy resin or liquid crystal polymer containing, and is obtained by sealing an epoxy resin or liquid crystal polymer containing glass to the outer periphery of the capacitor element, and has a linear expansion coefficient of 16 to A solid electrolytic capacitor in the range of 25 (ppm / ° C.) is obtained.

本発明の固体電解コンデンサの場合、前提的技術(特願2004−44303号)に係る多端子コンデンサの問題点を改善し、スルーホール形成を不要とした上で正極実装端子と母材金属との溶接による接続を容易化しているため、スルーホール形成時の特性劣化や陽極端子の取り出しの困難性が解消されて多くの実装端子を有する低ESLの多端子コンデンサをその実装端子間のピッチや端子数等に関係なく容易に製造できるようになり、結果として従来困難であった多端子コンデンサ製造における量産性が向上するようになる。又、このような構成とすることにより、固体電解コンデンサの熱膨張係数が16〜30(ppm/℃)の範囲となり、基板との熱膨張係数の差が小さくなるため、実装不良が少なくなるという効果も有する。   In the case of the solid electrolytic capacitor of the present invention, the problem of the multi-terminal capacitor according to the premise technology (Japanese Patent Application No. 2004-44303) is improved, and through-hole formation is not required, Since the connection by welding is facilitated, the characteristic deterioration at the time of through-hole formation and the difficulty of taking out the anode terminal are solved, and a low ESL multi-terminal capacitor having a large number of mounting terminals is connected to the pitch and terminals between the mounting terminals. It becomes easy to manufacture regardless of the number and the like, and as a result, mass productivity in manufacturing a multi-terminal capacitor, which has been difficult in the past, is improved. In addition, by adopting such a configuration, the thermal expansion coefficient of the solid electrolytic capacitor is in the range of 16 to 30 (ppm / ° C.), and the difference in thermal expansion coefficient from the substrate is reduced, so that mounting defects are reduced. It also has an effect.

最初に本発明の最良の形態に係わる固体電解コンデンサの説明に先立って、本発明の前提技術に係わる固体電解コンデンサタイプの多端子コンデンサについて説明する。   First, prior to the description of the solid electrolytic capacitor according to the best mode of the present invention, a solid electrolytic capacitor type multi-terminal capacitor according to the prerequisite technology of the present invention will be described.

図9は、本発明の前提的技術に係わる固体電解コンデンサタイプの多端子コンデンサの基本構造を示した製品外観の斜視図及びそれを破断した局部の断面図である。   FIG. 9 is a perspective view of an external appearance of a product showing the basic structure of a solid electrolytic capacitor type multi-terminal capacitor according to the premise technique of the present invention, and a sectional view of a local part of the product.

この多端子コンデンサは、本出願人により特願2004−44303号として提案されたもので、外観的には図8に示した特許文献1に係わる構造のものとほぼ同じであるが、素子部33にスルーホールが設けられていない点が構造的に大きく異なっている。   This multi-terminal capacitor has been proposed by the present applicant as Japanese Patent Application No. 2004-44303, and is substantially the same as that of the structure according to Patent Document 1 shown in FIG. The structure is greatly different in that no through hole is provided.

具体的に言えば、このタイプの多端子コンデンサの場合、素子部33の両面に陰極導体層28があるが、その片面に部分的に導体層が未形成の部分があると共に、その下地となる多孔質部30には固体電解質層が形成されていない陽極部34が露出した形となっている。陽極部34は、母材金属29の表面が酸化皮膜で覆われた構造であるため、その酸化皮膜を一部除去し、そこに銅箔溶接、または銅メッキ等を実施することで母材金属と電気的に接続している銅層35を形成し、さらにその銅層35と正極実装端子部23とをメッキビア36で接続することにより、素子部33の母材金属29が正極実装端子23と接続される構造となっている。又、陰極側については、陰極導体層28の上に銅箔を導電性接着剤により接着することで負極用の銅層35を形成し、その銅層35と負極実装端子24とをメッキビア36で接続することにより、素子部33の陰極導電層28と負極実装端子24が電気的に接続される構造となっている。   More specifically, in the case of this type of multi-terminal capacitor, there are cathode conductor layers 28 on both surfaces of the element portion 33, but there is a portion in which the conductor layer is not formed on one side, and it is the base. The porous portion 30 has an exposed anode portion 34 on which no solid electrolyte layer is formed. Since the anode portion 34 has a structure in which the surface of the base metal 29 is covered with an oxide film, the base metal is removed by removing a portion of the oxide film and performing copper foil welding or copper plating on the oxide film. A copper layer 35 electrically connected to the positive electrode mounting terminal 23 is formed, and the copper layer 35 and the positive electrode mounting terminal portion 23 are connected to each other by a plating via 36, whereby the base metal 29 of the element portion 33 is connected to the positive electrode mounting terminal 23. It has a connected structure. On the cathode side, a copper foil 35 is formed on the cathode conductor layer 28 with a conductive adhesive to form a negative electrode copper layer 35, and the copper layer 35 and the negative electrode mounting terminal 24 are connected by a plating via 36. By connecting, the cathode conductive layer 28 of the element part 33 and the negative electrode mounting terminal 24 are electrically connected.

即ち、この多端子コンデンサによれば、素子部33を貫通するスルーホールが不要となるので製造工程が簡略化でき、しかもスルーホール形成の際の漏れ電流特性への悪影響を避けられるという点で長所を持つ。しかし、その反面、正極実装端子23を母材金属29に接続させる部分における銅層35の形成方法に関しては、上述した特許文献1に係わるタイプの場合と全く同じ困難な問題を有しており、陽極部34の上に銅層8を形成する際に溶接、メッキ等が必要となってしまう。   In other words, this multi-terminal capacitor eliminates the need for a through hole penetrating the element portion 33, thereby simplifying the manufacturing process and avoiding adverse effects on leakage current characteristics when forming the through hole. have. However, on the other hand, with respect to the method of forming the copper layer 35 in the portion where the positive electrode mounting terminal 23 is connected to the base metal 29, it has exactly the same difficult problem as the type related to the above-mentioned Patent Document 1. When forming the copper layer 8 on the anode part 34, welding, plating, etc. will be needed.

そこで、本発明の最良の形態に係わる固体電解コンデンサは、表面を拡面化した板状または箔状の弁作用金属からなる母材及び母材の表面に形成された母材金属成分の酸化物から成る誘電体層を備えた陽極体と、陽極体が絶縁部により第1の領域と第2の領域とに分離され、それらの第1の領域,第2の領域にそれぞれ陰極導体層及び陽極導体部を形成することにより得られる素子部を有する基本構造において、素子部の2つの主面の少なくとも片方の面上に、第1の絶縁層,陽極導体部と電気的に接続されている陽極導体層,及び第2の絶縁層の3層からなる複合層が設けられ、その複合層における第2の絶縁層には、陽極導体層を部分的に露出させるための複数の開口部が形成され、第1の絶縁層には,陽極導体部と陽極導体層を接続する複数の第1の孔部が形成され、3層の複合層には、陰極導体層を外部と電気的に接続させるために複合層を貫通すると共に、内壁面が陽極導体層の露出を防ぐための絶縁性樹脂で被覆された複数の第2の孔部が形成され、更に、複数の第1の孔部及び第2の孔部を介して素子部と外部とを電気的に接続する構造を持つものである。但し、ここでの陽極導体層を外部に露出させるための複数の開口部同士と陰極導体層を外部と接続させる複数の第2の孔部同士とは、それぞれ最短距離で隣接しない配置とすることが望ましい。   Therefore, the solid electrolytic capacitor according to the best mode of the present invention includes a base material made of a plate-like or foil-like valve action metal having an enlarged surface, and an oxide of a base metal component formed on the surface of the base material. An anode body comprising a dielectric layer, and the anode body is separated into a first region and a second region by an insulating portion, and a cathode conductor layer and an anode are respectively formed in the first region and the second region. In a basic structure having an element portion obtained by forming a conductor portion, an anode electrically connected to the first insulating layer and the anode conductor portion on at least one of the two main surfaces of the element portion A composite layer composed of three layers of a conductor layer and a second insulating layer is provided, and a plurality of openings for partially exposing the anode conductor layer are formed in the second insulating layer in the composite layer. The anode conductor portion and the anode conductor layer are connected to the first insulating layer. A plurality of first holes are formed, and the three composite layers penetrate the composite layer to electrically connect the cathode conductor layer to the outside, and the inner wall surface prevents the anode conductor layer from being exposed. A plurality of second holes covered with the insulating resin, and a structure for electrically connecting the element part and the outside via the plurality of first holes and the second hole. It is what you have. However, the plurality of openings for exposing the anode conductor layer to the outside here and the plurality of second holes for connecting the cathode conductor layer to the outside should be arranged not adjacent to each other at the shortest distance. Is desirable.

又、上記固体電解コンデンサにおいて、複合層を構成する陽極導体層は、陰極導体層から導出された第2の孔部とこの第2の孔部の外周をとりまく絶縁部を除く全面に及ぶ大きさであることが好ましい。   In the solid electrolytic capacitor, the anode conductor layer constituting the composite layer has a size covering the entire surface excluding the second hole portion derived from the cathode conductor layer and the insulating portion surrounding the outer periphery of the second hole portion. It is preferable that

更に、上記固体電解コンデンサの素子部の2つの主面における少なくとも片方の面は、陰極導体層として銅から成る構造であることが好ましい。尚、このような固体電解コンデンサについても、陽極体にあっての母材をなす弁作用金属は、アルミニウム,ニオブ,タンタル或いはそれらの合金を用いて成るものである。   Furthermore, it is preferable that at least one of the two main surfaces of the element portion of the solid electrolytic capacitor has a structure made of copper as a cathode conductor layer. In such a solid electrolytic capacitor as well, the valve metal that forms the base material in the anode body is made of aluminum, niobium, tantalum, or an alloy thereof.

加えて、特にアルミニウムによる陽極体上に誘電体,導電性高分子,陰極から構成されるコンデンサ素子とこのコンデンサ素子の2つの主面における少なくとも片方の面に銅箔(上記陽極導体層に対応する)及びガラスを含有するエポキシ樹脂又は液晶ポリマーを設けて成る層構造(上記第1の絶縁層に対応する)を有し、且つコンデンサ素子の外周部に対してガラスを含有するエポキシ樹脂又は液晶ポリマーを封口して得られる固体電解コンデンサは、その線膨張係数が16〜25(ppm/℃)の範囲となり、基板との熱膨張係数の差が小さいため、実装不良を顕著に抑制できる。   In addition, a capacitor element composed of a dielectric, a conductive polymer, and a cathode on an anode body made of aluminum, and a copper foil (corresponding to the anode conductor layer) on at least one of the two main surfaces of the capacitor element ) And a glass-containing epoxy resin or liquid crystal polymer (corresponding to the first insulating layer), and an epoxy resin or liquid crystal polymer containing glass with respect to the outer periphery of the capacitor element The solid electrolytic capacitor obtained by sealing the resin has a linear expansion coefficient in the range of 16 to 25 (ppm / ° C.), and the difference in thermal expansion coefficient from the substrate is small, so that mounting defects can be remarkably suppressed.

係る固体電解コンデンサの場合、スルーホール形成を不要とした上で正極実装端子と母材金属との溶接による接続を容易に行うことができ、スルーホール形成時の特性劣化や陽極端子の取り出しの困難性が解消されて多くの実装端子を有する低ESLの多端子コンデンサをその実装端子間のピッチや端子数等に関係なく容易に製造することができる。   In the case of such a solid electrolytic capacitor, it is possible to easily connect the positive electrode mounting terminal and the base metal by welding while eliminating the need for through-hole formation, and it is difficult to deteriorate characteristics during formation of the through-hole and to remove the anode terminal. Therefore, it is possible to easily manufacture a low ESL multi-terminal capacitor having many mounting terminals, regardless of the pitch between the mounting terminals, the number of terminals, and the like.

以下は、本発明の固体電解コンデンサについて、幾つかの実施例を挙げ、その製造工程を含めて具体的に説明する。   In the following, the solid electrolytic capacitor of the present invention will be described in detail with reference to some examples and the manufacturing process thereof.

図1は、本発明の実施例1に係る固体電解コンデンサタイプの多端子コンデンサの基本構造を示した分解斜視図、並びに製品外観の斜視図及びそれを破断した局部の断面図である。又、図2は、多端子コンデンサに備えられる素子部7の基本構造を示した製品外観の斜視図及びそれを破断した断面図である。   FIG. 1 is an exploded perspective view showing a basic structure of a solid electrolytic capacitor type multi-terminal capacitor according to a first embodiment of the present invention, a perspective view of an external appearance of a product, and a sectional view of a local portion of the product. FIG. 2 is a perspective view of the appearance of the product showing the basic structure of the element portion 7 provided in the multi-terminal capacitor, and a sectional view of the product.

最初に図2を参照し、実施例1に係る多端子コンデンサに使用する素子部7の作製を説明する。素子部7を作製する場合、先ず母材として箔状の母材金属1に多孔質部2を形成する。次にその表面に酸化皮膜を形成して陽極体とする。ここではアルミ電解コンデンサ用に市販されているもので、単位平方センチメートル辺りの容量が200μF,酸化皮膜を形成する上での公称化成電圧9Vの箔を選択し、この箔から使用する素子部の大きさである長辺7mm、短辺4mmの長方形の箔を切り出すようにするが、その際に先ず箔を幅4mmの短冊状に切り、側面に露出したアルミ金属母材の部分に陽極酸化法を用いて再度酸化皮膜を形成した上で、7mm幅に切り出した。   First, with reference to FIG. 2, the production of the element portion 7 used for the multi-terminal capacitor according to the first embodiment will be described. When producing the element part 7, the porous part 2 is first formed in the foil-shaped base metal 1 as a base material. Next, an oxide film is formed on the surface to form an anode body. Here, it is commercially available for an aluminum electrolytic capacitor. A foil having a capacity of 200 μF per unit square centimeter and a nominal formation voltage of 9 V for forming an oxide film is selected, and the size of the element portion used from this foil is selected. A rectangular foil having a long side of 7 mm and a short side of 4 mm is cut out. At that time, the foil is first cut into a strip shape having a width of 4 mm, and an anodizing method is applied to a portion of the aluminum metal base material exposed on the side surface After forming an oxide film again, it was cut out to a width of 7 mm.

次に、切り出した箔の両面の長辺両端部から1mm内側の部分にエポキシを主成分とする樹脂を0.5mmの幅で短辺と同じ長さで塗布し、多孔質部2に含浸・硬化させることで絶縁部3を形成した。この絶縁部3により、箔は、陽極となる領域の陽極部4と以降の工程で陰極導体層6等が形成される陰極の領域に分けられる。   Next, a resin having epoxy as a main component is applied to the inner part of 1 mm from both ends of the long side of both sides of the cut foil with a width of 0.5 mm and the same length as the short side to impregnate the porous part 2. The insulating part 3 was formed by curing. The insulating part 3 divides the foil into the anode part 4 in the area to be the anode and the cathode area in which the cathode conductor layer 6 and the like are formed in the subsequent steps.

更に、絶縁部3を形成した後、陰極の領域の多孔質部に導電性高分子であるポリピロールからなる固体電解質層5を形成し、次いでその上にグラファイト、銀等による陰極導体層6を形成することにより素子部7を作成した。   Further, after forming the insulating portion 3, the solid electrolyte layer 5 made of polypyrrole, which is a conductive polymer, is formed on the porous portion in the cathode region, and then the cathode conductor layer 6 made of graphite, silver or the like is formed thereon. By doing so, the element part 7 was created.

このような工程を経て得られた素子部7の平均的な特性は、測定周波数120Hzでの容量25μF、100kHzでの等価直列抵抗(以降、ESRと呼ぶ)15mΩ、及び4V印加時の漏れ電流5μAであった。   The average characteristics of the element unit 7 obtained through these steps are as follows: a capacitance of 25 μF at a measurement frequency of 120 Hz, an equivalent series resistance at 100 kHz (hereinafter referred to as ESR) of 15 mΩ, and a leakage current of 5 μA when 4 V is applied. Met.

引き続き、図1を参照して上記作成法により得られた図2の素子部7を用いて多端子コンデンサを作製する手順を説明する。先ず素子部7の陽極部4と陰極導体層6の上にそれぞれ銅層8を形成した。この際、陽極部4上の銅層8は銅箔を抵抗溶接することにより形成し、陰極導体層6上の銅層は銀をフィラーとした導電性接着剤により銅箔を接着して形成したが、陽極部4は幅約0.9mmであるため、銅箔は容易に溶接することができた。次に、この銅層8を形成した素子部をエポキシ樹脂を主成分とする半硬化樹脂シートで挟み、加圧しながら加熱硬化することで素子部7を外装樹脂9で外装し、第1の絶縁層とした。   Next, a procedure for manufacturing a multi-terminal capacitor using the element portion 7 of FIG. First, the copper layer 8 was formed on the anode part 4 and the cathode conductor layer 6 of the element part 7, respectively. At this time, the copper layer 8 on the anode portion 4 is formed by resistance welding of a copper foil, and the copper layer on the cathode conductor layer 6 is formed by bonding the copper foil with a conductive adhesive using silver as a filler. However, since the anode part 4 has a width of about 0.9 mm, the copper foil could be easily welded. Next, the element part on which the copper layer 8 is formed is sandwiched between semi-cured resin sheets mainly composed of an epoxy resin, and the element part 7 is externally covered with the exterior resin 9 by being heated and cured while being pressurized, so that the first insulation is obtained. Layered.

この外装樹脂9の上からレーザー加工により素子の両端の陽極部上の銅箔部8に到達する2箇所に開孔(第1の孔部)し、更に陰極導体層6に到達するように以降の工程で複数の負極実装端子14となる部分に開孔(第2の孔部)したが、低ESL化のため、負極実装端子14に相当する開孔部分は、それぞれ正極実装端子13が隣接するように配置(位置と間隔)を設定した。具体的には、実装端子そのものの大きさを0.8mm四方の正方形とし、実装端子を格子状に配置する面のエリアを3mm四方の正方形とした場合に、上記エリア左上の角に中心を持つ実装端子が正極実装端子とり、以降1.5mmピッチで隣接する実装端子が異なる極の実装端子となるように負極実装端子14に相当する開孔部の配置を設計した。   From the top of this exterior resin 9, laser processing is performed so that two holes reaching the copper foil part 8 on the anode part at both ends of the element are opened (first hole part) and further reach the cathode conductor layer 6 thereafter. In this process, holes (second holes) are formed in the portions to be the plurality of negative electrode mounting terminals 14, but the positive hole mounting terminals 13 are adjacent to the hole portions corresponding to the negative electrode mounting terminals 14 in order to reduce ESL. Arrangement (position and interval) was set. Specifically, when the size of the mounting terminal itself is a 0.8 mm square and the area of the surface on which the mounting terminals are arranged in a grid is a 3 mm square, the center is at the upper left corner of the area. The arrangement of the opening portion corresponding to the negative electrode mounting terminal 14 was designed so that the mounting terminal was a positive electrode mounting terminal and the adjacent mounting terminals with a pitch of 1.5 mm were different mounting terminals.

更に、上述したレーザーにより開孔した部分を洗浄した後、開孔部内に銅メッキによるメッキビア10を形成してから、正極実装端子13及び負極実装端子14の形成を行ったが、ここではメッキビア10の形成時に実装端子を形成する側の外装樹脂9上にも全体的に銅メッキの層を形成し、その後、素子部の陰極導体層上の銅層に繋がるメッキビア10を中心とした1辺0.8mmの正方形の外側周辺の銅メッキ層を0.2mm幅でエッチングにより除去することにより負極実装端子層11を形成した。この時、負極実装端子14となる部分及びエッチング除去された部分以外が陽極導体層12となる。   Furthermore, after cleaning the hole-opened portion with the laser described above, the plating via 10 was formed by copper plating in the opening, and then the positive electrode mounting terminal 13 and the negative electrode mounting terminal 14 were formed. A copper-plated layer is also formed entirely on the exterior resin 9 on the side where the mounting terminals are to be formed, and then one side 0 centered on the plated via 10 connected to the copper layer on the cathode conductor layer of the element portion. The negative electrode mounting terminal layer 11 was formed by removing the copper plating layer around the outer side of the .8 mm square by etching with a width of 0.2 mm. At this time, the portion other than the portion to become the negative electrode mounting terminal 14 and the portion removed by etching becomes the anode conductor layer 12.

最後に、これらの陽極導体層12及び負極実装端子層11の上から第2の絶縁層としてソルダーレジスト樹脂を印刷するが、この時に実装端子層12及び負極実装端子層11の一部が露出するような印刷パターンを用いて正極実装端子13、負極実装端子14を形成した。実施例1では、正極実装端子13、負極実装端子14の双方が0.6mm四方の正方形となるように印刷用スクリーンを作成し、レジスト樹脂印刷を行い、印刷後に加熱硬化することでソルダーレジスト層15を形成し多端子コンデンサを仕上げた。   Finally, a solder resist resin is printed as a second insulating layer from above the anode conductor layer 12 and the negative electrode mounting terminal layer 11, and at this time, a part of the mounting terminal layer 12 and the negative electrode mounting terminal layer 11 is exposed. The positive electrode mounting terminal 13 and the negative electrode mounting terminal 14 were formed using such a printing pattern. In Example 1, a printing screen is prepared so that both of the positive electrode mounting terminal 13 and the negative electrode mounting terminal 14 are squares of 0.6 mm square, resist resin printing is performed, and the solder resist layer is formed by heat curing after printing. 15 was formed to finish the multi-terminal capacitor.

実施例1に係る多端子コンデンサ(固体電解コンデンサ)の場合、図9に示した前提的技術に係る構造と類似しているが、母材金属1と正極実装端子13とを接続する部分が異なる。即ち、図9に示した前提的技術に係る構造においては、正極実装端子23の真下に端子数と同数の銅層8を形成しているが、実施例1に係る構造の場合には、図1に示した通り、正極実装端子13の銅層8は実装端子の真下ではなく素子部7の端部に集中して形成され、そこから金属メッキ等により陽極導体層12と銅層8とを接続した後、陽極導体層12をソルダーレジスト層15で被覆する際に部分的に露出させ、それを正極実装端子13とする構造を採用している。これにより、正極実装端子13と素子部7の母材金属1との接続は、比較的面積の広い素子部7の端部において実装端子間のピッチ或いは実装端子の数等に関係なく行うことができるため、図9に示した前提的技術に係る構造の問題点を解決することができる。   In the case of the multi-terminal capacitor (solid electrolytic capacitor) according to the first embodiment, the structure is similar to the structure according to the premise technique shown in FIG. 9, but the portion connecting the base metal 1 and the positive electrode mounting terminal 13 is different. . That is, in the structure according to the premise technique shown in FIG. 9, the same number of copper layers 8 as the number of terminals are formed directly below the positive electrode mounting terminal 23, but in the case of the structure according to the first embodiment, As shown in FIG. 1, the copper layer 8 of the positive electrode mounting terminal 13 is formed concentrated on the end portion of the element portion 7 instead of directly below the mounting terminal, and then the anode conductor layer 12 and the copper layer 8 are formed by metal plating or the like. After the connection, a structure is adopted in which the anode conductor layer 12 is partially exposed when it is covered with the solder resist layer 15 and used as the positive electrode mounting terminal 13. Thereby, the connection between the positive electrode mounting terminal 13 and the base metal 1 of the element portion 7 can be performed regardless of the pitch between the mounting terminals or the number of mounting terminals at the end of the element portion 7 having a relatively large area. Therefore, the problem of the structure according to the premise technique shown in FIG. 9 can be solved.

尚、実施例1では、正極実装端子13の数を5、負極実装端子数14の数を4とした場合を示したが、これらの端子数は加工上の問題が発生しない範囲で任意に増やすことができ、一般的にその方がESLを低減することが出来る。また、銅層8と負極実装端子14,陽極導体層12とを接続するメッキビア10の数も正極用のものが2、各負極用のものが1である場合を示したが、このメッキビア10の数に関しても加工精度の問題が発生しない範囲で任意に増やすことができる。又、ソルダーレジスト層15を被覆せずに形成した正極実装端子13及び負極実装端子14の形状が正方形である場合を示したが、この端子形状についてもソルダーレジストの印刷パターンを変えるだけで長方形や円形等の他の形状に変えることができる。更に、実施例1では、陰極導体層6の片面上に銅箔を導電性接着剤で接着した構成を例示したが、これにより陰極導体層6から実装面への端子取り出しがレーザー加工を用いて容易に行うことができると共に、陰極導体層6の抵抗値が下がり、固体電解コンデンサの高周波数側のインピーダンスを小さくすることができるという効果を合わせ持つ。加えて、実施例1では、陽極導体層12は、陰極実装端子14とその外周部を取り巻く絶縁部を除く全面に及ぶ大きさとし、銅箔8で構成すれば固体電解コンデンサの高周波数側のインダクタンスを小さくできるという効果を有する。   In the first embodiment, the case where the number of the positive electrode mounting terminals 13 is five and the number of the negative electrode mounting terminals 14 is four is shown. However, the number of these terminals is arbitrarily increased within a range in which processing problems do not occur. In general, it can reduce ESL. In addition, the number of plating vias 10 connecting the copper layer 8 to the negative electrode mounting terminal 14 and the anode conductor layer 12 is 2 for the positive electrode and 1 for each negative electrode. The number can be arbitrarily increased as long as the problem of processing accuracy does not occur. Moreover, although the case where the shape of the positive electrode mounting terminal 13 and the negative electrode mounting terminal 14 formed without covering the solder resist layer 15 is square is shown, the shape of the terminal can also be changed to a rectangular shape by simply changing the solder resist printing pattern. It can be changed to other shapes such as a circle. Furthermore, in Example 1, although the structure which adhere | attached copper foil with the electrically conductive adhesive on the single side | surface of the cathode conductor layer 6 was illustrated, by this, the terminal extraction from the cathode conductor layer 6 to a mounting surface uses laser processing. In addition to being able to be performed easily, the resistance value of the cathode conductor layer 6 is lowered, and the impedance on the high frequency side of the solid electrolytic capacitor can be reduced. In addition, in Example 1, the anode conductor layer 12 has a size extending over the entire surface excluding the cathode mounting terminal 14 and the insulating portion surrounding the outer periphery thereof, and if constituted by the copper foil 8, the inductance on the high frequency side of the solid electrolytic capacitor Can be reduced.

ところで、実施例1に係る固体電解コンデンサとして、アルミニウムによる陽極体上に誘電体,導電性高分子,陰極から構成されるコンデンサ素子とこのコンデンサ素子の主面の片方の面に銅箔8(前述の陽極導体層12に対応する)とガラスを含有するエポキシ樹脂から成る層(前述の第1の絶縁層に対応する)構造を有し、且つコンデンサ素子の外周部に対してガラスを含有するエポキシ樹脂を封口して作製した構造のものは、線膨張係数が16〜30(ppm/℃)の範囲のものとなる。   By the way, as a solid electrolytic capacitor according to the first embodiment, a capacitor element composed of a dielectric, a conductive polymer, and a cathode on an anode body made of aluminum, and a copper foil 8 (described above) on one side of the main surface of the capacitor element. Epoxy layer having a structure (corresponding to the first insulating layer described above) made of an epoxy resin containing glass and glass containing glass with respect to the outer peripheral portion of the capacitor element. The structure produced by sealing the resin has a linear expansion coefficient in the range of 16 to 30 (ppm / ° C.).

その理由は、各構成材料の熱膨張係数(ppm/℃)がそれぞれアルミニウムで23.1、銅で16.5、ガラスを含有するエポキシ樹脂で15〜17、陰極を構成する導電性樹脂類で約40であって、実施例1に係る固体電解コンデンサの大部分が上述したアルミニウム,銅,ガラスを含有するエポキシ樹脂から構成されていることによる。尚、ガラスを含有するエポキシ樹脂を同等の熱膨張係数を有する液晶ポリマーに変更しても良好な実装性が得られるため、これを用いても良い。   The reason is that the thermal expansion coefficient (ppm / ° C.) of each constituent material is 23.1 for aluminum, 16.5 for copper, 15 to 17 for epoxy resin containing glass, and conductive resins constituting the cathode. This is because most of the solid electrolytic capacitor according to Example 1 is composed of the above-described epoxy resin containing aluminum, copper, and glass. In addition, even if it changes to the liquid crystal polymer which has an equivalent thermal expansion coefficient from the epoxy resin containing glass, you may use this, since a favorable mounting property is obtained.

図3は、本発明の実施例2に係る固体電解コンデンサタイプの多端子コンデンサの基本構造を示した分解斜視図、並びに製品外観の斜視図及びそれを破断した局部の断面図である。又、図4は、多端子コンデンサに備えられる素子部16の基本構造を示した製品外観の斜視図及びそれを破断した断面図である。   FIG. 3 is an exploded perspective view showing a basic structure of a solid electrolytic capacitor type multi-terminal capacitor according to a second embodiment of the present invention, a perspective view of an external appearance of the product, and a sectional view of a local portion of the product. FIG. 4 is a perspective view of the appearance of the product showing the basic structure of the element portion 16 provided in the multi-terminal capacitor, and a sectional view of the product.

実施例2に係る多端子コンデンサの場合、素子部16の構造については、実施例1の素子部7の場合と比べ、陰極導体層6の周りを囲むような形で銅層8が存在するように絶縁部3及び陰極導体層6の配置パターンを変更している点が異なっており、係る素子部16を用いて実施例1の場合と同様な手順で作製される多端子コンデンサでは、素子部16に対応して陽極導体層12と素子部16とを接続する銅層8及びメッキビア10も数が増えるが、それ以外の点は実施例1の構造と同じになっている。   In the case of the multi-terminal capacitor according to the second embodiment, the structure of the element portion 16 is such that the copper layer 8 exists so as to surround the cathode conductor layer 6 as compared with the case of the element portion 7 of the first embodiment. However, the arrangement pattern of the insulating portion 3 and the cathode conductor layer 6 is different from that of the first embodiment. The number of the copper layers 8 and the plated vias 10 connecting the anode conductor layer 12 and the element portion 16 corresponding to 16 increases, but the other points are the same as the structure of the first embodiment.

実施例2に係る多端子コンデンサの場合、製造工程において、増加した銅層8及びメッキビア10形成工程がやや繁雑になるものの、素子部16の陰極部4に隣接する陽極部4が増えているためにループインダクタンスが実施例1に係る構造の場合よりも低減するという長所がある。   In the case of the multi-terminal capacitor according to the second embodiment, although the increased copper layer 8 and plating via 10 formation process is somewhat complicated in the manufacturing process, the anode part 4 adjacent to the cathode part 4 of the element part 16 is increased. There is an advantage that the loop inductance is reduced as compared with the structure according to the first embodiment.

図5は、本発明の実施例3に係る固体電解コンデンサタイプの多端子コンデンサの基本構造を示した分解斜視図、並びに製品外観の斜視図及びそれを破断した局部の断面図である。又、図6は、多端子コンデンサに備えられる素子部17の基本構造を示した製品外観の斜視図及びそれを破断した断面図である。   FIG. 5 is an exploded perspective view showing the basic structure of a solid electrolytic capacitor type multi-terminal capacitor according to Embodiment 3 of the present invention, a perspective view of the appearance of the product, and a sectional view of a local part of the product. FIG. 6 is a perspective view of the appearance of the product showing the basic structure of the element portion 17 provided in the multi-terminal capacitor, and a sectional view of the product.

実施例3に係る多端子コンデンサの場合、素子部17の構造については、実施例1の素子部7の場合と比べ、陰極導体層6の片端にのみ陽極部4が存在するように絶縁部3及び陰極導体層6の配置パターンを変更している点が異なっており、係る素子部17を用いて実施例1の場合と同様な手順で作製される多端子コンデンサでは、素子部17に対応して陽極導体層12と素子部17とを接続する銅層8及びメッキビア10の数が減るが、それ以外の点は実施例1の構造と同じになっている。   In the case of the multi-terminal capacitor according to the third embodiment, the structure of the element portion 17 is such that the anode portion 4 exists only at one end of the cathode conductor layer 6 compared to the case of the element portion 7 of the first embodiment. And the arrangement pattern of the cathode conductor layer 6 is different, and a multi-terminal capacitor manufactured using the element portion 17 in the same procedure as in the first embodiment corresponds to the element portion 17. The number of copper layers 8 and plating vias 10 connecting the anode conductor layer 12 and the element portion 17 is reduced, but the other points are the same as the structure of the first embodiment.

実施例3に係る多端子コンデンサの場合、製造工程において、減少した銅層8及びメッキビア10の形成工程が簡略化されるという長所があるものの、素子部17の陰極導体層6に隣接する陽極部4が減っているためにループインダクタンスが実施例1に係る構造の場合よりも増加してしまう。   In the case of the multi-terminal capacitor according to the third embodiment, the anode part adjacent to the cathode conductor layer 6 of the element part 17 is advantageous in that the process of forming the reduced copper layer 8 and the plated via 10 is simplified in the manufacturing process. Since 4 is reduced, the loop inductance is increased as compared with the structure according to the first embodiment.

図7は、本発明の実施例4に係る固体電解コンデンサタイプの多端子コンデンサの基本構造を示した分解斜視図、並びに製品外観の斜視図及びそれを破断した局部の断面図である。   FIG. 7 is an exploded perspective view showing the basic structure of a solid electrolytic capacitor type multi-terminal capacitor according to Embodiment 4 of the present invention, a perspective view of the appearance of the product, and a sectional view of a local portion where it is broken.

実施例4に係る多端子コンデンサの場合、実施例1の同様な素子部7を用いているが、実施例1の場合と比べ構造的に実施例1における陽極導体層12、負極実装端子層11をそれぞれ錫メッキ銅箔からなる負極実装端子箔18、正極実装端子箔19として代替した点と、実施例1におけるメッキビア10の代わりに陽極側を溶接部20、陰極側を導電性接着剤21で代替した点とが相違している。但し、この多端子コンデンサの場合についても、概ね実施例1場合と同様な手順で製造できるが、負極実装端子箔18については、素子部7の陰極導電体6の部分とほぼ同じ面積の箔を用いて貼り付け、負極実装端子箔18及び正極実装端子箔19の間に絶縁層22を挿入し、この絶縁層22に開孔部を設けて負極実装端子箔18を部分的に複数箇所露出させることにより負極実装端子14を形成した。   In the case of the multi-terminal capacitor according to the fourth embodiment, the same element portion 7 as in the first embodiment is used. However, the anode conductor layer 12 and the negative electrode mounting terminal layer 11 in the first embodiment are structurally different from the first embodiment. Are replaced with a negative electrode mounting terminal foil 18 and a positive electrode mounting terminal foil 19 respectively made of tin-plated copper foil, and the anode side is replaced by a welded portion 20 and the cathode side is replaced by a conductive adhesive 21 instead of the plated via 10 in the first embodiment. The point of substitution is different. However, this multi-terminal capacitor can also be manufactured in substantially the same procedure as in Example 1, but for the negative electrode mounting terminal foil 18, a foil having substantially the same area as the cathode conductor 6 portion of the element portion 7 is used. The insulating layer 22 is inserted between the negative electrode mounting terminal foil 18 and the positive electrode mounting terminal foil 19, and openings are provided in the insulating layer 22 to partially expose the negative electrode mounting terminal foil 18 at a plurality of locations. Thus, the negative electrode mounting terminal 14 was formed.

実施例4に係る多端子コンデンサでは、ビア開孔及びメッキ加工が不要となるために実施例1の構造の場合よりも生産設備・廃液処理等が簡略化できるという長所がある。又、実施例1の構造のようにメッキビア10を形成する場合には、銅層8に錫メッキ等が施された箔を使用するとメッキ浴を汚染するため銅層8についてはメッキ付き銅箔等を使用できないが、実施例4の構造では、メッキ処理された銅箔を陽極側の銅層8に代用できるために溶接が容易化するという長所もある。更に、正極実装端子13、負極実装端子14の双方に正極実装端子箔19、負極実装端子箔18をソルダーレジスト層15及び絶縁層22等で被覆せずに形成しているため、負極実装端子14がソルダーレジスト層15の面よりも少し低くなって段差が生じているが、この部分に半田バンプ等を形成することで段差を小さくして実装製を向上させることもできる。   The multi-terminal capacitor according to the fourth embodiment has an advantage that the production facilities and waste liquid treatment can be simplified as compared with the structure of the first embodiment because the via opening and the plating process are not required. Further, when the plated via 10 is formed as in the structure of the first embodiment, if a foil in which the copper layer 8 is tin-plated is used, the plating bath is contaminated. However, the structure of Example 4 has an advantage that welding can be facilitated because the plated copper foil can be substituted for the copper layer 8 on the anode side. Furthermore, since the positive electrode mounting terminal foil 19 and the negative electrode mounting terminal foil 18 are formed on both the positive electrode mounting terminal 13 and the negative electrode mounting terminal 14 without being covered with the solder resist layer 15 and the insulating layer 22, the negative electrode mounting terminal 14. However, the step is slightly lower than the surface of the solder resist layer 15, and a solder bump or the like is formed in this portion, so that the step can be reduced to improve mounting.

本発明の実施例1に係る固体電解コンデンサタイプの多端子コンデンサの基本構造を示した分解斜視図、並びに製品外観の斜視図及びそれを破断した局部の断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an exploded perspective view showing a basic structure of a solid electrolytic capacitor type multi-terminal capacitor according to a first embodiment of the present invention, a perspective view of an external appearance of a product, and a sectional view of a local portion of the product. 図1に示す多端子コンデンサに備えられる素子部の基本構造を示した製品外観の斜視図及びそれを破断した断面図である。It is the perspective view of the external appearance of the product which showed the basic structure of the element part with which the multiterminal capacitor | condenser shown in FIG. 1 is equipped, and sectional drawing which fractured | ruptured it. 本発明の実施例2に係る固体電解コンデンサタイプの多端子コンデンサの基本構造を示した分解斜視図、並びに製品外観の斜視図及びそれを破断した局部の断面図である。It is the disassembled perspective view which showed the basic structure of the solid electrolytic capacitor type multi-terminal capacitor which concerns on Example 2 of this invention, the perspective view of a product external appearance, and sectional drawing of the local part which fractured | ruptured it. 図3に示す多端子コンデンサに備えられる素子部の基本構造を示した製品外観の斜視図及びそれを破断した断面図である。FIG. 4 is a perspective view of an external appearance of a product showing a basic structure of an element portion provided in the multi-terminal capacitor shown in FIG. 3 and a sectional view of the product. 本発明の実施例3に係る固体電解コンデンサタイプの多端子コンデンサの基本構造を示した分解斜視図、並びに製品外観の斜視図及びそれを破断した局部の断面図である。It is the disassembled perspective view which showed the basic structure of the solid electrolytic capacitor type multi-terminal capacitor which concerns on Example 3 of this invention, the perspective view of a product external appearance, and sectional drawing of the local part which fractured | ruptured it. 図5に示す多端子コンデンサに備えられる素子部の基本構造を示した製品外観の斜視図及びそれを破断した断面図である。It is the perspective view of the external appearance of the product which showed the basic structure of the element part with which the multiterminal capacitor | condenser shown in FIG. 5 is equipped, and sectional drawing which fractured | ruptured it. 本発明の実施例4に係る固体電解コンデンサタイプの多端子コンデンサの基本構造を示した分解斜視図、並びに製品外観の斜視図及びそれを破断した局部の断面図である。It is the disassembled perspective view which showed the basic structure of the solid electrolytic capacitor type multi-terminal capacitor which concerns on Example 4 of this invention, the perspective view of a product external appearance, and sectional drawing of the local part which fractured | ruptured it. 特許文献1に係る固体電解コンデンサタイプの多端子コンデンサの基本構造を示した製品外観の斜視図及びそれを破断した局部の断面図である。FIG. 2 is a perspective view of the appearance of a product showing the basic structure of a solid electrolytic capacitor type multi-terminal capacitor according to Patent Document 1, and a sectional view of a local portion of the product. 本発明の前提的技術に係る固体電解コンデンサタイプの多端子コンデンサの基本構造を示した製品外観の斜視図及びそれを破断した局部の断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of an external appearance of a product showing a basic structure of a solid electrolytic capacitor type multi-terminal capacitor according to a premise technique of the present invention, and a cross-sectional view of a local portion of the product.

符号の説明Explanation of symbols

1,29 母材金属
2,30 多孔質部
3,31 絶縁部
4 陽極部
5 固体電解質層、
6,28 陰極導体層
7,16,17,27,33 素子部
8,35 銅層
9,32 外装樹脂
10,36 メッキビア
11 負極実装端子層
12 陽極導体層
13,23 正極実装端子
14,24 負極実装端子
15 ソルダーレジスト層
18 負極実装端子箔
19 正極実装端子箔
20 溶接部
21 導電性接着剤
22 絶縁層
25 スルーホール
26 導電体
34 陽極部
1,29 Base metal 2,30 Porous part 3,31 Insulating part 4 Anode part 5 Solid electrolyte layer,
6, 28 Cathode conductor layers 7, 16, 17, 27, 33 Element portions 8, 35 Copper layers 9, 32 Exterior resin 10, 36 Plating via 11 Negative electrode mounting terminal layer 12 Anode conductor layers 13, 23 Positive electrode mounting terminals 14, 24 Negative electrode Mounting terminal 15 Solder resist layer 18 Negative electrode mounting terminal foil 19 Positive electrode mounting terminal foil 20 Welded portion 21 Conductive adhesive 22 Insulating layer 25 Through hole 26 Conductor 34 Anode portion

Claims (7)

表面を拡面化した板状又は箔状の弁作用金属から成る母材,及び該母材の表面に形成された該母材金属成分の酸化物から成る誘電体層を備えた陽極体と、前記陽極体が絶縁部により第1の領域と第2の領域とに分離され、該第1の領域,該第2の領域にそれぞれ陰極導体層及び陽極導体部を形成することにより得られる素子部を有する固体電解コンデンサにおいて、前記素子部の2つの主面の少なくとも片方の面上に、第1の絶縁層,前記陽極導体部と電気的に接続されている陽極導体層,及び第2の絶縁層の3層からなる複合層が設けられ、前記複合層にあっての前記第2の絶縁層には、前記陽極導体層を部分的に露出させるための複数の開口部が形成され、前記第1の絶縁層には、前記陽極導体部と前記陽極導体層を接続する複数の第1の孔部が形成され、前記3層の複合層には、前記陰極導体層を外部と電気的に接続させるために前記複合層を貫通すると共に、内壁面が前記陽極導体層の露出を防ぐための絶縁性樹脂で被覆された複数の第2の孔部が形成され、更に、前記複数の第1の孔部及び前記第2の孔部を介して前記素子部と外部とを電気的に接続する構造を持つことを特徴とする固体電解コンデンサ。   An anode body comprising a base material made of a plate-like or foil-like valve action metal having an enlarged surface, and a dielectric layer made of an oxide of the base metal component formed on the surface of the base material; An element portion obtained by separating the anode body into a first region and a second region by an insulating portion, and forming a cathode conductor layer and an anode conductor portion in the first region and the second region, respectively. A solid electrolytic capacitor having a first insulating layer, an anode conductor layer electrically connected to the anode conductor portion, and a second insulation on at least one of the two main surfaces of the element portion. A composite layer composed of three layers is provided, and a plurality of openings for partially exposing the anode conductor layer are formed in the second insulating layer in the composite layer. The first insulating layer includes a plurality of first conductors connecting the anode conductor portion and the anode conductor layer. A hole is formed, and the three-layer composite layer penetrates the composite layer in order to electrically connect the cathode conductor layer to the outside, and an inner wall surface prevents the anode conductor layer from being exposed. A plurality of second holes covered with an insulating resin are formed, and the element part and the outside are electrically connected via the plurality of first holes and the second hole. A solid electrolytic capacitor characterized by having a structure. 請求項1記載の固体電解コンデンサにおいて、前記複数の第1の孔部及び前記複数の第2の孔部は、内部にそれぞれ導体部を有し、前記第1の孔部は、前記導体部を介して前記陽極導体部と前記陽極導体層を電気的に接続し、前記第2の孔部は、前記導体部を介して前記陰極導体層を電気的に外部に露出させることにより前記素子部の陽極導体部と該陰極導体層とを外部と電気的に接続する構造を持つことを特徴とする固体電解コンデンサ。   2. The solid electrolytic capacitor according to claim 1, wherein the plurality of first hole portions and the plurality of second hole portions each have a conductor portion therein, and the first hole portion includes the conductor portion. The anode conductor portion and the anode conductor layer are electrically connected to each other, and the second hole portion of the element portion is electrically exposed to the outside through the conductor portion. A solid electrolytic capacitor having a structure in which an anode conductor portion and the cathode conductor layer are electrically connected to the outside. 請求項1又は2記載の固体電解コンデンサにおいて、前記陽極導体層を外部に露出させるための前記複数の開口部同士と前記陰極導体層を外部と接続させる前記複数の第2の孔部同士とは、それぞれ最短距離で隣接しない配置とされた構造を持つことを特徴とする固体電解コンデンサ。   3. The solid electrolytic capacitor according to claim 1, wherein the plurality of openings for exposing the anode conductor layer to the outside and the plurality of second holes for connecting the cathode conductor layer to the outside are defined as follows. A solid electrolytic capacitor characterized by having a structure that is not adjacent to each other at the shortest distance. 請求項1記載の固体電解コンデンサにおいて、前記複合層にあっての前記陽極導体層は、前記陰極導体層から導出された前記第2の孔部と該第2の孔部の外周を取り巻く絶縁部を除く全面に及ぶ大きさであることを特徴とする固体電解コンデンサ。   The solid electrolytic capacitor according to claim 1, wherein the anode conductor layer in the composite layer includes the second hole portion derived from the cathode conductor layer and an insulating portion surrounding an outer periphery of the second hole portion. A solid electrolytic capacitor characterized by having a size extending over the entire surface excluding. 請求項1記載の固体電解コンデンサにおいて、前記素子部の2つの主面における少なくとも片方の面は、前記陰極導体層として銅から成る構造であることを特徴とする固体電解コンデンサ。   2. The solid electrolytic capacitor according to claim 1, wherein at least one of the two main surfaces of the element portion has a structure made of copper as the cathode conductor layer. 請求項1〜5の何れか一つに記載の固体電解コンデンサにおいて、前記陽極体にあっての前記母材金属を成す前記弁作用金属は、アルミニウム,ニオブ,タンタル或いはそれらの合金を用いて成ることを特徴とする固体電解コンデンサ。   6. The solid electrolytic capacitor according to claim 1, wherein the valve metal constituting the base metal in the anode body is made of aluminum, niobium, tantalum or an alloy thereof. A solid electrolytic capacitor characterized by that. アルミニウムによる陽極体上に誘電体,導電性高分子,陰極から構成されるコンデンサ素子と該コンデンサ素子の2つの主面における少なくとも片方の面に銅箔及びガラスを含有するエポキシ樹脂又は液晶ポリマーを設けて成る層構造を有し、且つ該コンデンサ素子の外周部に対してガラスを含有するエポキシ樹脂又は液晶ポリマーを封口して得られると共に、線膨張係数が16〜25(ppm/℃)の範囲にあることを特徴とする固体電解コンデンサ。
A capacitor element composed of a dielectric, a conductive polymer, and a cathode is provided on an anode body made of aluminum, and an epoxy resin or a liquid crystal polymer containing copper foil and glass is provided on at least one of the two main surfaces of the capacitor element. And having a linear expansion coefficient in the range of 16 to 25 (ppm / ° C.) obtained by sealing an epoxy resin or liquid crystal polymer containing glass to the outer periphery of the capacitor element. A solid electrolytic capacitor characterized in that there is.
JP2006118994A 2005-05-11 2006-04-24 Solid electrolytic capacitor Active JP4757698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006118994A JP4757698B2 (en) 2005-05-11 2006-04-24 Solid electrolytic capacitor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005138079 2005-05-11
JP2005138079 2005-05-11
JP2006118994A JP4757698B2 (en) 2005-05-11 2006-04-24 Solid electrolytic capacitor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011002877A Division JP2011071559A (en) 2005-05-11 2011-01-11 Solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2006344936A true JP2006344936A (en) 2006-12-21
JP4757698B2 JP4757698B2 (en) 2011-08-24

Family

ID=37641631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006118994A Active JP4757698B2 (en) 2005-05-11 2006-04-24 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4757698B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008067300A1 (en) * 2006-11-27 2008-06-05 Kemet Electronics Corporation Interposer decoupling array having reduced electrical shorts
JP2008218779A (en) * 2007-03-06 2008-09-18 Nec Tokin Corp Solid-state electrolytic capacitor
JP2008305825A (en) * 2007-06-05 2008-12-18 Nec Tokin Corp Solid electrolytic capacitor
JP2009188039A (en) * 2008-02-04 2009-08-20 Nec Tokin Corp Solid electrolytic capacitor
JP2009224679A (en) * 2008-03-18 2009-10-01 Nec Tokin Corp Capacitor component
JP2009253020A (en) * 2008-04-07 2009-10-29 Nec Tokin Corp Solid electrolytic capacitor
JP2009259883A (en) * 2008-04-14 2009-11-05 Nec Tokin Corp Solid electrolytic capacitor
JP2010206030A (en) * 2009-03-04 2010-09-16 Nippon Chemicon Corp Solid electrolytic capacitor
JP2011216570A (en) * 2010-03-31 2011-10-27 Nichicon Corp Three-terminal type capacitor
CN110291602A (en) * 2017-02-17 2019-09-27 株式会社村田制作所 Solid electrolytic capacitor And Manufacturing approach
WO2024009637A1 (en) * 2022-07-06 2024-01-11 株式会社村田製作所 Solid electrolytic capacitor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11265837A (en) * 1998-03-17 1999-09-28 Matsushita Electric Ind Co Ltd Laminated lc composite component
JP2002198264A (en) * 2000-10-12 2002-07-12 Matsushita Electric Ind Co Ltd Electrolytic capacitor, circuit board containing electrolytic capacitors and manufacturing method thereof
JP2002317121A (en) * 2000-12-25 2002-10-31 Ngk Spark Plug Co Ltd Embedding resin
JP2002367866A (en) * 2001-06-05 2002-12-20 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor
JP2003297702A (en) * 2002-04-04 2003-10-17 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11265837A (en) * 1998-03-17 1999-09-28 Matsushita Electric Ind Co Ltd Laminated lc composite component
JP2002198264A (en) * 2000-10-12 2002-07-12 Matsushita Electric Ind Co Ltd Electrolytic capacitor, circuit board containing electrolytic capacitors and manufacturing method thereof
JP2002317121A (en) * 2000-12-25 2002-10-31 Ngk Spark Plug Co Ltd Embedding resin
JP2002367866A (en) * 2001-06-05 2002-12-20 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor
JP2003297702A (en) * 2002-04-04 2003-10-17 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor and method of manufacturing the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008067300A1 (en) * 2006-11-27 2008-06-05 Kemet Electronics Corporation Interposer decoupling array having reduced electrical shorts
JP2008218779A (en) * 2007-03-06 2008-09-18 Nec Tokin Corp Solid-state electrolytic capacitor
JP2008305825A (en) * 2007-06-05 2008-12-18 Nec Tokin Corp Solid electrolytic capacitor
JP2009188039A (en) * 2008-02-04 2009-08-20 Nec Tokin Corp Solid electrolytic capacitor
JP2009224679A (en) * 2008-03-18 2009-10-01 Nec Tokin Corp Capacitor component
JP2009253020A (en) * 2008-04-07 2009-10-29 Nec Tokin Corp Solid electrolytic capacitor
JP2009259883A (en) * 2008-04-14 2009-11-05 Nec Tokin Corp Solid electrolytic capacitor
JP2010206030A (en) * 2009-03-04 2010-09-16 Nippon Chemicon Corp Solid electrolytic capacitor
JP2011216570A (en) * 2010-03-31 2011-10-27 Nichicon Corp Three-terminal type capacitor
CN110291602A (en) * 2017-02-17 2019-09-27 株式会社村田制作所 Solid electrolytic capacitor And Manufacturing approach
WO2024009637A1 (en) * 2022-07-06 2024-01-11 株式会社村田製作所 Solid electrolytic capacitor

Also Published As

Publication number Publication date
JP4757698B2 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
JP4757698B2 (en) Solid electrolytic capacitor
JP2011071559A (en) Solid electrolytic capacitor
JP5466722B2 (en) Solid electrolytic capacitor
US20090116173A1 (en) Solid electrolytic capacitor
KR100984535B1 (en) Solid electrolytic capacitor and a method of producing the same
JP4019837B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2006237520A (en) Thin-shaped multi-terminal capacitor, and manufacturing method therefor
US7184257B2 (en) Solid electrolytic capacitor
JP2009158692A (en) Multilayer solid electrolytic capacitor
JP2009182273A (en) Solid-state electrolytic capacitor and method of manufacturing the same
JP2008270317A (en) Underside-electrode solid electrolytic capacitor
JP2009129936A (en) Surface mounting thin-type capacitor and method of manufacturing the same
JP2008270464A (en) Solid-state electrolytic capacitor
JP4915856B2 (en) Solid electrolytic capacitor
JP5429392B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2012028392A (en) Solid electrolytic capacitor
JP4337423B2 (en) Circuit module
WO2019058535A1 (en) Solid electrolytic capacitor and method for manufacturing same
JP5411047B2 (en) Multilayer solid electrolytic capacitor and manufacturing method thereof
JP2012182291A (en) Solid electrolytic capacitor
JP5326032B1 (en) Solid electrolytic capacitor
JP2010225724A (en) Solid electrolytic capacitor
JP2010010350A (en) Solid-state electrolytic capacitor and method of manufacturing the same
JP2009224679A (en) Capacitor component
JP2010219128A (en) Solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110601

R150 Certificate of patent or registration of utility model

Ref document number: 4757698

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250