JPS6347706A - Preparation of single crystal fiber - Google Patents

Preparation of single crystal fiber

Info

Publication number
JPS6347706A
JPS6347706A JP61191299A JP19129986A JPS6347706A JP S6347706 A JPS6347706 A JP S6347706A JP 61191299 A JP61191299 A JP 61191299A JP 19129986 A JP19129986 A JP 19129986A JP S6347706 A JPS6347706 A JP S6347706A
Authority
JP
Japan
Prior art keywords
melt
pipe
crystal
raw material
top end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61191299A
Other languages
Japanese (ja)
Other versions
JPH0687089B2 (en
Inventor
Norio Onishi
大西 紀男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP61191299A priority Critical patent/JPH0687089B2/en
Publication of JPS6347706A publication Critical patent/JPS6347706A/en
Publication of JPH0687089B2 publication Critical patent/JPH0687089B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To permit direct prepn. of an objective single crystal fiber from the melt of a crystal base material by providing a microprojection to a part at the top end face of a pipe having a capillary, transferring the melt to the top end part of the pipe by capilarity and pulling up part of the melt in the microprojection. CONSTITUTION:The platinum pipe 5 is erected at approximately the center of a main heater 3. The microprojection 7 is formed on the cut face at the time of cutting out the pipe. Both sides of the pipes are held open and the pipe with the projection 7 faced upward is erected in substantial proximity to the groove of a twisted wire in such a manner that the bottom end of the pipe is dipped in the melt 12 when said melt wets the main heater 3 at the time of mounting the pipe. A raw material LiNbO3 is attached to the front end of a vertical driving mechanism 10 and is brought into contact with the main heater 3 by which the material is melted and the surface thereof is wetted. A seed crystal 11 which is LiNbO3 having a desired crystal orientation is then mounted in place of the raw material and the top end is brought into contact with the top end of the pipe so that said crystal is partly melted back to set the projection 7 and to fuse the melt thereof with the raw material melt 12 sucked by the capillarity. The temp. conditions are thereafter set at a desired fiber diameter and while the melt is puled up in the projection 7, the melt is crystallized.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明はLiNbO3等の酸化物材料を、原料融液から
直接、直径50μmφ以−下の極細径なファイバー状単
結晶に育成する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for growing an oxide material such as LiNbO3 directly from a raw material melt into an ultrafine fibrous single crystal with a diameter of 50 μm or less.

[従来の技術] 近年、単結晶体に特有な純粋且つ異方的な物性と形状に
由来する特異な効果を結び付けた「単結晶ファイバー」
なる結晶材料の新しい利用が主に光学分野に於て提案さ
れ、今日までに微小固体レーザーを目積したNd : 
YAにやNd:Al2O3等の単結晶ファイバーや、可
撓性のある赤外線伝送路を目的とファイバーのような細
い導波路中を進行する光波は、導波路に特有なモード、
高い光電界密度、導波路物質との強い相互作用などの特
異な伝播特性を持つ、従ってもし非線形光学材料の単結
晶ファイバーが作製出来れば、低い光パワー人力で大き
な非線形効果をファイバー内に発生させることができ、
ファイバー自身に機能を持たせた。いわゆる機能ファイ
バーの実現が可能で、各種の新しい光デバイスへの応用
も期待できる。例えば、非線形光学効果による光逓倍や
光混合は、小型な可視短波長レーザーの実現を約束して
おり、非線形光学材料の単結晶ファイバー化が特に待望
されている。
[Prior art] In recent years, "single crystal fiber" has been developed, which combines the pure and anisotropic physical properties characteristic of single crystals with the unique effects derived from their shape.
New uses of Nd crystalline materials have been proposed mainly in the optical field, and to date, Nd has been used with the aim of producing microsolid-state lasers:
Light waves traveling through thin waveguides such as single crystal fibers such as YA, Nd:Al2O3, and flexible infrared transmission paths are characterized by modes unique to the waveguides.
It has unique propagation characteristics such as high optical field density and strong interaction with the waveguide material. Therefore, if a single crystal fiber of nonlinear optical material can be fabricated, a large nonlinear effect can be generated within the fiber with low optical power. It is possible,
The fiber itself has a function. It is possible to create so-called functional fibers, and it is expected to be applied to a variety of new optical devices. For example, optical multiplication and optical mixing due to nonlinear optical effects promise the realization of compact visible short-wavelength lasers, and the production of single-crystal fibers from nonlinear optical materials is particularly eagerly awaited.

従来、単結晶ファイバーの育成を目的とする公知の作製
方法には、押し出し法(T、J、Bridges et
al、:Opt、 Lett、 Vol、5. p85
.1980) 、引き下げ法(Y、Mimura at
 aL、:Jpn J、 Appl、 Phys、 V
ol。
Conventionally, known production methods for the purpose of growing single crystal fibers include the extrusion method (T, J, Bridges et al.
al,: Opt, Lett, Vol, 5. p85
.. 1980), lowering method (Y, Mimura at
aL,: Jpn J, Appl, Phys, V
ol.

19、 pL2G7.1980) 、E F G法(H
,E、Labelle、Jr。
19, pL2G7.1980), E F G method (H
, E., Labelle, Jr.

et al、:Mat、Res、Bull、Vol、6
. p571. 1971) 、レーる単結晶育成法に
引き上げ法(例えばP、 Har tman:Crys
taL Grovfth l、 p212. Nort
h−Ho1land Pub。
et al,: Mat, Res, Bull, Vol, 6
.. p571. 1971), the pulling method (for example, P. Hartman: Crys
taL Grovfthl, p212. Nort
h-Ho1land Pub.

Co、、 1973)がある。Co., 1973).

これらの中で、押し出し法および引き下げ法は主に赤外
ファイバーを育成する目的で考案された方法で、扱う材
料は一般に低融点で、得られるファイバー径は数too
−toooμmφと比較的太い。
Among these, the extrusion method and the pull-down method are methods devised mainly for the purpose of growing infrared fibers, and the materials used generally have a low melting point, and the resulting fiber diameter is several too large.
-too μmφ and relatively thick.

EFG法は、円柱、円筒、角柱など特定な形状を有する
単結晶を融液から直接育成する方法で。
The EFG method is a method of growing single crystals with specific shapes such as cylinders, cylinders, and prisms directly from melt.

毛細管を持ったダイを用いることを特徴とする。It is characterized by using a die with a capillary tube.

すなわち、ルツボ中で融解した原料融液にダイの下端を
浸して毛管現象に依り融液をダイの上端面へ運び、上端
面のエツジで融液を規定しながら引き上げ、上端面と同
一な断面形状に結晶化させる。
That is, the lower end of the die is immersed in the raw material melt melted in the crucible, the melt is carried to the upper end surface of the die by capillary action, and the melt is pulled up while being defined by the edge of the upper end surface. Crystallize into shape.

′1972) じマイクロ引き上げ法は、特にLiNbO3やLiTa
O3のファイバー化を想定して考案された方法で、微小
突起を持つ発熱体で原料を融解してその表面を濡らし、
突起部に於て融液を微小規模に引き上げることにより単
結晶ファイバーを育成するものである。現在迄のところ
100μmφまで細径化されたファイバーが育成されて
いる。
'1972) The same micro-pulling method is particularly useful for LiNbO3 and LiTa.
This method was devised with the idea of turning O3 into fibers, and uses a heating element with microscopic protrusions to melt the raw material and wet its surface.
Single crystal fibers are grown by pulling up the melt on a microscopic scale at the projections. Up to now, fibers with diameters down to 100 μmφ have been grown.

レーザーペデスタル法は、レーザー光を棒状原料の先端
部に集光してその微小領域を融解し、融液に種結晶を浸
して微小規模な引き上げを行う方法である。この方法は
、ルツボやダイ材質からの汚染や、それらの融点による
制限もなく、幅広い材料に適用可能で、特に高融点材料
の単結晶ファイバー化に有力である。この方法を用いて
、微小固体レーザーを目積したNd:YAGやNd:A
l2O3などの径35〜250μmφの単結晶ファイバ
ーや、非線形光学効果を指向した径20μmφのLiN
bO3のファイノく−が育成されている。(例えば阿、
M、Fejer etal、:Rev、 Sci、 ■
nstrum、 Vol、55. p1791.198
4)[発明が解決しようとする問題点コ 非線形光学効果の利用を目的とする単結晶ファイバーに
は、育成温度とファイバー径に関した技術的な難しさが
ある。LiNbO3など非線形光学材料は一般に酸化物
で、その単結晶は酸化雰囲気中。
The laser pedestal method is a method in which a laser beam is focused on the tip of a rod-shaped raw material to melt a microscopic area, and a seed crystal is immersed in the melt to perform microscale pulling. This method is applicable to a wide range of materials without contamination from crucible or die materials or limitations due to their melting points, and is particularly effective in converting high-melting-point materials into single-crystal fibers. Using this method, Nd:YAG and Nd:A can be used to create microsolid-state lasers.
Single crystal fibers such as l2O3 with a diameter of 35 to 250 μmφ, and LiN with a diameter of 20 μmφ aimed at nonlinear optical effects.
bO3's Phi No Ku- is being cultivated. (For example, Ah,
M, Fejer etal, :Rev, Sci, ■
nstrum, Vol. 55. p1791.198
4) [Problems to be Solved by the Invention] Single-crystal fibers intended to utilize nonlinear optical effects have technical difficulties regarding growth temperature and fiber diameter. Nonlinear optical materials such as LiNbO3 are generally oxides, and their single crystals are in an oxidizing atmosphere.

tooo℃以上の高温溶融液から育成される。こうした
育成条件で使えるルツボやダイ等の材料には白金の他二
三しか無く、それも温度範囲、加工性、高温での機械的
強度、腐食性等の点でその使用は大きな制約を受け、こ
のことがファイバーの作製法を大きく限定している。そ
の上、非線形光学ファイバーでは、伝播モードを単一化
したり、低光パワー人力での大きな非線形効果が求めら
れる為に、特に50μmφ 以下の極細径化さ九た単結
晶ファイバーが要求される。
It is grown from a high-temperature molten liquid at a temperature of too many degrees Celsius or higher. In addition to platinum, there are only a few other materials for crucibles and dies that can be used under these growth conditions, and their use is severely restricted in terms of temperature range, workability, mechanical strength at high temperatures, corrosivity, etc. This greatly limits the methods for making fibers. Furthermore, since nonlinear optical fibers require single propagation modes and large nonlinear effects with low optical power, single crystal fibers with extremely small diameters of 50 μm or less are particularly required.

これらの要求に答え得る作製法は、今までのところレー
ザーペデスタル法のみであった。然るにこの方法は、熱
源となるレーザーの出力を安定化する特別な装置や、レ
ーザー光を均一に集光させる為の複雑な光学系等を必要
とし、装置が大規模で経済的にも高価である。その上、
結晶原料を予め均一な細棒形状に準備する必要があり、
結晶育成に際しては、それを数段階に分けて逐次細径化
しなければならず、しかも途中段階での径の不均一性が
最終段階まで持ち込まれるなど、高度で複雑な育成技術
を必要とする。
Until now, the only manufacturing method that can meet these demands has been the laser pedestal method. However, this method requires special equipment to stabilize the output of the laser, which is the heat source, and a complicated optical system to uniformly focus the laser light, making the equipment large-scale and economically expensive. be. On top of that,
It is necessary to prepare the crystal raw material in advance into a uniform thin rod shape,
When growing a crystal, it must be divided into several stages and the diameter must be successively reduced, and the non-uniformity of the diameter at intermediate stages is carried over to the final stage, requiring advanced and complex growth techniques.

非線形光学材料として具体的にLiNbO3を想定する
と、温度的には白金が使用でき、これをルツボやダイの
材質として用いると、引き上げ法やEFG法がファイバ
ー育成にも適用できそうにおもわれる。ところが、EF
G法で直径50μmφ以下もの細い単結晶ファイバーを
育成しようとすると、ダイの上端面をファイバー径程度
に細く加工し、しかもそのダイを貫いて毛細管を穴開け
しなければならないなど、極めて高度で微細な加工技術
が必要となる。その上、毛細管が成程度以上細径に成る
と1毛管現象による融液の輸送は抑制され、その為、結
晶化速度を極めて遅くしなければまらなくなる。この様
な場合特に細径結晶の引き上げでは、しばしば異常成長
が起こってファイバー形状が大きく損なわれ゛(大西:
第47回応用物理学会28pG2,1986) 、均一
なファイバーの育成は不可能となる。一方、引き上げ法
では、ルツボ内融液の熱対流に依って場所的時間的に不
規則な温度変動が常に起こり、何等かの工夫無くしてミ
クロン単位で長尺な単結晶を育成することはやはり難し
い。
Specifically assuming LiNbO3 as the nonlinear optical material, platinum can be used in terms of temperature, and if this is used as the material for the crucible and die, it seems likely that the pulling method and EFG method can be applied to fiber growth. However, E.F.
If you try to grow a thin single-crystal fiber with a diameter of 50 μm or less using the G method, you will have to process the upper end of the die to be as thin as the fiber diameter, and then drill a capillary tube through the die, which requires extremely sophisticated and fine processing. This requires advanced processing technology. Moreover, if the capillary tube becomes smaller than a certain degree, transport of the melt by capillarity is suppressed, and therefore the crystallization rate must be extremely slowed down. In such cases, especially when pulling small-diameter crystals, abnormal growth often occurs and the fiber shape is severely damaged (Onishi:
47th Japan Society of Applied Physics 28pG2, 1986), it becomes impossible to grow uniform fibers. On the other hand, in the pulling method, irregular temperature fluctuations always occur in place and time due to thermal convection of the melt in the crucible, and it is difficult to grow long single crystals on the micron scale without some kind of ingenuity. difficult.

現在迄のところ、LiNb0z単結晶プアイバーの最も
簡単な育成法はマイクロ引き上げ法で、直径100μm
φ程度迄の細径な単結晶ファイバーが比較的容易に得ら
れている。然るにこの方法を50μmφ以下の単結晶フ
ァイバーへ拡張しようとすると。
Up to now, the simplest method for growing LiNb0z single crystal fibers is the micro-pulling method, with a diameter of 100 μm.
Single crystal fibers with diameters as small as φ can be obtained relatively easily. However, if we try to extend this method to single crystal fibers with a diameter of 50 μm or less.

事態は極めて難しくなる。引き上げ法では、通常育成さ
れる結晶の径は、引き上げ速度と融液温度の両方に依存
するが、マイクロ引き上げ法の場合も、粘性が小さい高
温融液からは引き上げは速度を遅く、低温融液からは速
い引き上げ速度で育成る付着力°が支配的となる。この
為、従来の引き上げ法では経験しなかった異常な固液界
面が形成されることになり、成長する結晶の形や径の制
御は極めて困難になる。そこで制御性の改善を狙って融
液温度を下げて粘性を増していくと、今度は融液の流動
性が低下して融液の供給が抑えられ、育成中のファイバ
ー径が細ったり切れたりし易くなり、径の均一化や長尺
化が難しくなる。結局、細径化に伴って温度条件は厳し
くなり、ファイバー育成は難しくなってくる。
Things become extremely difficult. In the pulling method, the diameter of the crystal grown usually depends on both the pulling speed and the melt temperature, but in the case of the micro-pulling method as well, the pulling speed is slow from a high-temperature melt with low viscosity, and from a low-temperature melt. From then on, the adhesion force that develops at a high pulling speed becomes dominant. This results in the formation of an abnormal solid-liquid interface that has not been experienced in conventional pulling methods, making it extremely difficult to control the shape and diameter of the growing crystal. Therefore, when the melt temperature is lowered and the viscosity is increased with the aim of improving controllability, the fluidity of the melt decreases and the supply of the melt is suppressed, causing the diameter of the fiber being grown to become thinner or cut. This makes it difficult to make the diameter uniform and make it longer. Ultimately, as the diameter becomes smaller, temperature conditions become more severe and fiber growth becomes more difficult.

本発明は上述の開運点を解決することを目的になされた
もので、結晶母材の溶融液から目的の単結晶ファ不バー
を直接作製する新しい技術を提供するものである。
The present invention has been made to solve the above-mentioned problem, and provides a new technique for directly producing the desired single-crystal fiber from a melt of a crystal base material.

[問題を解決するための手段] 上述の諸問題を解決する為に、本発明では以下の手段を
講じた。すなりち、白金撚線で通電発熱体を作り、毛細
管を有する白金パイプをその一部されることなく、突起
部に於て微小規模に引き上げながら結晶化させる。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the following measures were taken in the present invention. First, an energized heating element is made of twisted platinum wire, and a platinum pipe having a capillary tube is crystallized while being pulled up to a minute scale at the protrusion without being partially removed.

[作用コ 以上の手段に於て濡れを利用することにより。[Action Co. By utilizing wetness in the above means.

融液が微少量に制限されて、熱対流即ちそれに依る不規
則な温度変動が抑圧され、しかも、7a液と発熱体が密
着するため融液温度が発熱体の温度に。
The melt is limited to a small amount, suppressing thermal convection, or irregular temperature fluctuations caused by it, and since the liquid 7a and the heating element are in close contact, the temperature of the melt is equal to the temperature of the heating element.

敏感に追従し、融液温度の微妙な調整を発熱体の通電電
流の制御で行えるように成った。その上、結晶化点をパ
イプの上端面へ移すことにより、発熱体回りの融液温度
と結晶化点での融液温度をそれぞれ独立させることがで
き、融液の粘性がかなり自由に選べ、育成条件が緩めら
れる結果となった。パイプ上端面に設けた突起は、そこ
への融液の集中、熱発散効果の促進等に加えて、ファイ
バ図は本発明の一実施例を説明する為のもので、第1図
にその主要部である発熱体構造の側面図、第2図にファ
イバー育成中の白金パイプ部分の拡大図を示す。直径0
.4−0.7!lllTlφの白金線上で25c1程度
の白金撚線2を形成し、その中程5−9闘をメインヒー
ター3として直状に使用し、その残り両端の白金撚線を
メインヒーター3の上下にそれぞれ縦型コイル状に巻い
てサブヒーター4とする構造を採った。メインヒーター
3のほぼ中央には外径200μmφ、内径100μmφ
、長さ500μm程度の白金パイプ5を白−金細線6で
縛り立設する。パイプは切り出しの際1円周の一部を残
して切り目を入れ、それを引っ張って切断することで切
断面上に微小な突起7(第2図示)を形成し、パイプの
取速度を有する上下駆動機構10に加設した。
It is now possible to sensitively track the temperature of the melt and make delicate adjustments to the temperature of the melt by controlling the current flowing through the heating element. Furthermore, by moving the crystallization point to the upper end surface of the pipe, the melt temperature around the heating element and the melt temperature at the crystallization point can be made independent, allowing the viscosity of the melt to be selected quite freely. As a result, the growing conditions were relaxed. The protrusion provided on the upper end surface of the pipe not only concentrates the melt there, promotes the heat dissipation effect, etc. Figure 2 shows an enlarged view of the platinum pipe during fiber growth. Diameter 0
.. 4-0.7! A platinum stranded wire 2 of about 25c1 is formed on a platinum wire of lllTlφ, and the middle part 5-9 is used straight as the main heater 3, and the remaining platinum stranded wires at both ends are vertically connected to the top and bottom of the main heater 3, respectively. A structure is adopted in which the subheater 4 is formed by winding it into a coil shape. Approximately in the center of the main heater 3 is an outer diameter of 200 μmφ and an inner diameter of 100 μmφ.
A platinum pipe 5 with a length of about 500 μm is tied up with a thin platinum-gold wire 6 and set up. When cutting the pipe, make a cut leaving a part of one circumference, and by pulling and cutting it, a minute protrusion 7 (shown in the second figure) is formed on the cut surface, and the upper and lower parts have the same cutting speed as the pipe. It was added to the drive mechanism 10.

次に、具体的な単結晶ファイバーの育成について、以下
説明する。まず、L 1Nbo3の原料を上下駆動機構
10の先端に取り付け、通電加熱中のメインヒーター3
に接触させて融解し、その表面を濡らす。次いで原料に
替えて所望の結晶方位を持つLiNbO3の種結晶11
を取り付け、その先端をパイプの上端面に接触し、一部
メルトバックさせて突゛起部7を濡らし、毛管現象に依
り吸い上げられた原料融液12と融合させる。然る後、
温度条件を望みのファイバー径に設定し、突起部7に於
て引き上げながら結晶化させた。
Next, specific growth of single crystal fiber will be explained below. First, the raw material L1Nbo3 is attached to the tip of the vertical drive mechanism 10, and the main heater 3 is heated with electricity.
melt on contact and wet the surface. Next, a seed crystal 11 of LiNbO3 having a desired crystal orientation is used instead of the raw material.
is attached, and its tip is brought into contact with the upper end surface of the pipe, and a portion thereof is melted back to wet the protruding portion 7 and fuse with the raw material melt 12 sucked up by capillary action. After that,
The temperature conditions were set to a desired fiber diameter, and the fiber was crystallized while being pulled up at the protrusion 7.

本作製法はファイバー径をパイプ径と全く独立に、充分
に細く引き上げると言う点でEFG法と付けられたパイ
プのエツジ等をむしろ積極的に利金箔板の重ね合わせや
撚線等、毛管現象を有する他の構造も利用可能である。
In this manufacturing method, the fiber diameter can be made sufficiently thin completely independently of the pipe diameter, and the edges of the pipe, which are attached to the EFG method, are rather actively modified by overlapping metal foil plates, twisting wires, etc., and using capillary effects. Other structures with .

発熱体やパイプの材質は、原料融液と化学反応せず、原
料よりも充分に高い融点を持つ金属で、しかも、融液で
濡れるものならば何等制約を受けず、また逆に言えば、
結晶原料も上述の条件に沿うものならばLiNbO3以
外の材料が適用可能である。
The materials for the heating element and pipes are not subject to any restrictions as long as they do not chemically react with the raw material melt, have a sufficiently higher melting point than the raw material, and can be wetted by the melt.
As the crystal raw material, materials other than LiNbO3 can be used as long as they meet the above-mentioned conditions.

[発明の効果] 上述の方法により、LiNbO3の場合、直径50μm
φ程度迄に細径化した単結晶ファイバーが融液から直接
、しかも比較的容易に育成可能となった。この方法は従
来法に比して、技術的経済的に大きな利点を持つもので
ある。本発明の主要部である発熱体構造には本発明の原
理を満たす幅広い構造が一可一能で、育成される単結晶
ファイバーも上下駆動機構の性能を向上させることで、
50μ厖φ以下の細径化も可能と考えられ、しかも、育
成条件を満足t’6’ L 1Nbo3以外の幅広い材
料に応用可能である。
[Effect of the invention] By the above method, in the case of LiNbO3, a diameter of 50 μm
Single-crystal fibers with a diameter as small as φ can now be grown directly from the melt, and relatively easily. This method has significant technical and economical advantages over conventional methods. The heating element structure, which is the main part of the present invention, can have a wide range of structures that satisfy the principles of the present invention, and the single crystal fiber grown also improves the performance of the vertical drive mechanism.
It is thought that it is possible to reduce the diameter to 50 μm or less, and it is also applicable to a wide range of materials other than t'6' L 1Nbo3 that satisfy the growth conditions.

(以下空白)(blank below)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による一実施例の発熱体構造の側面図、
第2図は本発明により単結晶ファイバー育成中の白金パ
イプ部分の拡大図、第3図は発熱体と連合するファイバ
ー育成装置の断面図である。 図中、1は白金線、2は白金線撚線、3はメイーンヒ、
−タ一部、4はサブヒータ一部、5は白金バ鏡、16は
電源である。 第1図 第2vA
FIG. 1 is a side view of a heating element structure according to an embodiment of the present invention;
FIG. 2 is an enlarged view of a platinum pipe portion during growth of a single crystal fiber according to the present invention, and FIG. 3 is a sectional view of a fiber growth apparatus associated with a heating element. In the figure, 1 is a platinum wire, 2 is a platinum wire strand, 3 is a main wire,
4 is a part of the sub-heater, 5 is a platinum mirror, and 16 is a power source. Figure 1 2vA

Claims (1)

【特許請求の範囲】[Claims] 毛細管を有するパイプの上端面一部に微小突起を設け、
該パイプを両端開口に通電発熱体の一部に立設させ、該
発熱体で結晶原料を直接融解して溶融液で前記発熱体の
表面を濡らし、該融液を毛管減少に依り前記パイプ上端
部へ輸送させて前記融液の一部を前記微小突起部に於て
引き上げること特徴とする単結晶ファイバーの作製方法
A small protrusion is provided on a part of the upper end surface of a pipe having a capillary tube,
A part of the heating element is erected at both ends of the pipe, and the crystal raw material is directly melted by the heating element, the surface of the heating element is wetted with the melt, and the melt is applied to the upper end of the pipe by capillary reduction. A method for producing a single-crystal fiber, characterized by transporting the melt to a part and pulling up a part of the melt at the minute protrusion.
JP61191299A 1986-08-15 1986-08-15 Method for producing single crystal fiber Expired - Lifetime JPH0687089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61191299A JPH0687089B2 (en) 1986-08-15 1986-08-15 Method for producing single crystal fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61191299A JPH0687089B2 (en) 1986-08-15 1986-08-15 Method for producing single crystal fiber

Publications (2)

Publication Number Publication Date
JPS6347706A true JPS6347706A (en) 1988-02-29
JPH0687089B2 JPH0687089B2 (en) 1994-11-02

Family

ID=16272251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61191299A Expired - Lifetime JPH0687089B2 (en) 1986-08-15 1986-08-15 Method for producing single crystal fiber

Country Status (1)

Country Link
JP (1) JPH0687089B2 (en)

Also Published As

Publication number Publication date
JPH0687089B2 (en) 1994-11-02

Similar Documents

Publication Publication Date Title
Burrus et al. Growth of single‐crystal sapphire‐clad ruby fibers
JP3759807B2 (en) Method and apparatus for producing oxide single crystal
US5579427A (en) Graded index single crystal optical fibers
JPS6347706A (en) Preparation of single crystal fiber
JP3106182B2 (en) Manufacturing method of bulk single crystal
US6565654B2 (en) Process and apparatus for producing a planar body of an oxide single crystal
JP4334773B2 (en) Method for producing oxide single crystal plate
JPH04280891A (en) Method for growing single crystal fiber
JP2612306B2 (en) How to grow single crystal fiber
JP4365002B2 (en) Manufacturing method and manufacturing apparatus of oxide single crystal
JP2913006B2 (en) Manufacturing method of optical fiber for manufacturing single crystal fiber optical waveguide structure
JP2825060B2 (en) Beta-barium borate single crystal processing surface modification method
JP4312341B2 (en) Method for producing plate of oxide single crystal, seed crystal used therefor and seed crystal holder
JP2535773B2 (en) Method and apparatus for producing oxide single crystal
JPH0815534A (en) Crystalline fiber and its production
JP2002080292A (en) Method and apparatus of manufacturing single crystal plate of oxide
JP2005239535A (en) Single crystal and its producing method
JPH0419194B2 (en)
JPH10101487A (en) Growing of lithium tetraborate single crystal for optics
JPH05173027A (en) Production of crystal core fiber
JPH03149504A (en) Manufacture of single-crystal optical fiber
JPS6153690B2 (en)
JPH03290390A (en) Production of optical single crystal
JPH07149598A (en) Method for growing single crystal
JP2002031734A (en) Method for manufacturing glass composite body and device for manufacturing the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term