JPH0753297A - Method for growing single crystal - Google Patents
Method for growing single crystalInfo
- Publication number
- JPH0753297A JPH0753297A JP22279393A JP22279393A JPH0753297A JP H0753297 A JPH0753297 A JP H0753297A JP 22279393 A JP22279393 A JP 22279393A JP 22279393 A JP22279393 A JP 22279393A JP H0753297 A JPH0753297 A JP H0753297A
- Authority
- JP
- Japan
- Prior art keywords
- crystal
- raw material
- melt
- crucible
- flux
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、結晶とそれを成長さ
せるための原料融液とで成分組成が異なる、いわゆるイ
ン・コングルーエント(不一致溶融)な原料融液から単
結晶を育成する方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of growing a single crystal from a so-called in-congruent raw material melt in which the composition of the crystal and the raw material melt for growing the same are different. Regarding
【0002】[0002]
【従来の技術】原料融液から行う結晶成長法の代表例に
引き上げ法(チョクラルスキー法またはCZ法)がある
が、これは結晶とそれを生成する原料融液が等しい成分
組成を有する、いわゆるコングルーエント(一致溶融)
な原料融液[図4のc点]に対して適応される方法であ
る。2. Description of the Related Art A pulling method (Czochralski method or CZ method) is a typical example of a crystal growth method carried out from a raw material melt, in which the crystal and the raw material melt producing it have the same composition. So-called congruent (congruent melting)
This is a method applied to a different raw material melt [point c in FIG. 4].
【0003】この方法では、結晶成長のすべての過程
で、育成結晶とルツボ中の原料の成分組成が不変である
ため、育成される結晶は組成的には均質である。In this method, the composition of the grown crystal is uniform because the composition of the grown crystal and the raw material in the crucible do not change during the entire process of crystal growth.
【0004】しかるにイン・コングルーエント融液[図
4i点]からの結晶育成では、原料融液から結晶を成長
させるにつれて、ルツボ中に残存する融液の組成が次第
に変化するため、育成を進めるにつれて結晶自体の組成
も変化することになる。In the crystal growth from the in-congruent melt [point in FIG. 4i], however, the composition of the melt remaining in the crucible gradually changes as the crystal grows from the raw material melt, so the growth proceeds. As a result, the composition of the crystal itself changes.
【0005】この問題を避けるために実際の結晶育成で
は、多量の原料融液から、結晶成長に伴う原料融液の組
成変化が無視できる程度の少量の結晶を育成する方法
や、融剤を利用して引き上げる、いわゆる融剤引き上げ
法(TSSG法)が一般的に採用されている。In order to avoid this problem, in actual crystal growth, a method of growing a small amount of crystals from a large amount of the raw material melt in which the composition change of the raw material melt accompanying the crystal growth is negligible, or a flux is used. A so-called flux pulling method (TSSG method) is generally adopted.
【0006】TSSG法での融剤としては、結晶と構成
元素が異なる融剤(フラックス)物質や、結晶と同じ構
成元素ながら組成比を異にする、いわゆる自己フラック
スが用いられ、目的結晶と同じ組成の原料をそれら融剤
に一旦溶かし込み、融液の温度を降下させながら結晶成
分を析出させつつ引き上げながら結晶化している。As the flux in the TSSG method, a flux material having a constituent element different from that of the crystal or a so-called self-flux having the same constituent element as the crystal but having a different composition ratio is used. The raw materials of the composition are once dissolved in these fluxes, and the temperature of the melt is lowered while precipitating and crystallizing the crystal components while being crystallized.
【0007】また別法として、図5に示すように原料棒
8の一部に一定量の融剤を埋め込み、その部分を局所的
に融解して溶融帯域9を形成させ、溶融帯域9を移動さ
せながら原料棒8の溶かし込みと溶融帯からの結晶成分
の析出を同時的に行いつつ結晶育成する、いわゆる融剤
溶融帯移動法(フラックス・ゾーン・トラベリング法)
も公知である。Alternatively, as shown in FIG. 5, a certain amount of flux is embedded in a part of the raw material rod 8, the part is locally melted to form a melting zone 9, and the melting zone 9 is moved. The so-called flux melting zone transfer method (flux zone traveling method) in which crystal growth is carried out while simultaneously melting the raw material rods 8 and precipitating crystal components from the melting zone
Is also known.
【0008】[0008]
【発明が解決しようとする課題】上記の方法はいづれ
も、溶剤中に溶け込んだ結晶成分が分離する過程と、そ
の成分が固液界面に到達して結晶中に取り込まれる過程
が同時的に進行しつつ結晶成長が続行される。In any of the above methods, the process of separating the crystal component dissolved in the solvent and the process of the component reaching the solid-liquid interface and being taken into the crystal simultaneously proceed. While continuing the crystal growth.
【0009】TSSG法は比較的良質な結晶が得られ易
いとされているが、原料および融剤はルツボ中で混合し
て融解され、融液は熱対流によってルツボ中を常に流動
しており、結晶成長はこの熱対流による場所的時間的な
温度変動の下で行われるため、結晶中にフラックスが取
り込まれ易い。The TSSG method is said to be able to easily obtain relatively good crystals, but the raw material and the flux are mixed and melted in the crucible, and the melt is constantly flowing in the crucible by thermal convection. Since the crystal growth is carried out under the temporal and temporal temperature fluctuation due to this thermal convection, the flux is easily incorporated into the crystal.
【0010】これを防ぐには結晶育成速度や融液の温度
降下速度を極端に遅くする対策が採られるが、両条件が
複雑に相関するため光学的な品質を達成することが難し
く、生産性も上がらないなどの欠点があった。In order to prevent this, measures to extremely slow down the crystal growth rate and the temperature drop rate of the melt are taken, but it is difficult to achieve optical quality because the two conditions are intricately correlated, and productivity is increased. There were drawbacks such as not rising.
【0011】結晶の均質性においても、例えば図4に示
すように、組成c1の原料を一旦融解し[m1点]、温度を
t1からt2に降下させながら結晶を析出させてゆくと、析
出につれて結晶の組成はs1からs2へ、またルツボに残存
する原料融液の組成はc1からc2へと変化し、一様な結晶
組成を得ることが不可能であると言う本質的な問題もあ
る。Also in the homogeneity of the crystal, as shown in FIG. 4, for example, the raw material of the composition c1 is once melted [m1 point], and the temperature is changed.
When the crystal is deposited while descending from t1 to t2, the composition of the crystal changes from s1 to s2 as it precipitates, and the composition of the raw material melt remaining in the crucible changes from c1 to c2, resulting in a uniform crystal composition. There is also the essential problem that it is impossible to obtain.
【0012】一方、図5に示す融剤溶融帯移動法では、
安定な溶融帯域9の保持が難しく、しかもその中へ溶か
し込まれる原料棒8の量と結晶化によって吐き出される
結晶成分の量を等しく保つ必要があるため、溶融域9と
原料棒8を別々の速度で移動させる必要があり、結晶径
の変動が生じ易く、周辺温度の微妙な変化によっても育
成条件が影響され易いなど技術的にも難しく、均質な結
晶を育成するのが困難であると言う課題もあった。On the other hand, in the flux melting zone transfer method shown in FIG.
Since it is difficult to maintain a stable melting zone 9 and it is necessary to keep the amount of the raw material rod 8 melted therein and the amount of the crystalline component discharged by crystallization equal, the melting zone 9 and the raw material rod 8 are separated. It is necessary to move at a speed, it is difficult to grow a homogeneous crystal because it is technically difficult that the crystal diameter easily fluctuates, the growth conditions are easily affected by subtle changes in the ambient temperature, and so on. There were also challenges.
【0013】本発明は、イン・コングルーエントな原料
から均質な結晶を育成することを目的とするものであ
る。The present invention aims to grow a homogeneous crystal from an in-congruent raw material.
【0014】[0014]
【課題を解決するための手段】このために本発明では図
1に示すように、目的結晶と同一組成の原料と、それを
溶かす融剤の所定量を混合してルツボ1内で融解し、融
液2の一部を細径口管5内へ導いてその先端部で結晶成
長させることで、結晶化点近傍の融液と周辺のルツボ中
の融液が混合することを防ぐ工夫をした。To this end, in the present invention, as shown in FIG. 1, a raw material having the same composition as the target crystal and a predetermined amount of a flux for melting it are mixed and melted in the crucible 1, By introducing a part of the melt 2 into the small-diameter pipe 5 and causing crystals to grow at the tip thereof, a device was devised to prevent the melt near the crystallization point and the melt in the surrounding crucible from mixing. .
【0015】抵抗加熱型のルツボ1を用いた図1の場
合、ルツボ底部に孔口を開けてそれに細径ノズルを挿通
させて細径口管部5を形成し、細径口管5内を通ってく
る融液をその先端においてシード結晶3を用いて結晶化
させつつ引き下げると言う手段を採った。In the case of the resistance heating type crucible 1 shown in FIG. 1, a small diameter nozzle 5 is formed by opening a hole at the bottom of the crucible and inserting a small diameter nozzle into the hole. A means was adopted in which the melt flowing through was crystallized at the tip thereof while being crystallized by using the seed crystal 3.
【0016】また、図1の抵抗加熱型ルツボ1による直
熱方式に替えて、図2のような縦長ルツボ1を用いた傍
熱方式で本発明を構成することも可能で、また図3に示
すようにルツボ1とダイ8の組み合わせにより上方へ引
き上げる構成を採ることもできる。Further, instead of the direct heating method using the resistance heating type crucible 1 in FIG. 1, the present invention can be configured by an indirect heating method using the vertically long crucible 1 as shown in FIG. As shown, a combination of the crucible 1 and the die 8 can be used to pull up.
【0017】いづれの構成においても、結晶と等しい組
成の原料と、それに対する溶剤あるいは自己フラックス
の所定量とを混合して融解し、融液を細径口管部へ導い
て、その先端孔口部においてシード結晶を用いて引き下
げ、あるいは引き上げながら結晶化させる。In any of the configurations, a raw material having the same composition as the crystal and a predetermined amount of a solvent or self-flux therefor are mixed and melted, and the melt is guided to a small-diameter mouth tube portion, and its tip hole mouth In the part, crystallization is performed while pulling down or pulling up using a seed crystal.
【0018】[0018]
【作用】上述の手段によると、例えば図1に示されるよ
うに、融剤と混合して融解された原料融液2は成長開始
時においてはルツボ1内および細径口管部5内を一様な
組成で満たしているが、シード3が細径口管部5の先端
の融液に触れた瞬間に反応して新たな融液組成へ変化す
るも、この反応に与る原料融液は細径口管5中に限定さ
れていて周囲の融液と容易に混合できないため、短時間
の間では原料融液2の影響を免れる。According to the above-mentioned means, as shown in FIG. 1, for example, the raw material melt 2 mixed with the melting agent and melted flows into the crucible 1 and the small-diameter mouth tube portion 5 at the start of growth. Although it is filled with such a composition, the seed 3 reacts at the moment when it touches the melt at the tip of the small diameter tube portion 5 and changes to a new melt composition, but the raw material melt that participates in this reaction is Since it is limited to the small diameter pipe 5 and cannot be easily mixed with the surrounding melt, the influence of the raw material melt 2 is avoided in a short time.
【0019】この状態でシード結晶3を引き下げると、
細径口管部5中の融液から結晶成分が融剤と分離してシ
ード結晶上に結晶成長し、分離して残された融剤は細径
口管部5内に残されて蓄積し、最終的には細径口管部5
内に融剤層6が形成されることになる。When the seed crystal 3 is pulled down in this state,
The crystal component is separated from the melt from the melt in the small-diameter pipe section 5 to grow crystals on the seed crystal, and the separated and left flux is accumulated in the small-diameter pipe section 5. Finally, the small-diameter pipe section 5
The flux layer 6 will be formed therein.
【0020】定常状態ではルツボ内融液2の結晶成分は
融剤層6を介して細径口管部5先端へ到達し、そこで融
剤と分離されつつ結晶化する過程が進行する。In a steady state, the crystal component of the melt 2 in the crucible reaches the tip of the small-diameter tube portion 5 through the flux layer 6, and the process of crystallization while separating from the flux proceeds there.
【0021】結晶化点が細径口管部5先端に限定されて
いるため、結晶のサイズおよび結晶化する原料の量が一
定となり、このため原料融液と融剤層の間および融剤層
と結晶の間の温度差などの熱的条件も一定化し易く、イ
ン・コングルーエントな原料からでも均質な結晶を育成
することが可能になった。Since the crystallization point is limited to the tip of the small diameter tube portion 5, the size of the crystal and the amount of the raw material to be crystallized are constant, so that the space between the raw material melt and the flux layer and between the flux layers. The thermal conditions such as the temperature difference between the crystal and the crystal can be easily fixed, and it has become possible to grow a homogeneous crystal even from an in-congruent raw material.
【0022】[0022]
【実施例】図1は本発明の内容を実施する一例を示し、
代表的なイン・コングルーエント(不一致溶融)な原料
としてニオブ酸ポタシウム・リチウム(K3Li2NbO
5、略してKLN)を対象結晶として本発明の方法を試
行した例である。FIG. 1 shows an example for carrying out the content of the present invention,
Potassium lithium niobate (K 3 Li 2 NbO) is used as a typical in-congruent (mismatched) raw material.
5 is an example in which the method of the present invention was tried by using KLN) as a target crystal.
【0023】出発原料は炭酸ポタシウム(K2CO3)、
炭酸リチウム(Li2CO3)、五酸化ニオブ(Nb
2O5)で、所定の式量を秤量し、混合およびプレスを行
った後、950℃で12時間焼成する操作を2度繰り返
した後、再度プレスして960℃で10時間焼結して結
晶組成の原料を得た。The starting material is potassium carbonate (K 2 CO 3 ),
Lithium carbonate (Li 2 CO 3 ), niobium pentoxide (Nb
2 O 5 ), a predetermined amount of formula is weighed, mixed and pressed, and then firing at 950 ° C. for 12 hours is repeated twice, and then pressed again and sintered at 960 ° C. for 10 hours. A raw material having a crystal composition was obtained.
【0024】この原料に対する自己フラックスとして
は、K2CO3:Li2CO3:Nb2O5を33:22:4
5の割合に秤量して同様な温度条件で一回焼成を行い、
それを1050℃で3時間加熱して溶融して合成し、原
料と自己フラックス比1:1〜5:1に混合してルツボ
に充填した。As the self-flux for this raw material, K 2 CO 3 : Li 2 CO 3 : Nb 2 O 5 is 33: 22: 4.
Weighed in the ratio of 5 and fired once under similar temperature conditions,
It was heated at 1050 ° C. for 3 hours to be melted, synthesized, and mixed with the raw material at a self-flux ratio of 1: 1 to 5: 1 to fill the crucible.
【0025】使用したルツボの代表例は図1に示すよう
な抵抗加熱型の白金ルツボ1で、その底部に穴を開けて
直径約100〜800ミクロンの白金パイプを貫通させ
て融液引き出し用の細径口管部5を形成した構造であ
る。A typical example of the crucible used is a resistance heating type platinum crucible 1 as shown in FIG. 1, which has a hole at its bottom and is penetrated through a platinum pipe having a diameter of about 100 to 800 microns to draw a melt. This is a structure in which the small-diameter mouth tube portion 5 is formed.
【0026】原料融液2の一部は細径口管5へ導かれ、
その先端でシード結晶3を用いて、速度0.1〜0.7mm/mi
nでシード結晶の回転を行うことなく引き下げつつ結晶
育成を行い、透明で均質な正方晶形の結晶が得られた。A part of the raw material melt 2 is introduced into the small diameter pipe 5,
Using the seed crystal 3 at the tip, the speed is 0.1-0.7 mm / mi
Crystal growth was performed while pulling down the seed crystal without rotating the seed crystal at n, and a transparent and homogeneous tetragonal crystal was obtained.
【0027】ルツボ自体を熱源とする代わりに高周波加
熱、抵抗加熱、赤外光加熱などに熱源を求めると、ルツ
ボの容量および形状を幅広く選択することが可能になる
が、赤外加熱を用いた傍熱方式の一実施例を図2に示
す。If a heat source is sought for high frequency heating, resistance heating, infrared light heating, etc. instead of using the crucible itself as the heat source, it is possible to select a wide range of crucible capacities and shapes. An example of the indirect heating method is shown in FIG.
【0028】この例ではルツボ1には縦型のペンシル型
を採用し、その先端に100〜700μmの先端孔口を
開けて細径口管の役割を負わせ、赤外線加熱炉内にルツ
ボ1を設置してルツボ温度を制御しながら、上記とほぼ
同様な手順で単結晶を育成した。In this example, a vertical pencil type is adopted for the crucible 1, and a tip hole mouth of 100 to 700 μm is opened at the tip of the crucible 1 so that the crucible 1 serves as a small-diameter pipe and the crucible 1 is placed in an infrared heating furnace. A single crystal was grown in the same procedure as above while being installed and controlling the crucible temperature.
【0029】図3には引き上げ方式による育成例を示す
が、細径を有するダイ7をルツボ1中に立脚させた構造
で、原料融液2は毛管現象によりダイ7上端部まで導か
れ、その先端においてシード結晶3を用いて引き上げを
行った。FIG. 3 shows an example of growth by the pulling method. In the structure in which a die 7 having a small diameter is erected in the crucible 1, the raw material melt 2 is guided to the upper end of the die 7 by a capillary phenomenon. Pulling was performed using the seed crystal 3 at the tip.
【0030】KLNの育成には結晶組成と同種元素の自
己フラックスが採用されるため、比重差によって両者が
分離することは無く、引き下げの場合と同様にして引き
下げ法によりKLNの単結晶ファイバーが育成できた。Since the self-flux of the same kind of element as the crystal composition is adopted for growing KLN, they are not separated due to the difference in specific gravity, and the single crystal fiber of KLN is grown by the pulling down method in the same manner as in the pulling down. did it.
【0031】[0031]
【発明の効果】この発明によれば、細径口管5を用いる
ことで結晶化点近傍の融液とその周囲の原料融液とが混
合することを制限し、結晶化点近傍に安定な融剤層6を
形成しつつ結晶を育成することにより、イン・コングル
ーエントな原料融液からでも均質な単結晶を育成するこ
とができる。EFFECTS OF THE INVENTION According to the present invention, the use of the small-diameter pipe 5 restricts the mixing of the melt near the crystallization point and the raw material melt around the crystallization point, and stabilizes the temperature near the crystallization point. By growing the crystal while forming the flux layer 6, it is possible to grow a homogeneous single crystal even from an in-congruent raw material melt.
【図1】 直熱方式の抵抗加熱型ルツボを用いた引き下
げ法による本発明の一実施例を示す図FIG. 1 is a diagram showing an embodiment of the present invention by a pulling-down method using a direct heating type resistance heating type crucible.
【図2】 ペンシル型ルツボを用いた傍熱方式の引き下
げ法の実施例を示す図FIG. 2 is a view showing an example of an indirect heating type lowering method using a pencil type crucible.
【図3】 ダイを用いた引き上げ法による本発明の実施
例を示す図FIG. 3 is a diagram showing an example of the present invention by a pulling method using a die.
【図4】 原料融液のコングルーエント(一致溶融)、
およびイン・コングルーエント(不一致溶融)を説明す
るための状態図、図中AおよびBは2つの元素成分を表
し、c点はコングルーエント組成、i点はイン・コング
ルーエント組成、s1、s2およびc1、c2はそれぞれ温度t
1、t2における結晶の組成および残留融液の組成、mお
よびm1はそれぞれ組成cおよびc1の溶融状態を表わ
す。FIG. 4 is a congruent of raw material melt (congruent melting),
And a phase diagram for explaining in-congruent (mismatched melting), where A and B represent two elemental components, point c is congruent composition, point i is in-congruent composition, s1 , S2 and c1, c2 are the temperature t
The composition of the crystal and the composition of the residual melt at 1 and t2, m and m1 represent the molten state of the compositions c and c1, respectively.
【図5】 融剤溶融帯移動法(フラックス・ゾーン・ト
ラベリング法)の原理説明図FIG. 5: Principle explanatory diagram of flux melting zone transfer method (flux zone traveling method)
1はルツボ 2は原料融液 3はシード結晶 4は育成された結晶 5は細径口管部 6は融剤層 7は引き上げ用のダイ 8は結晶と同一組成の原料棒 9は融けた融剤で作られる溶融帯域 10は融解のための熱源 11は溶融帯域の移動 12は原料棒の移動 1 is a crucible 2 is a raw material melt 3 is a seed crystal 4 is a grown crystal 5 is a small diameter mouth tube 6 is a flux layer 7 is a pulling die 8 is a raw material rod 9 having the same composition as the crystal 9 is a melted melt Melting zone made of agent 10 is a heat source for melting 11 is moving melting zone 12 is moving raw material bar
Claims (1)
な原料融液から行う単結晶の育成において、目的結晶に
等しい成分組成の原料と、該原料に対する融剤所定量を
混合して融解し、該融液を細径口管部へ導いて、その先
端において引き下げあるいは引き上げつつ行うことを特
徴とする、単結晶の育成方法。1. In-congruent (mismatched melting)
In the growth of a single crystal performed from a raw material melt, a raw material having the same component composition as the target crystal and a predetermined amount of a flux for the raw material are mixed and melted, and the melt is guided to a small-diameter mouth tube portion, A method for growing a single crystal, which is carried out while pulling down or pulling up at the tip.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22279393A JPH0811717B2 (en) | 1993-08-16 | 1993-08-16 | Single crystal growth method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22279393A JPH0811717B2 (en) | 1993-08-16 | 1993-08-16 | Single crystal growth method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0753297A true JPH0753297A (en) | 1995-02-28 |
JPH0811717B2 JPH0811717B2 (en) | 1996-02-07 |
Family
ID=16787988
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22279393A Expired - Lifetime JPH0811717B2 (en) | 1993-08-16 | 1993-08-16 | Single crystal growth method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0811717B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104120487A (en) * | 2013-08-23 | 2014-10-29 | 江苏中电振华晶体技术有限公司 | Growth method and growth equipment of platelike sapphire crystals |
-
1993
- 1993-08-16 JP JP22279393A patent/JPH0811717B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104120487A (en) * | 2013-08-23 | 2014-10-29 | 江苏中电振华晶体技术有限公司 | Growth method and growth equipment of platelike sapphire crystals |
Also Published As
Publication number | Publication date |
---|---|
JPH0811717B2 (en) | 1996-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6345198A (en) | Production of crystal of multiple system | |
US4957712A (en) | Apparatus for manufacturing single silicon crystal | |
JPH0753297A (en) | Method for growing single crystal | |
JP2636929B2 (en) | Method for producing bismuth germanate single crystal | |
JPH0329039B2 (en) | ||
JP3369394B2 (en) | Crystal preparation method | |
JPH04280891A (en) | Method for growing single crystal fiber | |
JPH06345588A (en) | Crystal growth method | |
JP2535773B2 (en) | Method and apparatus for producing oxide single crystal | |
JP2825060B2 (en) | Beta-barium borate single crystal processing surface modification method | |
RU2103425C1 (en) | Method of growing strontium tetraborate monocrystals | |
JP3660604B2 (en) | Single crystal manufacturing method | |
Gandhi | Single crystal growth by a slow evaporation technique: Concept, mechanisms and applications | |
JP2814657B2 (en) | Method for growing compound semiconductor single crystal | |
RU2112820C1 (en) | Method of growing lithium triborate monocrystals | |
JPH0948697A (en) | Production of lithium triborate single crystal | |
JP2881737B2 (en) | Manufacturing method of optical single crystal | |
JPS59141488A (en) | Device for growing single crystal | |
JPH08295507A (en) | Optical crystal and its production | |
JPH04270191A (en) | Method for growing oxide single crystal | |
JPH04300281A (en) | Production of oxide single crystal | |
Noda et al. | The crystal growth of synthetic fluor-phlogopite by the moving crucible technique | |
JP2005187230A (en) | Method and apparatus for producing oxide single crystal | |
JPH05270995A (en) | Production of cadmium-tellurium based single crystal | |
Pastor | Single crystal fiber drawing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |