JPH04280891A - Method for growing single crystal fiber - Google Patents

Method for growing single crystal fiber

Info

Publication number
JPH04280891A
JPH04280891A JP3068853A JP6885391A JPH04280891A JP H04280891 A JPH04280891 A JP H04280891A JP 3068853 A JP3068853 A JP 3068853A JP 6885391 A JP6885391 A JP 6885391A JP H04280891 A JPH04280891 A JP H04280891A
Authority
JP
Japan
Prior art keywords
crucible
insertion member
pull
growing
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3068853A
Other languages
Japanese (ja)
Other versions
JPH085738B2 (en
Inventor
Norio Onishi
大西 紀男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP3068853A priority Critical patent/JPH085738B2/en
Publication of JPH04280891A publication Critical patent/JPH04280891A/en
Publication of JPH085738B2 publication Critical patent/JPH085738B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To realize the optimum crystal growing condition of a single crystal fiber over a wide crucible temperature range in a pull-out process by adjusting the protruded length of an insertion member protruded from a molten liquid pull-out port. CONSTITUTION:A fiber 7 is grown by pulling out a molten raw material 4 from a crucible 1 through a pull-out port 2 opened at a part of the crucible 1 by using a pull-out driving shaft 8 holding a seed crystal 5 at the tip end. In the above process, an insertion member 3 is protruded from the pull-out port 2, the molten liquid 4 is extruded through the gap between the insertion member 3 and the pull-out port 2 and guided along the surface of the insertion member 3 to the seed crystal, and the extruded liquid is crystallized at the seed crystal 5 and pulled out with the driving shaft 8. The protrusion length of the insertion member 3 is made to be long when the crucible temperature is high and to be short when the temperature is low. A solid-liquid interface 6 satisfying the crystallization condition can be formed at the tip end of the insertion member by this process.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、単結晶ファイバーを
原料融液から育成する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a method for growing single crystal fiber from a raw material melt.

【0002】0002

【従来の技術】ファイバー導波路が光を閉じ込め、その
内部に高い光パワー密度を実現することから、光強度に
依存してその効果が発揮される非線形光学の分野で、材
料の単結晶ファイバー化に関心が集まっている。
[Prior Art] Fiber waveguides confine light and achieve high optical power density inside, so in the field of nonlinear optics, where the effect is dependent on the light intensity, the use of single crystal fibers There is a growing interest in

【0003】非線形光学用途の単結晶ファイバーの育成
法としてレーザーペデスタル法とマイクロチョクラルス
キー法(大西:特願昭61−24763号、 特願昭6
1−24763号) が公開されている。
Laser pedestal method and micro-Czochralski method (Onishi: Japanese Patent Application No. 61-24763, Japanese Patent Application No. 1983)
No. 1-24763) has been published.

【0004】しかし従来、金属やハロゲン化合物などの
ファイバーに関しては、ルツボに設けられた目的口径の
引き出し口やノズルなどから原料融液を引き出す基本的
な方法(以下、引き出し法と呼ぶ)が公知であった。
[0004] Conventionally, however, for fibers such as metals and halogen compounds, a basic method (hereinafter referred to as the drawing method) of drawing out the raw material melt from a drawing port or nozzle of a desired diameter provided in a crucible has been known. there were.

【0005】この方法は、図2に示すようにルツボ1内
の原料融液4を、その先端に種結晶5を設けた引き出し
用駆動軸8を用いて種結晶5で単結晶化させながら引き
出し単結晶ファイバーを製造するものであり、原料の形
態を選ばず、技術的にも簡単で利点の多い方法として注
目を集めている。
In this method, as shown in FIG. 2, a raw material melt 4 in a crucible 1 is pulled out while being single-crystallized by the seed crystal 5 using a pull-out drive shaft 8 having a seed crystal 5 at its tip. This method produces single crystal fibers, and is attracting attention as a method that is technically simple and has many advantages, regardless of the form of the raw material.

【0006】[0006]

【発明が解決しようとする問題点】しかるに、この引き
出し法を非線形光学ファイバーの製作に適用するには、
要求されるファイバー径が100 ミクロン以下と細径
で、それを達成するための融液温度の制御などに非線形
光学ファイバーに特有の問題がある。
[Problems to be solved by the invention] However, in order to apply this drawing method to the production of nonlinear optical fibers,
The required fiber diameter is small, 100 microns or less, and there are problems specific to nonlinear optical fibers, such as controlling the melt temperature to achieve this.

【0007】即ち現在有用とされている主な非線形光学
結晶は高融点の酸化物結晶が多く、その育成温度、育成
雰囲気で使用に耐え且つ微細に加工自在なルツボ用の金
属は得難い。しかも非線形光学結晶のほとんどは、リチ
ウム(Li)、ソジュウム(Na)、ポタシュウム(K
)など蒸発し易い元素を含む多元成分結晶であるが、蒸
発は融液温度が高いほど激しく、この結果融液の組成の
ずれにつながるため、非線形光学結晶の育成に適する融
液の温度幅は狭い。
That is, most of the main nonlinear optical crystals that are currently useful are high-melting-point oxide crystals, and it is difficult to obtain metals for crucibles that can withstand use at the growing temperature and atmosphere and can be processed finely. Moreover, most of the nonlinear optical crystals are made of lithium (Li), sodium (Na), potassium (K),
), which is a multi-component crystal containing easily evaporated elements such as narrow.

【0008】引き出し法では、高周波加熱、抵抗加熱、
赤外線加熱などの加熱方式によってルツボ自体が加熱さ
れ、原料の融解やファイバー育成のための熱は全てルツ
ボ1の発熱で供給され、ファイバー育成時の温度制御は
ルツボ温度の制御によっている。
[0008] In the extraction method, high frequency heating, resistance heating,
The crucible itself is heated by a heating method such as infrared heating, and the heat for melting the raw materials and growing the fibers is all supplied by the heat generated by the crucible 1, and the temperature during fiber growth is controlled by controlling the crucible temperature.

【0009】いま開口部分で理想的な固液界面6が形成
されファイバー7が定常的に成長している状態を考える
と[図3(a)]、熱的にルツボ近傍が最も高温である
から、ルツボ壁から遠い原料部分の温度は融点以下で固
体状態9にあり、ルツボに接した原料部分のみが融液状
態10にある。
Considering now that an ideal solid-liquid interface 6 is formed in the opening and the fiber 7 is growing steadily [FIG. 3(a)], the temperature near the crucible is the highest thermally. The temperature of the raw material portion far from the crucible wall is below the melting point and is in the solid state 9, and only the raw material portion in contact with the crucible is in the melt state 10.

【0010】この熱環境でファイバー7を育成すると、
ルツボ1に接した部分の融液状態にある原料10のみが
ファイバー育成で消費されるためルツボ1と未融解な原
料9の間に空間11が生じ、熱の伝達がそこで妨げられ
てそれ以上融解が進まず、融液供給が途絶えファイバー
育成が続行できないことになる[図3(b)]。
When the fiber 7 is grown in this thermal environment,
Since only the raw material 10 in a molten state in contact with the crucible 1 is consumed during fiber growth, a space 11 is created between the crucible 1 and the unmelted raw material 9, which prevents heat transfer and prevents further melting. As a result, the melt supply is interrupted and fiber growth cannot be continued [Figure 3(b)].

【0011】一方、ルツボ1に充填された全原料4が融
解する迄加熱された状態では、引き出し口2がルツボ壁
に設けられている関係上、引き出し口2での融液温度は
ファイバー育成に最適な固液界面を形成するには高過ぎ
ることになり、メルト切れが起り易くなったり、随意の
径が得られないなどの不都合が生じる。
On the other hand, when all the raw materials 4 filled in the crucible 1 are heated until they are melted, the temperature of the melt at the outlet 2 is too high for fiber growth because the outlet 2 is provided in the crucible wall. The height is too high to form an optimal solid-liquid interface, resulting in disadvantages such as melt breakage being more likely to occur and the inability to obtain a desired diameter.

【0012】したがって高融点結晶のファイバーを従来
の引き出し法で育成するには、引き出し口部分にパイプ
やノズルなどを付設して融液をより低温部へ導く工夫と
かファイバー育成速度を極端に遅くするなどの調節が必
要になり、育成技術そのものが難しくなってくる。
[0012] Therefore, in order to grow high-melting-point crystal fibers using the conventional drawing method, it is necessary to attach a pipe or nozzle to the drawing port to guide the melt to a lower temperature area, or to extremely slow down the fiber growth speed. This makes the cultivation technique itself difficult.

【0013】また、融液の温度が高い場合、図4に示す
ように引き出し口で滲み出た融液12がルツボ底13を
濡らしながら広がる現象がしばしば起り、これによって
ファイバー径が変化するなど不都合な問題も起き易い。 この発明はこれらの問題点を解決するためになされたも
のである。
Furthermore, when the temperature of the melt is high, as shown in FIG. 4, a phenomenon often occurs in which the melt 12 seeping out from the draw-out port spreads while wetting the crucible bottom 13, which causes disadvantages such as changes in the fiber diameter. Problems are also likely to occur. This invention was made to solve these problems.

【0014】[0014]

【問題点を解決するための手段】このためこの発明にお
いては図1に示すように、その先端に種結晶5を設けた
引き出し用駆動軸8を用いてルツボ1の一部に設けられ
た引き出し口2よりルツボ1内の原料融液4を、引き出
しつつ行なうファイバー育成方法において、ルツボ1の
一部に設けられた引き出し口2に挿通体3を突出させ、
一方原料融液4は挿通体3と引き出し口2との隙間から
滲出させ、挿通体3表面を伝わらせて種結晶5に導くと
ともに、種結晶5で結晶化させながら駆動軸8で引き出
すことにより単結晶ファイバーを育成する方法を提案す
るものである。
[Means for Solving the Problems] Therefore, in the present invention, as shown in FIG. In a fiber growing method in which the raw material melt 4 in the crucible 1 is pulled out from the opening 2, the insertion body 3 is protruded into the extraction opening 2 provided in a part of the crucible 1,
On the other hand, the raw material melt 4 is made to seep out from the gap between the insertion body 3 and the draw-out port 2, is guided through the surface of the insertion body 3 to the seed crystal 5, and is drawn out by the drive shaft 8 while being crystallized by the seed crystal 5. This paper proposes a method for growing single crystal fibers.

【0015】[0015]

【作用】即ち、この発明によれば、ルツボ温度の高い場
合には挿通体3の突出長さを長く、ルツボ温度が低い場
合には突出長さを短くするなどの選択により、挿通体先
端部で結晶条件を満たす固液界面6を形成することが可
能となる。
[Operation] That is, according to the present invention, the protrusion length of the inserter 3 is increased when the crucible temperature is high, and the protrusion length is shortened when the crucible temperature is low. It becomes possible to form a solid-liquid interface 6 that satisfies the crystal conditions.

【0016】したがって、この発明では挿通体3先端部
の引き出し口2からの突出長さを調節することにより、
ルツボ温度の比較的広い範囲で単結晶ファイバーの最適
な結晶育成条件が実現できる。
Therefore, in this invention, by adjusting the protruding length of the tip of the insertion member 3 from the drawer opening 2,
Optimal crystal growth conditions for single crystal fibers can be achieved over a relatively wide range of crucible temperatures.

【0017】また、この発明では原料融液4は引き出し
口2より突出した挿通体3表面を伝わって種結晶5に導
くようにしているため、固液界面の温度より充分高いル
ツボ温度が設定でき、原料融液4の十分な供給がなされ
、長尺なファイバーの育成が可能となると同時に、従来
法では引き出し口2の口径によって決められていたファ
イバー径がこの発明ではある程度自由に選択でき、細径
ファイバーの育成が容易になる。
Furthermore, in this invention, the raw material melt 4 is guided to the seed crystal 5 through the surface of the inserter 3 protruding from the outlet 2, so that the crucible temperature can be set sufficiently higher than the temperature of the solid-liquid interface. , the raw material melt 4 is sufficiently supplied, and it is possible to grow long fibers, and at the same time, the fiber diameter, which was determined by the diameter of the draw-out port 2 in the conventional method, can be selected to a certain extent with this invention, and it is possible to grow thin fibers. This makes it easier to grow diameter fibers.

【0018】[0018]

【実施例】以下、この発明を図示の実施例に基づいて説
明する。図5はこの発明の内容を実施する具体例を示す
。この実施例ではルツボとして通電加熱式ルツボ14を
使用し、原料の融解や融液温度を全てルツボの発熱量即
ち電流量で制御するようにしている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained below based on the illustrated embodiments. FIG. 5 shows a concrete example of implementing the contents of the invention. In this embodiment, an electrically heated crucible 14 is used as the crucible, and the melting of the raw material and the temperature of the melt are all controlled by the amount of heat generated by the crucible, that is, the amount of current.

【0019】ここで使用するルツボ14は8 ×4 ×
0.1 mm程度の白金板を折曲げてその両側を熔着し
て図5のように加工し、これに電導線15を取り付けた
もので、ルツボ14の底部には直径約200〜400 
ミクロンの融液引き出し用の孔口を設ける。
[0019] The crucible 14 used here has a size of 8 × 4 ×
A platinum plate of about 0.1 mm in diameter is bent and welded on both sides, processed as shown in Fig. 5, and a conductive wire 15 is attached to this.
Provide a hole for drawing out the micron melt.

【0020】挿通体3としては100 〜300 ミク
ロンの白金線を用い、その一端をルツボ壁に固定し、他
端を引き出し口に挿通して突出部分が300 〜500
 ミクロンになるように調節して切断した。
As the insertion member 3, a platinum wire of 100 to 300 microns is used, one end of which is fixed to the crucible wall, and the other end is inserted into the drawer opening so that the protruding portion is 300 to 500 microns.
It was adjusted and cut to a micron size.

【0021】このように加工したルツボに、ニオブ酸リ
チウム(LiNbO3)やニオブ酸バリウム・ソジュウ
ム(Ba2NaNb5O15) などの原料を充填した
後、ルツボに直接通電して加熱する。原料が融解すると
開口と挿通体の隙間から融液が滲み出して挿通体の表面
を濡らすので、この融液を挿通体の先端において、種結
晶を用いて引き下げつつファイバー7を育成する。
[0021] After the crucible thus processed is filled with raw materials such as lithium niobate (LiNbO3) and barium/sodium niobate (Ba2NaNb5O15), the crucible is heated by directly applying electricity. When the raw material melts, the melt oozes out from the gap between the opening and the insertion body and wets the surface of the insertion body, so the fiber 7 is grown by pulling down this melt at the tip of the insertion body using a seed crystal.

【0022】図6は挿通体として中空パイプを用いた例
を示す。この場合、パイプ16は外径500 ミクロン
、内径約350 ミクロンで、前実施例と同様な手順に
よりファイバー育成を行なうが、融液が中空パイプ16
の端面から中空に引かれている所に固液界面6を設定す
ることにより中空な単結晶ファイバー17を育成するこ
とができる。
FIG. 6 shows an example in which a hollow pipe is used as the insertion member. In this case, the pipe 16 has an outer diameter of 500 microns and an inner diameter of about 350 microns, and the fibers are grown using the same procedure as in the previous example, but the melt is in the hollow pipe 16.
A hollow single-crystal fiber 17 can be grown by setting the solid-liquid interface 6 at a point drawn hollow from the end face of the fiber.

【0023】図7は挿通体として使用するその先端を二
分割したパイプ18を示すものであり、この種のパイプ
を挿通体として用いることにより表面を伝う融液はパイ
プ端において二手に分かれるため、これを前実施例と同
様に種結晶を用いて引き下げることにより同時に2本の
ファイバーを育成することができる。
FIG. 7 shows a pipe 18 whose tip is divided into two to be used as an insertion body. By using this type of pipe as an insertion body, the melt flowing on the surface is divided into two at the end of the pipe. By pulling this down using a seed crystal as in the previous example, two fibers can be grown at the same time.

【0024】なお、融液の表面張力の作用によって端面
形状に拘らずファイバー断面はほぼ円形となる。
[0024] Due to the action of the surface tension of the melt, the cross section of the fiber becomes approximately circular regardless of the shape of the end face.

【0025】[0025]

【発明の効果】以上述べたように、この発明によれば融
液引き出し口より挿通体を突出させ、その突出部分の長
さを調整することにより融液の形状や固液界面が制御で
き、ルツボ温度の幅広い範囲でファイバー育成条件を満
足させることができる。
As described above, according to the present invention, the shape of the melt and the solid-liquid interface can be controlled by protruding the insert from the melt outlet and adjusting the length of the protruding portion. Fiber growth conditions can be satisfied over a wide range of crucible temperatures.

【0026】また、この発明では融液を挿通体を伝わら
せて種結晶に導くようにしているため、育成ファイバー
の長尺化、細径化、均一化などが容易になる。
Furthermore, in the present invention, since the melt is guided to the seed crystal by passing through the insertion member, it becomes easy to make the grown fibers longer, thinner, and more uniform.

【0027】更に、この発明では挿通体の端部断面形状
を工夫することで中空ファイバーや複数ファイバーの同
時育成など、特殊なファイバー育成も可能となる。
Furthermore, according to the present invention, special fiber growth such as simultaneous growth of hollow fibers or a plurality of fibers is possible by devising the cross-sectional shape of the end of the insertion body.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の原理を示す概略図[Figure 1] Schematic diagram showing the principle of this invention

【図2】従来からの引き出し法の説明図[Figure 2] Illustration of the conventional withdrawal method

【図3】高温結
晶ファイバーの育成時に起こる不都合を説明する図で、
図3(a)は引き出し操作を行う前の状態を説明する図
、図3(b)は引き出し操作を行った状態を説明する図
[Figure 3] A diagram explaining the inconveniences that occur when growing high-temperature crystal fibers.
FIG. 3(a) is a diagram illustrating the state before the withdrawal operation, and FIG. 3(b) is a diagram illustrating the state after the withdrawal operation.

【図4】高温でのファイバー径の変動の説明図[Figure 4] Illustration of fiber diameter variation at high temperatures

【図5】
この発明の一実施例を示す図
[Figure 5]
A diagram showing an embodiment of this invention

【図6】この発明において中空ファイバーを育成するた
めの他の実施例を示す図
[Fig. 6] A diagram showing another embodiment for growing hollow fibers in this invention.

【図7】この発明において2本のファイバーを同時育成
する挿通体の先端形状図
[Figure 7] Diagram of the tip shape of the insertion body that grows two fibers simultaneously in this invention

【符号の説明】[Explanation of symbols]

1  ルツボ 2  引き出し口 3  挿通体 4  原料融液 5  種結晶 7  育成ファイバー 8  引き出し用の駆動軸 16  中空パイプ 17  育成された中空ファイバー 18  先端2分割パイプ 1 Crucible 2 Drawer opening 3 Insert body 4 Raw material melt 5 Seed crystal 7. Growing fiber 8 Drive shaft for drawer 16 Hollow pipe 17. Grown hollow fiber 18 Tip 2-split pipe

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  その先端に種結晶を設けた引き出し用
駆動軸を用いてルツボの一部に設けられた引き出し口よ
りルツボ内の原料融液を、引き出しつつ行なうファイバ
ー育成方法において、ルツボの一部に設けられた引き出
し口に挿通体を突出させ、一方原料融液は該挿通体と引
き出し口との隙間から滲出させ、該挿通体表面を伝わら
せて前記種結晶に導き、該種結晶で結晶化させながら前
記駆動軸で引き出すことを特徴とする単結晶ファイバー
の育成方法。
Claim 1: A fiber growing method in which a raw material melt in a crucible is drawn out from a draw-out port provided in a part of the crucible using a pull-out drive shaft having a seed crystal at its tip. The insertion body is made to protrude into a draw-out port provided in the part, and the raw material melt is allowed to ooze out from the gap between the insertion body and the draw-out port, travels along the surface of the insertion body, and is guided to the seed crystal. A method for growing a single crystal fiber, characterized in that it is drawn out by the drive shaft while being crystallized.
【請求項2】  ルツボ内の温度に応じて引き出し口か
らの挿通体の突出長さを調節する特許請求の範囲第1項
記載の単結晶ファイバーの育成方法。
2. The method for growing a single crystal fiber according to claim 1, wherein the length of the insertion member protruding from the outlet is adjusted depending on the temperature inside the crucible.
【請求項3】  挿通体として中空パイプを使用する特
許請求の範囲第1項記載の単結晶ファイバーの育成方法
3. The method for growing a single crystal fiber according to claim 1, wherein a hollow pipe is used as the insertion member.
【請求項4】  挿通体として先端の分割した中空パイ
プを使用する特許請求の範囲第1項記載の単結晶ファイ
バーの育成方法。
4. The method for growing a single crystal fiber according to claim 1, wherein a hollow pipe with a split tip is used as the insertion member.
JP3068853A 1991-03-08 1991-03-08 Method for growing thin nonlinear optical single crystal fiber Expired - Lifetime JPH085738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3068853A JPH085738B2 (en) 1991-03-08 1991-03-08 Method for growing thin nonlinear optical single crystal fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3068853A JPH085738B2 (en) 1991-03-08 1991-03-08 Method for growing thin nonlinear optical single crystal fiber

Publications (2)

Publication Number Publication Date
JPH04280891A true JPH04280891A (en) 1992-10-06
JPH085738B2 JPH085738B2 (en) 1996-01-24

Family

ID=13385648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3068853A Expired - Lifetime JPH085738B2 (en) 1991-03-08 1991-03-08 Method for growing thin nonlinear optical single crystal fiber

Country Status (1)

Country Link
JP (1) JPH085738B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5737117A (en) * 1995-04-10 1998-04-07 Ngk Insulators, Ltd. Second harmonic generation element and a process for producing the same
US6074477A (en) * 1997-03-12 2000-06-13 Ngk Insulators, Ltd. Process and an apparatus for producing a composite oxide single crystal body
WO2004094705A1 (en) * 2003-04-23 2004-11-04 Stella Chemifa Corporation Apparatus for producing fluoride crystal
JP2010241663A (en) * 2009-04-10 2010-10-28 Tdk Corp Method and apparatus for pulling-down single crystal
CN110181006A (en) * 2019-05-27 2019-08-30 刘建军 A kind of device drawing tubular material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516460A (en) * 1974-07-05 1976-01-20 Hitachi Ltd Handotaiketsushono seizohoho oyobi seizosochi
JPS58140967A (en) * 1982-02-16 1983-08-20 Matsushita Electric Ind Co Ltd Electrode group for lead storage battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516460A (en) * 1974-07-05 1976-01-20 Hitachi Ltd Handotaiketsushono seizohoho oyobi seizosochi
JPS58140967A (en) * 1982-02-16 1983-08-20 Matsushita Electric Ind Co Ltd Electrode group for lead storage battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5737117A (en) * 1995-04-10 1998-04-07 Ngk Insulators, Ltd. Second harmonic generation element and a process for producing the same
US6074477A (en) * 1997-03-12 2000-06-13 Ngk Insulators, Ltd. Process and an apparatus for producing a composite oxide single crystal body
WO2004094705A1 (en) * 2003-04-23 2004-11-04 Stella Chemifa Corporation Apparatus for producing fluoride crystal
US8333838B2 (en) 2003-04-23 2012-12-18 Stella Chemifa Corporation Method for producing fluoride crystal
JP2010241663A (en) * 2009-04-10 2010-10-28 Tdk Corp Method and apparatus for pulling-down single crystal
CN110181006A (en) * 2019-05-27 2019-08-30 刘建军 A kind of device drawing tubular material

Also Published As

Publication number Publication date
JPH085738B2 (en) 1996-01-24

Similar Documents

Publication Publication Date Title
JP3792768B2 (en) Method and apparatus for producing oxide single crystal
JP3759807B2 (en) Method and apparatus for producing oxide single crystal
JPH04280891A (en) Method for growing single crystal fiber
KR920009566B1 (en) Apparatus for manufacturing single silicon crystal
US4367200A (en) Single crystal manufacturing device
JP3668276B2 (en) Method and apparatus for producing oxide single crystal
JPH06345588A (en) Crystal growth method
JP2612306B2 (en) How to grow single crystal fiber
JP3106182B2 (en) Manufacturing method of bulk single crystal
JPH0419194B2 (en)
KR100276969B1 (en) Mixing apparatus for Potassium niobate melt and method of fabricating Potassium niobate single crystal using the same
JP2825060B2 (en) Beta-barium borate single crystal processing surface modification method
JP2826364B2 (en) Manufacturing method of optical single crystal
JP2535773B2 (en) Method and apparatus for producing oxide single crystal
JP2592244B2 (en) Equipment for growing uniform crystals
JPH0753297A (en) Method for growing single crystal
JPS6347706A (en) Preparation of single crystal fiber
JPH08183696A (en) Crucible for producing fine wire-shaped silicon and fine wire-shaped silicon
JPH04300281A (en) Production of oxide single crystal
JP2959097B2 (en) Single crystal growth method
Pastor Single crystal fiber drawing
JPS61291487A (en) Production of single crystal fiber
JPH02124792A (en) Method for growing single crystal
JPH03228891A (en) Method and apparatus for producing single crystal fiber
JPH0648889A (en) Production of single crystal

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term