JP2009182273A - Solid-state electrolytic capacitor and method of manufacturing the same - Google Patents

Solid-state electrolytic capacitor and method of manufacturing the same Download PDF

Info

Publication number
JP2009182273A
JP2009182273A JP2008022012A JP2008022012A JP2009182273A JP 2009182273 A JP2009182273 A JP 2009182273A JP 2008022012 A JP2008022012 A JP 2008022012A JP 2008022012 A JP2008022012 A JP 2008022012A JP 2009182273 A JP2009182273 A JP 2009182273A
Authority
JP
Japan
Prior art keywords
metal plate
forming
recess
exposed
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008022012A
Other languages
Japanese (ja)
Other versions
JP5007677B2 (en
Inventor
Susumu Ando
進 安藤
Hirokazu Ichihara
博和 市原
Atsushi Kawamura
淳 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2008022012A priority Critical patent/JP5007677B2/en
Publication of JP2009182273A publication Critical patent/JP2009182273A/en
Application granted granted Critical
Publication of JP5007677B2 publication Critical patent/JP5007677B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin multi-terminal solid state electrolytic capacitor exhibiting a high degree of freedom in arrangement of components and capable of being manufactured efficiently, and to provide a method of manufacturing the same. <P>SOLUTION: A protective layer is formed at least on one side of a metal plate consisting of a valve metal, recesses are formed in the surface where the protective layer is formed at a predetermined interval and the valve metal is exposed to the inner surface of the recess, the inner surface of the recess is enlarged by etching and an oxide coating layer is formed by anodic oxidation, a solid electrolytic layer is formed on the oxide coating layer, a cathode terminal 7 is formed on the solid electrolytic layer, the protective layer between adjoining recesses of the metal plate is removed, metal of the metal plate is exposed (exposed portion 9), an anode terminal 10 is formed on the exposed metal plate, and then the metal plate 1 is cut to be sectioned in units of a predetermined region including the recess and a plurality of anode terminals 10 thus obtaining individual pieces of solid state electrolytic capacitor. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、薄型で部品配置の自由度に優れ、効率的に製造可能な、多端子型の固体電解コンデンサ及びその製造方法に関するものである。   The present invention relates to a multi-terminal solid electrolytic capacitor that is thin, excellent in freedom of component arrangement, and that can be efficiently manufactured, and a method for manufacturing the same.

現代では、さまざまな電子回路の分野において、多様なコンデンサが用いられ、その一種として、等価直列抵抗(ESR)が小さく周波数特性に優れた固体電解コンデンサが広く利用されている。特許文献1は、従来の固体電解コンデンサとその製造方法の一例を示すもので、この例は、陽極体となる金属板に設けた凹部に固体電解質層などを設け個片に切断したもの二つで陰極体をサンドイッチするとともに陽極端子を取り付けるものである。
特開平3−284818号
At present, various capacitors are used in various electronic circuit fields, and as one of them, solid electrolytic capacitors having a small equivalent series resistance (ESR) and excellent frequency characteristics are widely used. Patent Document 1 shows an example of a conventional solid electrolytic capacitor and a method for manufacturing the same. In this example, a solid electrolyte layer or the like is provided in a recess provided in a metal plate serving as an anode body, and is cut into pieces. And sandwiching the cathode body and attaching the anode terminal.
JP-A-3-284818

しかし、近年、パーソナルコンピュータなどデジタル機器の分野においては、低ESL(等価直列インダクタンス)など特性改善の点で多端子型の固体電解コンデンサが求められるとともに、機器の小型化や、高速動作に対応した優れた過渡応答性の要請ともあいまって、より薄型で部品配置の自由度に優れた固体電解コンデンサが求められている。さらに、増大する需要への対応やコストなどの面から、製造効率をより一層改善する要請も大きい。   However, in recent years, in the field of digital equipment such as personal computers, multi-terminal type solid electrolytic capacitors have been demanded from the viewpoint of improving characteristics such as low ESL (equivalent series inductance), and the equipment has been adapted to downsizing and high speed operation. Combined with the demand for excellent transient response, there is a need for a solid electrolytic capacitor that is thinner and has a high degree of freedom in component placement. Furthermore, there is a great demand for further improvement in production efficiency from the viewpoint of meeting increasing demand and costs.

この点、上記のような従来の固体電解コンデンサは、個片二つで陰極体をサンドイッチしたり陽極端子を取り付ける構造であり、製造効率の改善やサイズ上の薄型化にも限界があった。また、上記のような従来の固体電解コンデンサでは、サイズや形状の制約から、電流供給対象となるLSIとは水平方向のずれた位置で基板へ実装することが必須となることから過渡応答性の改善に限界があり、この点からも、部品配置における自由度の増大が希求されていた。   In this regard, the conventional solid electrolytic capacitor as described above has a structure in which a cathode body is sandwiched between two pieces and an anode terminal is attached, and there is a limit to improvement in manufacturing efficiency and reduction in size. Also, in the conventional solid electrolytic capacitor as described above, due to size and shape restrictions, it is essential to mount it on the board at a position shifted in the horizontal direction from the LSI that is the current supply target. There is a limit to the improvement, and from this point, an increase in the degree of freedom in component arrangement has been desired.

本発明は、上記のような従来の問題点を解決するもので、その目的は、薄型で部品配置の自由度に優れ、効率的に製造可能な、多端子型の固体電解コンデンサ及びその製造方法を提供することである。   The present invention solves the above-described conventional problems, and an object of the present invention is to provide a multi-terminal solid electrolytic capacitor that is thin, excellent in freedom of component placement, and can be efficiently manufactured, and a method for manufacturing the same. Is to provide.

上記の目的を達成するため、本発明の一態様である固体電解コンデンサは、弁金属からなる金属板の少なくとも片面に保護層を形成し、前記保護層を形成した面に凹部を形成することによりその凹部の内面に陽極部を形成する前記金属板の地金を露出させ、前記凹部の内面の地金を拡面処理し、その表面に酸化皮膜層を形成し、前記酸化皮膜層の上に固体電解質層を形成し、前記固体電解質層の上に陰極端子部を形成し、前記凹部の周囲の前記保護層を部分的に除去して陽極引き出し手段を形成する金属板の地金を露出させ、露出した陽極引き出し手段を形成する金属板の上に陽極端子を形成し、前記凹部と前記陽極端子を含む所定の領域を単位として区画するように金属板を切断することにより、個片の固体電解コンデンサとしたことを特徴とする。   In order to achieve the above object, a solid electrolytic capacitor according to one aspect of the present invention is formed by forming a protective layer on at least one surface of a metal plate made of a valve metal and forming a recess on the surface on which the protective layer is formed. An ingot of the metal plate forming the anode part is exposed on the inner surface of the recess, the ingot of the inner surface of the recess is enlarged, an oxide film layer is formed on the surface, and the oxide film layer is formed on the oxide film layer. A solid electrolyte layer is formed, a cathode terminal portion is formed on the solid electrolyte layer, the protective layer around the recess is partially removed, and the metal plate base metal forming the anode drawing means is exposed. A solid piece is formed by forming an anode terminal on the metal plate forming the exposed anode lead-out means, and cutting the metal plate so as to partition the predetermined region including the concave portion and the anode terminal as a unit. Special feature of electrolytic capacitor To.

本発明の他の態様は、上記態様を固体電解コンデンサの製造方法という見方からとらえたもので、弁金属からなる金属板の少なくとも片面に保護層を形成する工程と、前記保護層を形成した面に凹部を形成することによりその凹部の内面に弁金属地金を露出させる工程と、前記凹部の内面の弁金属の地金を拡面処理し、その表面に酸化皮膜層を形成する工程と、前記酸化皮膜層の上に固体電解質層を形成する工程と、前記固体電解質層の上に陰極端子部を形成する工程と、前記凹部の周囲の金属板の前記保護層を部分的に除去して陽極引き出し手段を形成する金属板の地金を露出させる工程と、露出した陽極引き出し手段を形成する金属板の上に陽極端子を形成する工程と、前記凹部と、複数の前記陽極端子を含む所定の領域を単位として区画するように金属板を切断することにより、個片の固体電解コンデンサとする工程と、を有することを特徴とする。   In another aspect of the present invention, the above aspect is taken from the viewpoint of a method for producing a solid electrolytic capacitor. A step of forming a protective layer on at least one surface of a metal plate made of a valve metal, and a surface on which the protective layer is formed. Exposing the valve metal ingot to the inner surface of the recess by forming a recess in the surface, expanding the valve metal ingot on the inner surface of the recess, and forming an oxide film layer on the surface; Forming a solid electrolyte layer on the oxide film layer; forming a cathode terminal on the solid electrolyte layer; and partially removing the protective layer on the metal plate around the recess. A step of exposing a metal plate of the metal plate forming the anode lead-out means, a step of forming an anode terminal on the metal plate forming the exposed anode lead-out means, the concave portion, and a plurality of the anode terminals Ward with the area of By cutting a metal plate to, and having the steps of a solid electrolytic capacitor of the pieces, the.

このように、保護層を設けた金属板片面で凹部を露出させ、酸化皮膜層、固体電解質層、陰極端子を設けたうえ、保護層の一部を除去した金属板面に陽極端子を設け、個片に切断することにより、薄型で部品配置の自由度に優れた多端子型の固体電解コンデンサを優れた効率で製造可能となり、過渡応答性などの特性も改善される。   In this way, the concave portion is exposed on one side of the metal plate provided with the protective layer, the oxide film layer, the solid electrolyte layer, and the cathode terminal are provided, and the anode terminal is provided on the metal plate surface from which a part of the protective layer is removed, By cutting into individual pieces, it becomes possible to manufacture a multi-terminal solid electrolytic capacitor having a thin shape and excellent freedom of component arrangement with excellent efficiency, and characteristics such as transient response are improved.

本発明の固体電解コンデンサにおける他の態様は、さらに、前記陰極端子部のうち、外部に露出すべき所定の外部露出部を除いた部分を絶縁樹脂で被覆したことを特徴とする。   In another aspect of the solid electrolytic capacitor of the present invention, a portion of the cathode terminal portion excluding a predetermined external exposed portion that should be exposed to the outside is further covered with an insulating resin.

本発明の他の態様は、上記態様を固体電解コンデンサの製造方法という見方からとらえたもので、さらに、前記陰極端子部のうち、外部に露出すべき所定の外部露出部を除いた部分について、絶縁樹脂を注入することにより被覆する工程、を含むことを特徴とする。   In another aspect of the present invention, the above aspect is taken from the viewpoint of a method for producing a solid electrolytic capacitor, and further, a portion of the cathode terminal portion excluding a predetermined external exposed portion to be exposed to the outside, And a step of coating by injecting an insulating resin.

このように、陰極端子部の周囲を絶縁樹脂で被覆することにより、陽極と陰極の絶縁性を高めることができるとともに、陰極端子部を構成する陰極外部電極の一部を被覆することで、陰極外部電極の接合強度を高めることができる。   Thus, by covering the periphery of the cathode terminal portion with the insulating resin, the insulation between the anode and the cathode can be enhanced, and by covering a part of the cathode external electrode constituting the cathode terminal portion, the cathode The bonding strength of the external electrode can be increased.

以上のように、本発明によれば、保護層を設けた金属板片面で凹部を露出させ、酸化皮膜層、固体電解質層、陰極端子を設けたうえ、保護層の一部を除去した金属板面に陽極端子を設け、個片に切断することにより、薄型かつ小型で部品配置の自由度に優れた多端子型の固体電解コンデンサを優れた効率で製造可能となり、過渡応答性などの特性も改善される。   As described above, according to the present invention, a metal plate in which a concave portion is exposed on one side of a metal plate provided with a protective layer, an oxide film layer, a solid electrolyte layer, and a cathode terminal are provided, and a part of the protective layer is removed. By providing an anode terminal on the surface and cutting it into individual pieces, it is possible to manufacture a multi-terminal type solid electrolytic capacitor that is thin, compact, and has excellent flexibility in component placement, with excellent efficiency and characteristics such as transient response. Improved.

次に、本発明を実施するための最良の実施形態について図に沿って説明する。なお、背景技術や課題で既に説明した内容と共通の前提事項は適宜省略する。
(1)構成
本実施形態は、以下のような工程A〜Jによる固体電解コンデンサの製造方法と、そのように製造される固体電解コンデンサに関するものである。ここで、各工程段階を図1及び図2の断面図に示し、また、工程の一部について図3の斜視図に示す。
Next, the best mode for carrying out the present invention will be described with reference to the drawings. It should be noted that assumptions common to those already described in the background art and problems are omitted as appropriate.
(1) Configuration The present embodiment relates to a method for manufacturing a solid electrolytic capacitor by the following processes A to J, and a solid electrolytic capacitor manufactured as such. Here, each process step is shown in the cross-sectional views of FIGS. 1 and 2, and a part of the process is shown in the perspective view of FIG.

A.金属板の用意
まず、弁金属すなわち弁作用金属からなる金属板1を用意する(図1(1))。金属の種類はアルミニウムが望ましく、厚さは200から800ミクロン程度が一般的と考えられるが、金属の種類や厚さは適宜変更可能である。例えば、アルミニウムの他、タンタル、ニオブ、チタン等の弁作用金属を用いることができる。
A. Preparation of Metal Plate First, a metal plate 1 made of a valve metal, that is, a valve action metal is prepared (FIG. 1 (1)). The metal type is preferably aluminum and the thickness is generally considered to be about 200 to 800 microns, but the metal type and thickness can be changed as appropriate. For example, valve action metals such as tantalum, niobium, and titanium can be used in addition to aluminum.

B.保護層の形成
そして、金属板1の少なくとも片面に保護層2を形成する(図1(2))。この保護層2は、金属板1の全面を覆う必要は無く、保護層2には、その後の加工のための窓部が形成されていても良い。また、保護層2としては、樹脂被覆層のほか、陽極酸化皮膜を形成するなどでもよく、後述のエッチングによる拡面処理の際に、エッチング液により腐食されない層であれば、種類や形成の手段などは自由に選択可能である。
B. Formation of Protective Layer Then, the protective layer 2 is formed on at least one surface of the metal plate 1 (FIG. 1 (2)). The protective layer 2 does not need to cover the entire surface of the metal plate 1, and the protective layer 2 may be provided with a window portion for subsequent processing. In addition to the resin coating layer, the protective layer 2 may be formed with an anodized film or the like, as long as it is a layer that is not corroded by the etchant during the surface expansion treatment by etching, which will be described later. Etc. can be freely selected.

C.凹部の形成
続いて、保護層2を形成した面に所定間隔で凹部3を形成することにより、その凹部3の内面に陽極部を形成する金属板1の地金を露出させる(図1(3))。ここで、凹部3を形成する手段としては、金属板1の切削が好適である。保護層2に窓部が形成されている場合には、窓部の部分をプレス加工して凹部を形成することや、窓部の部分をエッチングなどで凹部を形成してもよく、特に、エッチングによって凹部3を形成する場合には、後述する「D.エッチングと酸化皮膜の形成」の工程のエッチング工程を同時に行うことで効率よく凹部を形成することができる。
C. Formation of recess Next, by forming recesses 3 at predetermined intervals on the surface on which the protective layer 2 is formed, the metal bar 1 forming the anode part is exposed on the inner surface of the recess 3 (FIG. 1 (3) )). Here, as a means for forming the recess 3, cutting of the metal plate 1 is suitable. When the protective layer 2 has a window portion, the window portion may be pressed to form a recess, or the window portion may be etched to form a recess. When the concave portion 3 is formed by the above, the concave portion can be efficiently formed by simultaneously performing the etching process of “D. Etching and formation of oxide film” described later.

D.エッチングと酸化皮膜の形成
その後、凹部3の内面の地金を、エッチングで拡面処理し、さらにその拡面処理した凹部の表面に陽極酸化により酸化皮膜層4を形成する(図1(4))。ここで、エッチング及び陽極酸化は公知の手段を用いることができる。
D. Etching and Formation of Oxide Film Thereafter, the metal on the inner surface of the recess 3 is subjected to a surface expansion process by etching, and an oxide film layer 4 is formed by anodic oxidation on the surface of the recess subjected to the surface expansion process (FIG. 1 (4)). ). Here, well-known means can be used for etching and anodic oxidation.

E.固体電解質層の形成
また、酸化皮膜層4の上に、固体電解質層5を形成する(図1(5))。ここで、固体電解質層5としては、導電性高分子が好適であり、このような導電性高分子層は、チオフェン、ピロール等をもとに、化学重合、電解重合など、公知の技術により形成すればよい。
E. Formation of Solid Electrolyte Layer A solid electrolyte layer 5 is formed on the oxide film layer 4 (FIG. 1 (5)). Here, as the solid electrolyte layer 5, a conductive polymer is preferable, and such a conductive polymer layer is formed by a known technique such as chemical polymerization or electrolytic polymerization based on thiophene, pyrrole, or the like. do it.

F.陰極端子部の形成
そして、固体電解質層5の上に、グラファイト(Gr)層と銀ペースト層(あわせて符号6で示す)を介し(図1(6))、陰極外部電極を設けることで、陰極端子部7を形成する(図2(7))。このグラファイト(Gr)層と銀ペースト層自体は、固体電解コンデンサにおける公知技術と同様でよく、保護層2を有する金属板1に陰極端子部7を形成した状態を、図3(1)の斜視図に示す。
F. Formation of the cathode terminal portion And, by providing a cathode external electrode on the solid electrolyte layer 5 through a graphite (Gr) layer and a silver paste layer (indicated by reference numeral 6 together) (FIG. 1 (6)), The cathode terminal portion 7 is formed (FIG. 2 (7)). The graphite (Gr) layer and the silver paste layer itself may be the same as the known technology in a solid electrolytic capacitor. The state in which the cathode terminal portion 7 is formed on the metal plate 1 having the protective layer 2 is shown in the perspective view of FIG. Shown in the figure.

また、陰極外部電極としては、銅等の金属製の板材を導電性接着剤で接続することが好適であるが、板材は平板でも、平板上に突起を設け、この突起部を陰極外部端子としてもよい。また、陰極外部電極は、銀ペースト層の上に銅メッキを施して構成してもよい。但し、陰極外部電極は、同じ面の保護層との間には、絶縁のための距離すなわちギャップを設ける。   In addition, as the cathode external electrode, it is preferable to connect a metal plate material such as copper with a conductive adhesive, but the plate material is a flat plate, and a protrusion is provided on the flat plate, and this protrusion is used as a cathode external terminal. Also good. Further, the cathode external electrode may be configured by performing copper plating on the silver paste layer. However, a distance for insulation, that is, a gap is provided between the cathode external electrode and the protective layer on the same surface.

陰極外部電極として平板に突起部が複数形成された板材を用い、この複数の突起部を陰極外部端子とした場合、陰極端子部7は複数の陰極端子部7として導出された多端子の電極構造となる。   When a plate material having a plurality of protrusions formed on a flat plate is used as a cathode external electrode, and the plurality of protrusions are used as cathode external terminals, the cathode terminal portion 7 is a multi-terminal electrode structure derived as a plurality of cathode terminal portions 7. It becomes.

なお、陰極外部電極として平板の板材を用いて、平板の板材を銀ペースト層に接着した後に突起部を形成することもできる。この突起部の形成は後述する「I.陽極端子の形成」と同様の方法で、いわゆるバンプ電極を形成することができる。   It should be noted that a flat plate material may be used as the cathode external electrode, and the protrusions may be formed after the flat plate material is bonded to the silver paste layer. The protrusions can be formed by a method similar to “I. Formation of anode terminal” described later to form a so-called bump electrode.

G.絶縁樹脂での被覆
次に、陰極端子部7のうち、外部に露出すべき所定の外部露出部を除いた部分について、絶縁樹脂8を注入することにより被覆する(図2(8))。ここで、外部露出部は、陰極端子部7の例えば上面や突起部であり、外部露出部を除いた部分は例えば側端面と保護層2との間などである。また、絶縁樹脂8としては熱硬化性エポキシ樹脂が好適である。
G. Coating with Insulating Resin Next, a portion of the cathode terminal portion 7 excluding a predetermined external exposed portion that should be exposed to the outside is covered by injecting insulating resin 8 (FIG. 2 (8)). Here, the externally exposed portion is, for example, the upper surface or the protruding portion of the cathode terminal portion 7, and the portion excluding the externally exposed portion is, for example, between the side end surface and the protective layer 2. Moreover, as the insulating resin 8, a thermosetting epoxy resin is suitable.

そして、絶縁樹脂8が凹部と陰極外部電極のギャップに入り込むことで、陽極と陰極の絶縁性を高めることができるとともに、陰極外部電極の一部を被覆することにより、陰極外部電極の接合強度を高めることができる。例えば、陰極外部電極として、平板に突起部が複数形成された板材を用い、突起部のみが露出するように板材の上面を絶縁樹脂8で被覆すれば、陰極外部電極の上面が金属板と一体化され、陰極外部端子の接合強度を高めることができる。   The insulating resin 8 enters the gap between the concave portion and the cathode external electrode, so that the insulation between the anode and the cathode can be enhanced, and the bonding strength of the cathode external electrode can be increased by covering a part of the cathode external electrode. Can be increased. For example, if a plate material having a plurality of projections formed on a flat plate is used as the cathode external electrode and the upper surface of the plate material is covered with the insulating resin 8 so that only the projections are exposed, the upper surface of the cathode external electrode is integrated with the metal plate. Thus, the bonding strength of the cathode external terminal can be increased.

H.保護層の除去
また、陽極端子との電気的接続を図るため、凹部3の周囲の金属板1の保護層2を部分的に除去して金属板の地金を露出させ、陽極引き出し手段を形成する露出部9とする(図2(9))。この際、保護層を露出するのみでもよいが、金属板まで切削してもよく、この後で形成する陽極端子の高さとの関連で、切削する深さは適宜調整可能である。このように、金属板1の保護層2を部分的に除去して露出部9を設けた状態を図3(2)の斜視図に示す。
H. Removal of protective layer Further, in order to achieve electrical connection with the anode terminal, the protective layer 2 of the metal plate 1 around the recess 3 is partially removed to expose the metal plate and form an anode lead-out means It is set as the exposed part 9 (FIG. 2 (9)). At this time, the protective layer may only be exposed, or even the metal plate may be cut, and the cutting depth can be adjusted as appropriate in relation to the height of the anode terminal to be formed later. Thus, the state which removed the protective layer 2 of the metal plate 1 partially, and provided the exposed part 9 is shown in the perspective view of FIG.3 (2).

I.陽極端子の形成
そして、上記のように露出した陽極引き出し手段を形成する露出部9の上に陽極端子10を形成する(図2(10))。この陽極端子10は、いわゆるバンプ電極を用い、金ワイヤを熱圧着のうえ切断した金バンプのほか、銅メッキの上に半田ボールを接着しボール形状端子を格子配列状に形成したボールグリッドアレイ(BGA)など、自由に選択可能である。このように、陽極端子10を設けた状態を図3(3)の斜視図に示す。
I. Formation of Anode Terminal Then, the anode terminal 10 is formed on the exposed portion 9 that forms the anode drawing means exposed as described above (FIG. 2 (10)). The anode terminal 10 uses a so-called bump electrode, a gold bump obtained by cutting a gold wire by thermocompression bonding, and a ball grid array in which solder balls are bonded onto a copper plating to form ball-shaped terminals in a grid array ( BGA) and the like can be freely selected. Thus, the state which provided the anode terminal 10 is shown in the perspective view of FIG.3 (3).

このようなバンプ電極は、幅300um程度の長方形の領域に電極を形成することが可能であり、固体電解コンデンサの静電容量に寄与しない陽極端子部の領域を極めて小さなものとすることができる。   Such a bump electrode can be formed in a rectangular region having a width of about 300 μm, and the region of the anode terminal portion that does not contribute to the capacitance of the solid electrolytic capacitor can be made extremely small.

さらに、この陽極端子10の形成個数は任意であり、一辺に複数個の陽極端子10を形成した場合(図3(3)ではそれぞれの辺に3個の陽極端子を形成)には、複数の陽極端子10として導出された多端子の電極構造となる。   Furthermore, the number of anode terminals 10 formed is arbitrary, and when a plurality of anode terminals 10 are formed on one side (in FIG. 3 (3), three anode terminals are formed on each side), a plurality of anode terminals 10 are formed. A multi-terminal electrode structure derived as the anode terminal 10 is obtained.

J.個片への切断
最後に、凹部と陽極端子を含む所定の領域、この実施の形態では、凹部3を挟むように対向して配置した陽極端子を含む領域を区画するように金属板を切断して、個片の固体電解コンデンサとする(図2(11))。この際に、陽極と陰極の外部端子の高さが同一平面位置となるように、上流の各工程A〜Iにおいて、陰極外部電極の厚さと、陽極端子の高さを予め設定もしくは調整しておく。なお、カットに先立ち、図3(4)の斜視図に示すように、陽極端子周囲10を樹脂11で補強固定してもよい。
J. et al. Cutting into pieces Finally, the metal plate is cut so as to partition a predetermined region including the concave portion and the anode terminal, in this embodiment, a region including the anode terminal disposed so as to sandwich the concave portion 3. Thus, an individual solid electrolytic capacitor is obtained (FIG. 2 (11)). At this time, the thickness of the cathode external electrode and the height of the anode terminal are set or adjusted in advance in each of the upstream steps A to I so that the heights of the anode and cathode external terminals are in the same plane position. deep. Prior to cutting, the periphery 10 of the anode terminal may be reinforced and fixed with resin 11 as shown in the perspective view of FIG.

(2)作用効果
以上のように、保護層を設けた金属板片面で凹部を露出させ、酸化皮膜層、固体電解質層、陰極端子を設けたうえ、保護層を部分的に除去して陽極引き出し手段を形成する金属板の地金の上に陽極端子を設け、個片に切断することにより、薄型かつ小型で部品配置の自由度に優れた多端子型の固体電解コンデンサを優れた効率で製造可能となる。
(2) Operation and effect As described above, the concave portion is exposed on one side of the metal plate provided with the protective layer, the oxide film layer, the solid electrolyte layer, and the cathode terminal are provided, and the protective layer is partially removed to extract the anode. Produces a multi-terminal solid electrolytic capacitor with excellent efficiency by providing an anode terminal on the metal plate that forms the means and cutting it into individual pieces. It becomes possible.

そして、コンデンサとしての容量保持部である酸化皮膜と固体電解質層の界面の近傍に陰極端子部が形成される構造であり、容量保持部と陰極端子部と接続する回路パターンやLSI等のデバイスまでの距離が短く、コンデンサ内部の電流引回し経路が短縮されるため、電源電圧の不安定化に対する過渡応答性が改善される。   In addition, the cathode terminal part is formed in the vicinity of the interface between the oxide film, which is a capacitor holding part as a capacitor, and the solid electrolyte layer, and even devices such as circuit patterns and LSIs connected to the capacitor holding part and the cathode terminal part. , And the current routing path inside the capacitor is shortened, so that transient response to power supply voltage instability is improved.

特に、従来のようなサンドイッチ構造が不要となるため薄型化と共に、いわゆるバンプ電極を用いることによって小型化が実現され、実装面積が5mm四方程度まで縮小可能となる。また、陰極外部電極の厚さと陽極端子の高さを制御し、陽極と陰極の外部端子の高さを同一平面位置として、外部端子を含め全体を無駄のない同一平面形状とすることにより、固体電解コンデンサを、電流供給対象であるLSIに対して、基板との間や基板の裏面など、垂直方向に積層配置したり、バンプ電極による直接配線を行うことも可能となり、過渡応答性が一層改善される。   In particular, since the conventional sandwich structure is not required, the thickness can be reduced and the so-called bump electrode can be used to reduce the size, and the mounting area can be reduced to about 5 mm square. In addition, by controlling the thickness of the cathode external electrode and the height of the anode terminal, the height of the anode and cathode external terminals are set to the same plane position, and the entire plane including the external terminals is made to be the same plane shape without waste. Electrolytic capacitors can be stacked in the vertical direction, such as between the substrate and the back of the substrate, and direct wiring using bump electrodes can be performed on the LSI that is the current supply target, further improving transient response. Is done.

さらに、上記のようにLSIと近接して設置することで電流経路が短縮されることと、実装される回路パターンやLSI等のデバイスの端子位置に合致するように、固体電解コンデンサの陽極端子、陰極端子の導出位置、個数を任意に設定することができるため、実装する回路パターンや接続されるLSI等のデバイスに対し最適な電極引き出し構造を実現できる。   Furthermore, the anode terminal of the solid electrolytic capacitor so that the current path is shortened by being installed close to the LSI as described above, and the circuit pattern to be mounted and the terminal position of a device such as LSI are matched. Since the lead-out position and the number of cathode terminals can be set arbitrarily, an optimum electrode lead structure can be realized for a circuit pattern to be mounted and a device such as an LSI to be connected.

(3)他の実施形態
本発明は、上記実施形態に限定されるものではなく、次に例示するもの及びそれ以外の他の実施形態も含むものである。例えば、以上に挙げたそれぞれの具体的な材料の種類や加工手法、各図に示した形状や構造は例示に過ぎず、適宜変更実施可能であることは言うまでもない。例えば、陰極端子部のうち、外部に露出すべき外部露出部を除いた部分を絶縁樹脂で被覆することも省略可能である。
(3) Other Embodiments The present invention is not limited to the above-described embodiment, and includes the following embodiments and other embodiments. For example, it is needless to say that the specific types of materials, processing methods, shapes and structures shown in the drawings are merely examples, and can be appropriately changed. For example, it is possible to omit covering a portion of the cathode terminal portion excluding the externally exposed portion that should be exposed to the outside with an insulating resin.

本発明の実施形態における固体電解コンデンサの製造方法(前半)を示す断面図。Sectional drawing which shows the manufacturing method (first half) of the solid electrolytic capacitor in embodiment of this invention. 本発明の実施形態における固体電解コンデンサの製造方法(後半)を示す断面図。Sectional drawing which shows the manufacturing method (latter half) of the solid electrolytic capacitor in embodiment of this invention. 本発明の実施形態における固体電解コンデンサの製造方法(一部分)を示す斜視図。The perspective view which shows the manufacturing method (part) of the solid electrolytic capacitor in embodiment of this invention.

符号の説明Explanation of symbols

1…金属板
2…保護層
3…凹部
4…酸化皮膜層
5…固体電解質層
7…陰極端子部
8…絶縁樹脂
9…露出部
10…陽極端子
11…樹脂
DESCRIPTION OF SYMBOLS 1 ... Metal plate 2 ... Protective layer 3 ... Recessed part 4 ... Oxide film layer 5 ... Solid electrolyte layer 7 ... Cathode terminal part 8 ... Insulating resin 9 ... Exposed part 10 ... Anode terminal 11 ... Resin

Claims (4)

弁金属からなる金属板の少なくとも片面に保護層を形成し、
前記保護層を形成した面に凹部を形成することにより、その凹部の内面に陽極部を形成する前記金属板の地金を露出させ、
前記凹部の内面の地金を拡面処理し、その表面に酸化皮膜層を形成し、
前記酸化皮膜層の上に固体電解質層を形成し、
前記固体電解質層の上に陰極端子部を形成し、
前記凹部の周囲の前記保護層を部分的に除去して陽極引き出し手段を形成する金属板の地金を露出させ、
露出した陽極引き出し手段を形成する金属板の地金の上に陽極端子を形成し、
前記凹部と前記陽極端子を含む所定の領域を単位として区画するように金属板を切断することにより、個片の固体電解コンデンサとした
ことを特徴とする固体電解コンデンサ。
Forming a protective layer on at least one side of the metal plate made of valve metal,
By forming a recess on the surface on which the protective layer is formed, the metal plate forming the anode part on the inner surface of the recess is exposed,
Surface expansion of the metal on the inner surface of the recess, forming an oxide film layer on the surface,
Forming a solid electrolyte layer on the oxide film layer;
Forming a cathode terminal on the solid electrolyte layer;
A part of the protective layer around the recess is partially removed to expose the metal sheet metal that forms the anode lead means;
Form an anode terminal on the metal plate ingot that forms the exposed anode lead means,
A solid electrolytic capacitor, characterized in that an individual solid electrolytic capacitor is obtained by cutting a metal plate so as to partition a predetermined region including the concave portion and the anode terminal as a unit.
前記陰極端子部のうち、外部に露出すべき所定の外部露出部を除いた部分を絶縁樹脂で被覆したことを特徴とする請求項1記載の固体電解コンデンサ。   2. The solid electrolytic capacitor according to claim 1, wherein a portion of the cathode terminal portion excluding a predetermined external exposed portion to be exposed to the outside is covered with an insulating resin. 弁金属からなる金属板の少なくとも片面に保護層を形成する工程と、
前記保護層を形成した面に凹部を形成することによりその凹部の内面に陽極部を形成する前記金属板の地金を露出させる工程と、
前記凹部の内面の地金を拡面処理し、その表面に酸化皮膜層を形成する工程と、
前記酸化皮膜層の上に固体電解質層を形成する工程と、
前記固体電解質層の上に陰極端子部を形成する工程と、
前記凹部の周囲の金属板の前記保護層を部分的に除去して陽極引き出し手段を形成する金属板の地金を露出させる工程と、
露出した陽極引き出し手段を形成する金属板の上に陽極端子を形成する工程と、
前記凹部と、複数の前記陽極端子を含む所定の領域を単位として区画するように金属板を切断することにより、個片の固体電解コンデンサとする工程と、
を有することを特徴とする固体電解コンデンサの製造方法。
Forming a protective layer on at least one side of a metal plate made of a valve metal;
Exposing the metal sheet metal to form an anode on the inner surface of the recess by forming a recess in the surface on which the protective layer is formed;
Expanding the surface of the inner surface of the recess, and forming an oxide film layer on the surface;
Forming a solid electrolyte layer on the oxide film layer;
Forming a cathode terminal on the solid electrolyte layer;
A step of partially removing the protective layer of the metal plate around the recess to expose the metal plate ingot to form the anode lead means;
Forming an anode terminal on the metal plate forming the exposed anode lead means;
Cutting the metal plate so as to partition the concave portion and a predetermined region including the plurality of anode terminals as a unit, thereby forming a solid electrolytic capacitor as a piece;
A method for producing a solid electrolytic capacitor, comprising:
前記陰極端子部のうち、外部に露出すべき所定の外部露出部を除いた部分について、絶縁樹脂を注入することにより被覆する工程、を含むことを特徴とする請求項3記載の固体電解コンデンサの製造方法。   4. The solid electrolytic capacitor according to claim 3, further comprising a step of covering a portion of the cathode terminal portion excluding a predetermined external exposed portion to be exposed to the outside by injecting an insulating resin. Production method.
JP2008022012A 2008-01-31 2008-01-31 Solid electrolytic capacitor and manufacturing method thereof Expired - Fee Related JP5007677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008022012A JP5007677B2 (en) 2008-01-31 2008-01-31 Solid electrolytic capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008022012A JP5007677B2 (en) 2008-01-31 2008-01-31 Solid electrolytic capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009182273A true JP2009182273A (en) 2009-08-13
JP5007677B2 JP5007677B2 (en) 2012-08-22

Family

ID=41035972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008022012A Expired - Fee Related JP5007677B2 (en) 2008-01-31 2008-01-31 Solid electrolytic capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5007677B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011044607A (en) * 2009-08-21 2011-03-03 Nippon Chemicon Corp Solid electrolytic capacitor and method of manufacturing the same
WO2013047801A1 (en) * 2011-09-30 2013-04-04 日本ケミコン株式会社 Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor
GB2548361A (en) * 2016-03-15 2017-09-20 Dyson Technology Ltd Method of fabricating an energy storage device
US11489158B2 (en) 2017-12-18 2022-11-01 Dyson Technology Limited Use of aluminum in a lithium rich cathode material for suppressing gas evolution from the cathode material during a charge cycle and for increasing the charge capacity of the cathode material
US11616229B2 (en) 2017-12-18 2023-03-28 Dyson Technology Limited Lithium, nickel, manganese mixed oxide compound and electrode comprising the same
US11658296B2 (en) 2017-12-18 2023-05-23 Dyson Technology Limited Use of nickel in a lithium rich cathode material for suppressing gas evolution from the cathode material during a charge cycle and for increasing the charge capacity of the cathode material
US11769911B2 (en) 2017-09-14 2023-09-26 Dyson Technology Limited Methods for making magnesium salts
US11817558B2 (en) 2017-09-14 2023-11-14 Dyson Technology Limited Magnesium salts
US11967711B2 (en) 2017-12-18 2024-04-23 Dyson Technology Limited Lithium, nickel, cobalt, manganese oxide compound and electrode comprising the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01127231U (en) * 1988-02-23 1989-08-31
JPH02194518A (en) * 1989-01-23 1990-08-01 Nichicon Corp Manufacture of solid electrolytic capacitor
JPH05234823A (en) * 1992-02-19 1993-09-10 Nippon Chemicon Corp Manufacture of solid electrolytic capacitor
JPH0645204A (en) * 1992-07-21 1994-02-18 Nippon Chemicon Corp Solid electrolytic capacitor
JPH0645203A (en) * 1992-07-21 1994-02-18 Nippon Chemicon Corp Solid electrolytic capacitor
JP2003124067A (en) * 2001-10-19 2003-04-25 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor
JP2004055794A (en) * 2002-07-19 2004-02-19 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor and manufacturing method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01127231U (en) * 1988-02-23 1989-08-31
JPH02194518A (en) * 1989-01-23 1990-08-01 Nichicon Corp Manufacture of solid electrolytic capacitor
JPH05234823A (en) * 1992-02-19 1993-09-10 Nippon Chemicon Corp Manufacture of solid electrolytic capacitor
JPH0645204A (en) * 1992-07-21 1994-02-18 Nippon Chemicon Corp Solid electrolytic capacitor
JPH0645203A (en) * 1992-07-21 1994-02-18 Nippon Chemicon Corp Solid electrolytic capacitor
JP2003124067A (en) * 2001-10-19 2003-04-25 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor
JP2004055794A (en) * 2002-07-19 2004-02-19 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor and manufacturing method therefor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011044607A (en) * 2009-08-21 2011-03-03 Nippon Chemicon Corp Solid electrolytic capacitor and method of manufacturing the same
WO2013047801A1 (en) * 2011-09-30 2013-04-04 日本ケミコン株式会社 Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor
JP2013077787A (en) * 2011-09-30 2013-04-25 Nippon Chemicon Corp Method of manufacturing solid electrolytic capacitor, and solid electrolytic capacitor
GB2548361B (en) * 2016-03-15 2020-12-02 Dyson Technology Ltd Method of fabricating an energy storage device
WO2017158319A1 (en) * 2016-03-15 2017-09-21 Dyson Technology Limited Method of fabricating an energy storage device
US10763551B2 (en) 2016-03-15 2020-09-01 Dyson Technology Limited Method of fabricating an energy storage device
GB2548361A (en) * 2016-03-15 2017-09-20 Dyson Technology Ltd Method of fabricating an energy storage device
US11769911B2 (en) 2017-09-14 2023-09-26 Dyson Technology Limited Methods for making magnesium salts
US11817558B2 (en) 2017-09-14 2023-11-14 Dyson Technology Limited Magnesium salts
US11489158B2 (en) 2017-12-18 2022-11-01 Dyson Technology Limited Use of aluminum in a lithium rich cathode material for suppressing gas evolution from the cathode material during a charge cycle and for increasing the charge capacity of the cathode material
US11616229B2 (en) 2017-12-18 2023-03-28 Dyson Technology Limited Lithium, nickel, manganese mixed oxide compound and electrode comprising the same
US11658296B2 (en) 2017-12-18 2023-05-23 Dyson Technology Limited Use of nickel in a lithium rich cathode material for suppressing gas evolution from the cathode material during a charge cycle and for increasing the charge capacity of the cathode material
US11967711B2 (en) 2017-12-18 2024-04-23 Dyson Technology Limited Lithium, nickel, cobalt, manganese oxide compound and electrode comprising the same

Also Published As

Publication number Publication date
JP5007677B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
JP5007677B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5120026B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2006237520A (en) Thin-shaped multi-terminal capacitor, and manufacturing method therefor
JP2006156759A (en) Solid electrolytic capacitor and manufacturing method thereof
CN102270536A (en) Lower-face electrode type solid electrolytic multilayer capacitor and mounting member having the same
JP2009164168A (en) Interposer for capacitor
JP5007678B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5434364B2 (en) Manufacturing method of solid electrolytic capacitor
JP2009260235A (en) Solid electrolytic capacitor device and method of manufacturing the same
JP2009295634A (en) Solid electrolytic capacitor
JP2005158903A (en) Solid electrolytic capacitor
JP5120025B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5104380B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5376134B2 (en) Solid electrolytic capacitor
JP5206008B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5206958B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2011176067A (en) Solid-state electrolytic capacitor
JP2005236090A (en) Solid electrolytic capacitor and transmission line element, and their manufacturing methods, and composite electronic component using them
JP2005294291A (en) Solid-state electrolytic capacitor and its manufacturing method, and complex electronic component
JP5164213B2 (en) Solid electrolytic capacitor
JP2010212600A (en) Solid electrolytic capacitor and method of manufacturing the same
JP5210672B2 (en) Capacitor parts
JP2002110458A (en) Solid electrolytic chip capacitor
JP2009295645A (en) Solid electrolytic capacitor
JP5326032B1 (en) Solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120501

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120514

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees