JPH03149504A - Manufacture of single-crystal optical fiber - Google Patents

Manufacture of single-crystal optical fiber

Info

Publication number
JPH03149504A
JPH03149504A JP1289356A JP28935689A JPH03149504A JP H03149504 A JPH03149504 A JP H03149504A JP 1289356 A JP1289356 A JP 1289356A JP 28935689 A JP28935689 A JP 28935689A JP H03149504 A JPH03149504 A JP H03149504A
Authority
JP
Japan
Prior art keywords
crystal
base material
fiber
core
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1289356A
Other languages
Japanese (ja)
Inventor
Itaru Yokohama
横浜 至
Shoichi Sudo
昭一 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1289356A priority Critical patent/JPH03149504A/en
Publication of JPH03149504A publication Critical patent/JPH03149504A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To generate nonlinear effect with small light loss and small light power by sticking a clad layer on the outside of a crystal core, irradiating one end of a crystal fiber with laser light and heating and fusing the fiber, and forming the single-crystal optical fiber by using seed crystal. CONSTITUTION:A crystal core base material 1 is dipped in a solution 2 for crystal clad layer formation and thus the crystal clad layer 3 which has a lower refractive index than the crystal core base material 1 is stuck on the crystal core base material 1 to form the crystal fiber base material 4. Therefore, a refractive index distribution for a core clad can be formed at the stage of the crystal fiber base material 4, and the crystal fiber base material 4 is heated and drawn to manufacture the single-crystal optical fiber 6 which has core-clad structure since the refractive index distribution of the single-crystal optical fiber 6 is almost in similar relation with the fiber base material 4. Consequently, the loss is reducible and nonlinear optical effect and efficiency are improved.

Description

【発明の詳細な説明】 (産業上の利用分野》   本発明は単結晶光ファイバの製造方法、さらに詳細には
レーザ発振および各種非線形光学効果に応用可能な単結
晶光ファイバの製造方法に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a single crystal optical fiber, and more particularly to a method for manufacturing a single crystal optical fiber that can be applied to laser oscillation and various nonlinear optical effects. be.

(従来の技術) 従来、単結晶光ファイバは、文献(M−M−Fejer
他: Rev、 Sci、 Instrum、 55(
11)、 pp−1791−1796)および文献(Y
−S、 Luh他: J: Crystal Grow
th 7g、 1984. pp−135−143)に
示されているように、屈折率を利用したコア・クラッド
構造を有さず、したがって光を効率良くファイバ内に閉
じ込めることができず、光損失が大きいという問題点が
あった。このため、さらに、単結晶光ファイバで、非線
形光学効果を応用した素子を作製した場合、非線形光学
効果を起こさせるに必要な光強度を得るのが難しいとい
う問題点があった、   この点を解決するために、特願昭63−085152号
に開示されているように、結晶クラッド母材の中央部に
穴を開け、その穴に結晶コア母材を挿入し、一体化し結
晶ファイバ母材として、単結晶光ファイバを作製する方
法が検討されている。
(Prior Art) Conventionally, single-crystal optical fibers have been described in the literature (M-M-Fejer
Others: Rev, Sci, Instrum, 55 (
11), pp-1791-1796) and literature (Y
-S, Luh et al.: J: Crystal Grow
th 7g, 1984. pp-135-143), it does not have a core/cladding structure that utilizes refractive index, so light cannot be efficiently confined within the fiber, resulting in large optical loss. there were. For this reason, when creating an element that applies nonlinear optical effects using single-crystal optical fibers, there was a problem in that it was difficult to obtain the light intensity necessary to cause the nonlinear optical effects. In order to do this, as disclosed in Japanese Patent Application No. 63-085152, a hole is made in the center of the crystal clad base material, a crystal core base material is inserted into the hole, and the crystal core base material is integrated to form a crystal fiber base material. Methods for producing single-crystal optical fibers are being considered.

(本発明が解決しようとする課題) しかしながら、通常ファイバ母材としては直径1.5m
m以下のものが使用されており、上記ファイバ母材を用
いた場合、−mに結晶コア母材と して直径300μm
以下が要求され、結晶クラッド母材に開ける穴も、30
0μm程度でなければならず、このような細径穴開は加
工が難しいという欠点があった。
(Problem to be solved by the present invention) However, the fiber base material usually has a diameter of 1.5 m.
If the above fiber base material is used, -m has a diameter of 300 μm as the crystal core base material.
The following is required, and the hole to be drilled in the crystal clad base material is also 30
The diameter of the hole must be approximately 0 μm, and it is difficult to process such a small diameter hole.

本発明は、このような従来の問題点を解決し、光損失が
小さく、かつ小さな光のパワーで非線形効果を起こすこ
とができる単結晶光ファイバを製造する製造方法を提供
するものである。
The present invention solves these conventional problems and provides a manufacturing method for manufacturing a single crystal optical fiber that has low optical loss and can produce a nonlinear effect with low optical power.

(課題を解決するための手段) かかる目的を達成するために、本発明の単結晶光ファイ
バの製造方法は、結晶コア母材を結晶クラッド層形成用
溶液中に浸し、該結晶コア母材の外側にクラッド層を付
着せしめ、そのまま、もしくは必要に応じて加工整形し
て、結晶ファイバ母材とした後、該結晶ファイバの一端
にレーザ光を照射して加熱溶融し、該加熱溶融部より種
結晶を用いて、単結晶光ファイバを形成することを特徴
とする特 本発明の具体的説明) 第1図は、本発明による単結晶光ファイバ製造工程の基
本構成を示す図であって、1は結晶コア母材、2は結晶
クラッド層形成用溶液、3は結晶クラッド層層、4は結
晶ファイバ母材、5は種結晶、6は単結晶光ファイバで
ある。
(Means for Solving the Problems) In order to achieve the above object, the method for manufacturing a single crystal optical fiber of the present invention includes immersing a crystal core base material in a solution for forming a crystal cladding layer, and A cladding layer is attached to the outside, and a crystal fiber base material is obtained either as it is or by processing and shaping as necessary. One end of the crystal fiber is heated and melted by irradiating a laser beam, and seeds are released from the heated and melted part. (Specific description of the present invention, characterized in that a single-crystal optical fiber is formed using a crystal) FIG. 2 is a crystal core base material, 2 is a solution for forming a crystal cladding layer, 3 is a crystal cladding layer layer, 4 is a crystal fiber base material, 5 is a seed crystal, and 6 is a single crystal optical fiber.

まず、第1図(a)に示すように結晶コア母材lを結晶
クラッド層形成用溶液2中に浸し、結晶コア母材lの引
き上げ(第1図(b))、または結晶クラッド層形成用
溶液の液温の低下等により、第1図(C)に示すように
結晶コア母材1の側面に結晶クラッド層3を付着させる
。この場合、結晶コア母材lおよび結晶クラッド層3と
もに組成が所望のものであれば、必ずしも単結晶となっ
ている必要はない。
First, as shown in FIG. 1(a), the crystal core base material l is immersed in the crystal cladding layer forming solution 2, and the crystal core base material l is pulled up (FIG. 1(b)) or the crystal cladding layer is formed. As the temperature of the solution decreases, the crystal cladding layer 3 is attached to the side surface of the crystal core base material 1 as shown in FIG. 1(C). In this case, as long as both the crystal core base material 1 and the crystal cladding layer 3 have desired compositions, they do not necessarily need to be single crystals.

次に第1図(d)に示すように結晶コア母材lを含む結
晶クラッド層3を結晶ファイバ母材に適した形状に加工
する。図ではほぼ円柱状に加工している。
Next, as shown in FIG. 1(d), the crystal cladding layer 3 containing the crystal core base material 1 is processed into a shape suitable for the crystal fiber base material. In the figure, it is processed into an almost cylindrical shape.

続いて、第1図(e)に示すように、結晶ファイバ母材
4の一端をCO2レーザ光によって溶融し、溶融部より
種結晶Sを用いて、単結晶光ファイバ6を製造する。こ
の際溶融時間が短いために、結晶ファイバ母材4の屈折
率分布は乱れることなく、相似関係がほぼ保存されて単
結晶光ファイバ6の屈折率分布となり、コア・クラッド
構造を有する単結晶光ファイバを作製できる。
Subsequently, as shown in FIG. 1(e), one end of the crystal fiber preform 4 is melted by CO2 laser light, and a single crystal optical fiber 6 is manufactured using the seed crystal S from the melted portion. At this time, since the melting time is short, the refractive index distribution of the crystal fiber base material 4 is not disturbed, and the similarity relationship is almost preserved, resulting in the refractive index distribution of the single crystal optical fiber 6, and the single crystal optical fiber has a core-clad structure. Fiber can be made.

本発明におけるコア、クラッドの結晶材料は基本的に限
定されるものではない、たとえば下記の実施例では、結
晶コア母材としてNd添加YAG、結晶クラッド層とし
てYAGを使用したが、本発明の適用はこれにとどまる
ものではなく、たとえば、 (1)結晶コア母材・・L、iNb03、結晶クラッド
層・・Mg添加LiNbO3、 (2)結晶コア母材・・Ti添加A1203、結晶クラ
ッド層・・A 1203、 (3)結晶コア母材・・Nd添加GGG (Gd3Ga
5012)、結晶クラッド層−・GGG。
The crystalline materials of the core and cladding in the present invention are basically not limited. For example, in the following examples, Nd-doped YAG was used as the crystalline core base material and YAG was used as the crystalline cladding layer. For example, (1) Crystal core base material: L, iNb03, crystal cladding layer: Mg-doped LiNbO3, (2) Crystal core base material: Ti-doped A1203, crystal cladding layer... A 1203, (3) Crystal core base material...Nd-added GGG (Gd3Ga
5012), crystal cladding layer - GGG.

等の組み合わせなどの種々の結晶材の組み合わせ、ある
いは結晶コア母材と結晶クラッド層の添加物の濃度に差
をつけること等、単結晶光ファイバを作製した際、コア
・クラッド構造ができる組み合わせであれば、基本的に
いかなるものであってもよC1゜ (作用) 本発明の単結晶光ファイバの製造方法は、結晶コア母材
を結晶クラッド層形成用溶液中に浸すことにより、結晶
コア母材より屈折率の低い結晶クラッド層を結晶コア母
材に付着させ、必要に応じ加工、整形により形を整え、
結晶ファイバ母材としているため、結晶ファイバ母材段
階でコア・クラッド用の屈折率分布を形成でき、結晶フ
ァイバ母材を加熱伸線することにより製造する単結晶光
ファイバの屈折率分布もファイバ母材とほぼ相似関係に
あるため、コア・クラッド構造を持つ単結晶光ファイバ
を製造するものである。
When manufacturing a single-crystal optical fiber, it is possible to create a core-clad structure by combining various crystal materials such as a combination of C1゜(Function) The method for producing a single crystal optical fiber of the present invention includes forming a crystal core base material by immersing the crystal core base material in a solution for forming a crystal cladding layer. A crystal cladding layer with a refractive index lower than that of the material is attached to the crystal core base material, and the shape is adjusted by processing and shaping as necessary.
Since the crystal fiber base material is used, the refractive index distribution for the core and cladding can be formed at the crystal fiber base material stage, and the refractive index distribution of single crystal optical fiber manufactured by heating and drawing the crystal fiber base material is also similar to that of the fiber base material. Since it has a similar relationship with the material, it is used to manufacture single crystal optical fibers with a core-clad structure.

(実施例1) 結晶コア母材として、ネオジウム(Nd)を2%添加し
たNd添加YAG (Y2Al5O12)単結晶光ファ
イバ(直径70μm、長さ6cm)を使用し、結晶クラ
ッド層形成用溶液であるYAG溶液中に浸し、結晶コア
母材を徐々に引き上げることにより、結晶クラッド層と
してYAG多結晶を結晶コア母材に付着させた。これを
円柱状に加工し、直径800μm、長さ5cmの結晶フ
ァイバ母材を作製した。この結晶ファイバ母材をC軸方
向を向いた種結晶により、第1図(e)に示す方法で、
直径120μm、長さ30cmの単結晶光ファイバを作
製した。作製した単結晶光ファイバの断面および屈折率
分布は第2図(a)、(b)に示すようであり、屈折率
の高いコア部の直径は約〜   10μm、コア21と
クラッド22の比屈折率差(=(n12−n22)/2
ni)は約0.002であつた。この屈折率差は、YA
Gに添加したNdに起因するものであり、良好なコア・
クラッド構造が形成されている。
(Example 1) A Nd-doped YAG (Y2Al5O12) single crystal optical fiber (diameter 70 μm, length 6 cm) with 2% neodymium (Nd) added was used as a crystal core base material, and a solution for forming a crystal cladding layer was used. The YAG polycrystal was attached to the crystal core base material as a crystal cladding layer by immersing it in a YAG solution and gradually pulling up the crystal core base material. This was processed into a cylindrical shape to produce a crystal fiber base material with a diameter of 800 μm and a length of 5 cm. This crystal fiber base material is treated with a seed crystal oriented in the C-axis direction by the method shown in FIG. 1(e).
A single crystal optical fiber with a diameter of 120 μm and a length of 30 cm was produced. The cross section and refractive index distribution of the fabricated single crystal optical fiber are as shown in FIGS. 2(a) and 2(b), and the diameter of the core portion with a high refractive index is approximately ~10 μm, and the relative refraction of the core 21 and cladding 22 is Rate difference (=(n12-n22)/2
ni) was approximately 0.002. This refractive index difference is YA
This is due to the Nd added to the G, resulting in a good core.
A cladding structure is formed.

さて、以上のように作製したNd添加YAGコア、YA
Gクラッドの単結晶光ファイバ31を第3図に示すよう
に2個の波長分離ファイバカップラ32.33と接続し
、光増幅実験を行なった。波長分離カップラ32.33
は、2つの入射側アームにそれぞれ波長0.80μm、
1.31μmを入射した場合、1つの出射側アームに0
.80μm、1.31μmの光を合波する機能と、1つ
の入射側アームに波長0.80μm、1.31μmの光
を入射した場合、2つの出射側アームに波長0.80μ
m、1.31μmの光を分離して出射する機能を持つも
のである。したがって、第3図に示す構成で、波長分離
ファイバカップラ32の2つの入射側アームに波長0.
80μm、1.31μmの光を入射すると、波長0.8
0μm、1.31μmの両方の光がNd添加YAGコア
、YAGクラッドの単結晶光ファイバ31を透過し、波
長分離ファイバカップラ33により、波長0.80μm
、1.31μmの光に分離して出射する。入射する波長
1.31μmの光のパワーを0.01mW、波長0.8
0μmの光のパワーを6cmWとした時、波長分離ファ
イバカップラ31から出射された波長1.31μmの米
のパワーは1mWが得られ、20dBの増幅効果が得ら
れたりこの増幅効果自体は、発光性元素Ndの特性に起
因するものであるが、増幅効率は、光の単位面積当たり
の強度、相互作用長、波長分離ファイバカップラ32.
33を構成する単一モードファイバとの接続損失等に依
存する。本実施例の単結晶ファイバは、コア・クラッド
構造を有するため単位面積当たりの光強度を大きくでき
、ファイバ長も10cmと長くでき、さらに、コア外径
が10μmと単一モードファイバのコア外径(約9μm
)とほぼ等しいため、単一モード光ファイバとの接続損
失も小さくすることができる。このような特徴を有する
ため良好な増幅特性が得られたことになるが、これも本
発明の −遠方法により良好なコア・クラッド構造が得
られたためである。
Now, the Nd-doped YAG core produced as described above, YA
A G-clad single crystal optical fiber 31 was connected to two wavelength separation fiber couplers 32 and 33 as shown in FIG. 3, and an optical amplification experiment was conducted. Wavelength separation coupler 32.33
has a wavelength of 0.80 μm on each of the two incident side arms,
When 1.31 μm is incident, 0
.. It has the function of combining light of 80 μm and 1.31 μm, and when light with wavelengths of 0.80 μm and 1.31 μm is input to one input side arm, the wavelength of 0.80 μm is input to two output side arms.
It has the function of separating and emitting light of 1.31 μm. Therefore, with the configuration shown in FIG. 3, the wavelengths of 0.
When light of 80 μm and 1.31 μm is incident, the wavelength is 0.8
Both the 0 μm and 1.31 μm lights are transmitted through a single crystal optical fiber 31 with an Nd-doped YAG core and a YAG cladding, and are separated into wavelengths of 0.80 μm by a wavelength separation fiber coupler 33.
, the light is separated into 1.31 μm light and emitted. The power of the incident light with a wavelength of 1.31 μm is 0.01 mW, and the wavelength is 0.8
When the power of 0 μm light is 6 cmW, the power of the 1.31 μm wavelength light emitted from the wavelength separation fiber coupler 31 is 1 mW, and an amplification effect of 20 dB is obtained. This amplification effect itself is due to the luminescence property. Although this is due to the characteristics of the element Nd, the amplification efficiency depends on the intensity per unit area of light, the interaction length, and the wavelength separation fiber coupler 32.
It depends on the connection loss etc. with the single mode fiber that constitutes 33. Since the single crystal fiber of this example has a core-clad structure, the light intensity per unit area can be increased, and the fiber length can be as long as 10 cm.Furthermore, the core outer diameter is 10 μm, which is the core outer diameter of a single mode fiber. (approximately 9 μm
), the connection loss with the single mode optical fiber can also be reduced. Due to these characteristics, good amplification characteristics were obtained, and this is also due to the fact that a good core-clad structure was obtained by the method of the present invention.

(発明の効果) 以上説明したように、本発明では、単結晶光ファイバに
おいて良好なコア・クラッド構造を作製できるという利
点がある。ファイバ構造において良好なコア・クラッド
構造をとることは、低損失化、非線形光学効果効率向上
のための単位面積当たりの光強度の増加等に有効であり
、光増幅、レーザ発振、高調波発生、光パラメトリック
等各種の非線形光学効果を発生できる単結晶光ファイバ
を提供することができる。
(Effects of the Invention) As explained above, the present invention has the advantage that a good core-clad structure can be produced in a single crystal optical fiber. Having a good core-cladding structure in the fiber structure is effective for reducing loss and increasing the light intensity per unit area to improve the efficiency of nonlinear optical effects, and is useful for optical amplification, laser oscillation, harmonic generation, A single crystal optical fiber capable of generating various nonlinear optical effects such as optical parametric effects can be provided.

図面の簡単な説明 第1図は本発明の単結晶光ファイバの製造方法を示す基
本構成図、第2図は本発明の単結晶光ファイバの製造方
法上より作製線な単結晶光ファイバの屈折率分布を示す
図、第3図は本発明の単結晶光ファイバの一例を用いf
S晃増幅実験の構成を示す図である。
BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a basic configuration diagram showing the method for manufacturing a single crystal optical fiber of the present invention, and Figure 2 is a diagram showing the refraction of a single crystal optical fiber that is more suitable for the method of manufacturing a single crystal optical fiber of the present invention. FIG. 3 is a diagram showing the index distribution using an example of the single-crystal optical fiber of the present invention.
FIG. 2 is a diagram showing the configuration of an S Akira amplification experiment.

l・・・結晶コア母材、2・・・結晶クラッド層形 成
用溶液、 3・・・結晶クラッド層、4・・・結晶ファ
イバ母材、S・・・種結晶、6・・・単結晶光ファイバ
、31・・・Nd添加YAGコア、YAGクラッドの単
結晶光ファイバ、32.33・・・波長分離ファイバカ
ップラ。
l...Crystal core base material, 2...Crystal clad layer forming solution, 3...Crystal clad layer, 4...Crystal fiber base material, S...Seed crystal, 6...Single crystal Crystal optical fiber, 31...Nd-doped YAG core, YAG clad single crystal optical fiber, 32.33...Wavelength separation fiber coupler.

Claims (1)

【特許請求の範囲】[Claims] (1)結晶コア母材を結晶クラッド層形成用溶液中に浸
し、該結晶コア母材の外側に結晶クラッド層を付着せし
め、そのまま、もしくは必要に応じて加工整形して、結
晶ファイバ母材とした後、該結晶ファイバ母材の一端に
レーザ光を照射して加熱溶融し、該加熱溶融部より種結
晶を用いて、単結晶光ファイバを形成することを特徴と
する単結晶光ファイバの製造方法。
(1) Immerse the crystal core base material in a solution for forming a crystal cladding layer, attach the crystal cladding layer to the outside of the crystalline core base material, and form the crystal fiber base material as it is or by processing and shaping as necessary. After that, one end of the crystal fiber base material is heated and melted by irradiating one end of the crystal fiber base material, and a seed crystal is used from the heated and melted part to form a single crystal optical fiber. Method.
JP1289356A 1989-11-07 1989-11-07 Manufacture of single-crystal optical fiber Pending JPH03149504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1289356A JPH03149504A (en) 1989-11-07 1989-11-07 Manufacture of single-crystal optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1289356A JPH03149504A (en) 1989-11-07 1989-11-07 Manufacture of single-crystal optical fiber

Publications (1)

Publication Number Publication Date
JPH03149504A true JPH03149504A (en) 1991-06-26

Family

ID=17742145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1289356A Pending JPH03149504A (en) 1989-11-07 1989-11-07 Manufacture of single-crystal optical fiber

Country Status (1)

Country Link
JP (1) JPH03149504A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06345582A (en) * 1993-06-10 1994-12-20 Nec Corp Method and device for growing concentric crystal
US6233385B1 (en) 1998-01-30 2001-05-15 Nec Corporation Light limiter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06345582A (en) * 1993-06-10 1994-12-20 Nec Corp Method and device for growing concentric crystal
US6233385B1 (en) 1998-01-30 2001-05-15 Nec Corporation Light limiter
US6539153B2 (en) 1998-01-30 2003-03-25 Nec Corporation Light limiter

Similar Documents

Publication Publication Date Title
US4824195A (en) Monomode optical transmission fibre having a tapered end portion provided with a lens and method of manufacturing such a fibre
US9499922B2 (en) Manufacturing method of double cladding crystal fiber
CN105633778B (en) High-order mode filters out fiber end face pumping coupler and preparation method thereof
US4040890A (en) Neodymium oxide doped yttrium aluminum garnet optical fiber
JP5175202B2 (en) Fiber optic laser
Li et al. Experimental demonstration of plasmon propagation, coupling, and splitting in silver nanowire at 1550-nm wavelength
TW201209464A (en) Ti: sapphire crystal fiber, manufacturing method thereof, and wide band light source using the same
Stone et al. Self-contained LED-pumped single-crystal Nd: YAG fiber laser
CN107632341B (en) Preparation method of three-dimensional waveguide type beam splitter in double-doped CaF 2 crystal
JPH03149504A (en) Manufacture of single-crystal optical fiber
JPS6315235A (en) Optical wavelength converting element
JPH01257802A (en) Single crystal optical fiber and production thereof
CN212033415U (en) Random laser
CN115182046A (en) Method for preparing sesquioxide single crystal optical fiber cladding
JPH03149505A (en) Single crystal optical fiber
JPS585412B2 (en) Optical fiber with spherical lens body
JPH04243999A (en) Single crystal optical fiber
JP3021251B2 (en) Fiber type wavelength conversion element and method of manufacturing the same
Mateo et al. A novel technique to fabricate low loss POF tapers
DeShazer Survey of phase-matchable fibers for nonlinear optics
Fejer et al. Growth and applications of single-crystal optical fibers
Bokor Review of coherent XUV sources: lasers and nonlinear optics
JPH0687089B2 (en) Method for producing single crystal fiber
JPH04308802A (en) Production of single crystal optical fiber
JPH0750806B2 (en) Laser rod