JPH0426728A - Manufacture of high purity in - Google Patents

Manufacture of high purity in

Info

Publication number
JPH0426728A
JPH0426728A JP13104390A JP13104390A JPH0426728A JP H0426728 A JPH0426728 A JP H0426728A JP 13104390 A JP13104390 A JP 13104390A JP 13104390 A JP13104390 A JP 13104390A JP H0426728 A JPH0426728 A JP H0426728A
Authority
JP
Japan
Prior art keywords
boat
temperature
impurities
vacuum
baking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13104390A
Other languages
Japanese (ja)
Other versions
JP2835143B2 (en
Inventor
Kiyoteru Yoshida
清輝 吉田
Toshio Kikuta
俊夫 菊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP13104390A priority Critical patent/JP2835143B2/en
Publication of JPH0426728A publication Critical patent/JPH0426728A/en
Application granted granted Critical
Publication of JP2835143B2 publication Critical patent/JP2835143B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture high purity In even including no elements hard to volatilize by subjecting In to vacuum baking, thereafter providing it with a temp. difference in the vertical direction, executing solidification from the lower part to the upper part, segregating included impurities on the surface of In and removing them. CONSTITUTION:In is housed in a boat, is subjected to heating treatment in vacuum at about 850 to 1000 deg.C for about 30min to 3hr and is subjected to vacuum baking. In this way, volatile elements such as oxides as well as Mg, Cu, Zn or the like are removed. After that, a temp. difference is provided by about >=10 deg.C/cm in the vertical direction of the boat in which the above In has been housed, and the In is cooled to about 250 deg.C at a certain cooling rate of about 5 to 150 deg.C/hr. Next, the In is furthermore cooled from the above temp. and is solidified from the lower part of the boat to its upper part. In this way, impurities such as the elements board to be volatilized such as Si, Fe, Cr, Al or the like included in the In are segregated in the vicinity of the surface of the In. Then, this segregated impurities are subjected to chemical etching by a water soln. including hydrochloric acid and H2O2 and are removed. In this way, the high purity In of about >=6N can be obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は化合物半導体結晶成長に用いる原料の純化処理
方法に関するものであり、高純度化Inの製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for purifying raw materials used for compound semiconductor crystal growth, and relates to a method for producing highly purified In.

(従来の技術) 高純度InPの結晶成長のために原料として、純度99
.9999%のInとPが通常用いられている。さらに
原料Inの純度を高めるために、前処理として、真空ベ
ーキング、あるいは水素雰囲気中でのベーキングが行な
われてきた。この真空ベーキングの場合、通常I X 
10−’Torr以上の真空度において、850℃以下
のベーキング温度で、1〜5時間程度のベーキングが行
なわれている。このベーキング処理は、酸化物や揮発性
の元素を除去するのに有効であるといわれている。
(Prior art) Purity 99% is used as a raw material for crystal growth of high-purity InP.
.. 9999% In and P is commonly used. Furthermore, in order to increase the purity of the raw material In, vacuum baking or baking in a hydrogen atmosphere has been performed as a pretreatment. In this case of vacuum baking, usually I
Baking is performed at a vacuum level of 10-' Torr or higher and a baking temperature of 850° C. or lower for about 1 to 5 hours. This baking treatment is said to be effective in removing oxides and volatile elements.

(発明が解決しようとする課題) しかし従来の真空ベーキング法では、SL。(Problem to be solved by the invention) However, in the conventional vacuum baking method, SL.

Fe、C:r、Aβ等の揮発しにくい元素の除去法につ
いては解明されていなかった。さらに、これらの不純物
はベーキング処理だけでは、除去しきれていなかった。
A method for removing elements that are difficult to volatilize, such as Fe, C:r, and Aβ, has not been elucidated. Furthermore, these impurities could not be completely removed by baking treatment alone.

本発明は、このような従来の真空ベーキング法の欠点を
克服し高純度In中に含まれるSL、Fe、Cr、Ag
等の揮発しにくい元素を除去する方法を提供することを
目的とする。
The present invention overcomes the drawbacks of the conventional vacuum baking method and removes SL, Fe, Cr, and Ag contained in high-purity In.
The purpose of the present invention is to provide a method for removing elements that are difficult to volatilize.

(課題を解決するための手段) すなわち本発明は、Inを真空ベーキングした後、該I
nを収納したボートの上下方向に温度差をつけ、一定の
冷却速度で約250℃まで冷却し、さらにこの温度より
冷却してボートの下部からボートの上部へとInを固化
させ、In中に含まれる不純物をInの表面近傍に偏析
させ、次いで偏析した不純物を化学エツチングによって
除去することを特徴とする高純度Inの製造方法を提供
するものである。
(Means for Solving the Problems) That is, the present invention provides that after vacuum baking In,
A temperature difference is created between the top and bottom of the boat containing n, and the temperature is cooled at a constant cooling rate to approximately 250°C, and the In is further cooled from this temperature to solidify from the bottom of the boat to the top of the boat. The present invention provides a method for producing high-purity In, which is characterized in that impurities contained therein are segregated near the surface of In, and then the segregated impurities are removed by chemical etching.

次に本発明の実施態様を図面に従って説明する。Next, embodiments of the present invention will be described with reference to the drawings.

本発明におけるInの真空ベーキングは第1図及び第2
図に示す装置により行なうことができる。
Vacuum baking of In in the present invention is shown in Figures 1 and 2.
This can be carried out using the apparatus shown in the figure.

第1図は真空ベーキングを行なう装置の側面図(一部断
面図)であり、図中1は真空装置であり、この上部側面
には石英管2の一端が連結されている。この石英管2の
内部にはPBNボート3が所定の位置に設置されており
、これにIn4が収納されている。
FIG. 1 is a side view (partially sectional view) of an apparatus for performing vacuum baking. In the figure, 1 is a vacuum apparatus, and one end of a quartz tube 2 is connected to the upper side surface of the vacuum apparatus. Inside this quartz tube 2, a PBN boat 3 is installed at a predetermined position, and In4 is housed in this.

次に5は電気炉であり、これは架台6上に設置され、架
台に設けたキャスター8.8によって移動可能であり、
これを移動することにより石英管2を電気炉内部へ挿入
することが可能である。電気炉5は第2図にその断面図
を示すように、その中央部には炉芯管が貫通しており、
その上下にはヒーター9が設けられている。このヒータ
ー9は炉芯管の貫通方向に多分割されている。
Next, 5 is an electric furnace, which is installed on a pedestal 6 and is movable by casters 8.8 provided on the pedestal.
By moving this, it is possible to insert the quartz tube 2 into the electric furnace. As shown in the cross-sectional view of FIG. 2, the electric furnace 5 has a furnace core tube passing through its center.
Heaters 9 are provided above and below. This heater 9 is divided into multiple parts in the direction of penetration of the furnace core tube.

以上の装置を用いたInの純化方法を説明する。A method for purifying In using the above apparatus will be explained.

まず真空装置1の内部を真空(例えば真空度I X 1
0−’Torr)にしたのち、電気炉5をキャスター8
.8により左に移動し、この電気炉の炉芯管10の所定
の場所にボート3が位置するまで電気炉を移動する。所
定の位置にボートが位置したところで、昇温を開始する
First, the inside of the vacuum device 1 is vacuumed (for example, vacuum degree I
After setting the electric furnace 5 to caster 8
.. 8 to the left, and the electric furnace is moved until the boat 3 is located at a predetermined position on the furnace core tube 10 of this electric furnace. Once the boat is in a predetermined position, heating begins.

第3図はこの真空ベーキングの温度グラフの1例である
。第3図に示すように先ず、4時間程で、目標温度10
00℃まで温度を上げ、1時間この温度で保持する。
FIG. 3 is an example of a temperature graph of this vacuum baking. As shown in Figure 3, first, the target temperature was 10
Raise the temperature to 00°C and hold at this temperature for 1 hour.

上記例では1000℃、1時間としているが、本発明で
はベーキング温度としては850〜1000℃が好まし
く、その保持時間は30分間〜3時間が好ましい。
In the above example, the baking temperature is 1000°C for 1 hour, but in the present invention, the baking temperature is preferably 850 to 1000°C, and the holding time is preferably 30 minutes to 3 hours.

電気炉5は、ボート3の長さより長く横方向に均熱なと
ることができる。
The electric furnace 5 is longer than the length of the boat 3 and can be heated uniformly in the lateral direction.

第4図は真空ベーキング保持時のInの入ったボート部
の温度分布を示す図である。このとき、ボートの底部と
上部の温度T、、T2は、等しい状態にある。次いで所
定時間後Inを一定の冷却速度で250℃付近まで冷却
する。250℃付近とするのはInの融点が156℃で
あるため、この温度に到達する前に不純物を偏析させる
ためである。
FIG. 4 is a diagram showing the temperature distribution of the boat portion containing In during vacuum baking holding. At this time, the temperatures T, T2 at the bottom and top of the boat are equal. Then, after a predetermined period of time, the In is cooled to around 250° C. at a constant cooling rate. The reason why the temperature is set at around 250° C. is that since the melting point of In is 156° C., impurities are segregated before reaching this temperature.

この時ボート部の上下で10℃/cm以上の温度勾配と
なるように上下分割ヒーターのパワーを調製する。
At this time, the power of the upper and lower divided heaters is adjusted so that there is a temperature gradient of 10° C./cm or more between the upper and lower parts of the boat part.

第5図は冷却開始後のボートの上下部の温度勾配を示す
図である。このようにボートの上下方向で温度勾配がつ
いた状態において、冷却を開始する。
FIG. 5 is a diagram showing the temperature gradient at the top and bottom of the boat after cooling has started. Cooling is started in this state where there is a temperature gradient in the vertical direction of the boat.

第6図は250℃近傍(ボート底部)付近からの冷却プ
ロセスを示す図である。
FIG. 6 is a diagram showing the cooling process from around 250° C. (bottom of the boat).

まず、ボート部の温度が少なくとも250℃になるまで
は、比較的速い冷却で、好ましくは5’C/hr〜15
0℃/hrで行なう。冷却速度が速すぎると不純物がI
n内部もしくは底部に残ってしまい、その後の冷却ステ
ップの効果が弱まってしまうためである。上記温度から
は横方向の灼熱を保ちつつ、かつボートの上下方向で一
定の温度差を保ちながら一定の固化速度通常3〜6 m
m/hr、好ましくは2〜3 mm/hrの固化速度で
Inをボート底部より上部方向へと徐々に固化させてい
く。このような固化法によって揮発しにくい不純物をI
nの表面付近に析出させていくことができる。
First, relatively fast cooling, preferably between 5'C/hr and 15°C, until the temperature of the boat section reaches at least 250°C.
It is carried out at 0°C/hr. If the cooling rate is too fast, impurities will
This is because it remains inside or at the bottom, weakening the effect of the subsequent cooling step. From the above temperature, while maintaining scorching heat in the lateral direction and maintaining a constant temperature difference in the vertical direction of the boat, a constant solidification rate is usually 3 to 6 m.
In is gradually solidified from the bottom of the boat toward the top at a solidification rate of m/hr, preferably 2 to 3 mm/hr. This solidification method removes impurities that are difficult to volatilize.
It can be made to precipitate near the surface of n.

固化速度が小さい方が不純物を十分表面に偏析できると
考えられる(In中に含まれる不純物はZn、Si、F
e、Cu、S等でありこれらはIn中では偏析係数が1
より小さいためInが固化するとき外へはき出されるよ
うになる)。固化速度が大きすぎるとIn内部に不純物
がとり残されて表面まで拡散しにくくなる。
It is thought that the slower the solidification rate, the more impurities can be sufficiently segregated on the surface (the impurities contained in In include Zn, Si, F
e, Cu, S, etc., and these have a segregation coefficient of 1 in In.
Because it is smaller, when In solidifies, it is expelled to the outside). If the solidification rate is too high, impurities will be left inside the In and difficult to diffuse to the surface.

In中の不純物は、上記真空ベーキング処理によってI
nの表面付近に析出する。ベーキング終了後に、Inの
入ったボートをそのまま化学エツチングを加えて、In
の表面に付着した不純物を除去する。化学エツチングは
常法により行なうことができる。エツチング液は特に制
限はないが、例えば塩酸、過酸化水素、水をそれぞれ1
:1:3の比で混合し、この液の入った容器の中にボー
トごと浸す。エツチング時間はボートのサイズなどによ
り異なり、特に制限はないが、通常約30分以上である
。エツチング終了後は脱イオン水で超音波洗浄を加えな
がら、約2時間程度時間をかけて水置換を行なうのが好
ましい。
The impurities in In are removed by the above vacuum baking process.
Precipitates near the surface of n. After baking, the In-containing boat is chemically etched to create an In-containing boat.
Remove impurities adhering to the surface. Chemical etching can be carried out by conventional methods. There are no particular restrictions on the etching solution, but for example, 1 portion each of hydrochloric acid, hydrogen peroxide, and water.
: Mix at a ratio of 1:3 and immerse the entire boat into a container containing this liquid. The etching time varies depending on the size of the boat and is not particularly limited, but is usually about 30 minutes or more. After etching is completed, it is preferable to carry out water replacement over a period of about 2 hours while adding ultrasonic cleaning with deionized water.

なお、エツチング液は限定するものではなく、塩酸系液
の他、硝酸、王水、硫酸系液等を用いることができる。
Note that the etching solution is not limited, and in addition to hydrochloric acid-based solutions, nitric acid, aqua regia, sulfuric acid-based solutions, etc. can be used.

このようにして純度を高めたInは従来のものと同様に
InP結晶成分に使用される。In結晶を石英アンプル
の中に赤燐(純度99.9999%)とともに装入し、
温度勾配凝固法によりInP結晶を成長させる。
In which the purity has been increased in this way is used for the InP crystal component in the same manner as in the conventional case. In crystal is charged into a quartz ampoule together with red phosphorus (purity 99.9999%),
InP crystals are grown by a temperature gradient solidification method.

第7図は上記石英アンプルを用いた温度勾配凝固法によ
りInPの結晶成長を行なうための温度分布を示す図で
ある。
FIG. 7 is a diagram showing the temperature distribution for growing InP crystals by the temperature gradient solidification method using the quartz ampoule.

すなわち、ボート部3の温度を融液温度1062℃赤燐
の温度545℃とし、InPの融液を合成した後、ボー
トの端部より一定の温度勾配(4〜b を電気炉のヒータパワーの調整により、電気的にボート
端部より他端部まで温度を移動して結晶を固化させる。
That is, the temperature of the boat part 3 is set to the melt temperature of 1062 degrees Celsius and the red phosphorus temperature of 545 degrees Celsius, and after synthesizing the InP melt, a constant temperature gradient (4~b) is set from the end of the boat to the heater power of the electric furnace. The adjustment electrically moves the temperature from one end of the boat to the other to solidify the crystals.

InP結晶の成長のボートは特に制限はなく、PBNボ
ートの他、石英ボート(Inがボートにぬれないような
粗面化処理を施したもの)を用いることができる。
There are no particular restrictions on the boat for growing the InP crystal, and in addition to the PBN boat, a quartz boat (surface roughened to prevent In from getting wet on the boat) can be used.

本発明方法はInについて好適であるが、他の金属例え
ばZn、Sn等の純化にも応用可能である。
Although the method of the present invention is suitable for In, it is also applicable to the purification of other metals such as Zn and Sn.

(実施例) 次に本発明を実施例に基づいてさらに詳細に説明する。(Example) Next, the present invention will be explained in more detail based on examples.

実施例1 第1図及び第2図に示す装置を用い原料In(6N)(
純度99.9999%で不純物としてMg、Aj!、S
i、Fe、Cu、Znを含む)高純化処理を行なった。
Example 1 Raw material In(6N) (
Purity 99.9999% with impurities such as Mg and Aj! , S
(containing i, Fe, Cu, and Zn) was subjected to high purification treatment.

第1図に示すPBNボートに上記In原料を約1.5k
g装入し、真空装置1の真空度が真空装置の真空度がI
 X 10−7Torrに到達したのち、電気炉5を移
動し、ボートの真空ベーキングを行なう。加熱は第3図
に示すように、先ず、4時間程で目標温度1000℃ま
で温度を上げ、1時間この温度で保持した。1時間後に
冷却を始めたが、この時第5図の如くボート部の上下で
10℃/cm以上の温度勾配がつくように上下分割ヒー
ターのパワーを調整した。このようにボートの上下方向
で温度勾配がついた状態において、冷却を開始した。ボ
ート部の温度が250℃になるまでは、冷却速度125
℃/hrで冷却を行なった。250℃付近からは横方向
の均熱な保ちつつ、かつボートの上下方向で一定の温度
差を保ちながら3〜6mm/hrの固化速度でInをボ
ート底部より上部方向へと徐々に固化させていった。こ
のような固化法によって揮発しにくい不純物をInの表
面付近に析出させていった。ベーキング終了後に、In
の入ったボートをそのまま化学エツチングを加えて、I
nの表面に付着した不純物を除去する。エツチング液は
塩酸、過酸化水素、水をそれぞれ1:1:3の比で混合
し、この液の入った容器の中にボートごと浸す。エツチ
ング時間は約30分である。エツチング終了後は脱イオ
ン水で超音波洗浄を加えながら、約2時間程度時間をか
けて水置換を行った。水置換後は、純化した窒素を流通
させたクリーンボックスの中で水を乾燥させる。
Approximately 1.5 kg of the above In raw material was placed in the PBN boat shown in Figure 1.
g, and the vacuum degree of vacuum device 1 is I.
After reaching X 10-7 Torr, the electric furnace 5 is moved and the boat is vacuum baked. As shown in FIG. 3, the heating was performed by first raising the temperature to a target temperature of 1000° C. over about 4 hours and maintaining this temperature for 1 hour. Cooling was started after 1 hour, and at this time the power of the upper and lower divided heaters was adjusted so that a temperature gradient of 10° C./cm or more was created between the upper and lower parts of the boat part, as shown in FIG. Cooling was started in this state where there was a temperature gradient in the vertical direction of the boat. Until the temperature of the boat reaches 250℃, the cooling rate is 125℃.
Cooling was performed at °C/hr. From around 250℃, In is gradually solidified from the bottom of the boat to the top at a solidification rate of 3 to 6 mm/hr while maintaining uniform heat in the lateral direction and a constant temperature difference in the vertical direction of the boat. It was. By such a solidification method, impurities that are difficult to volatilize were precipitated near the surface of In. After baking, In
Add chemical etching to the boat containing the I
Remove impurities attached to the surface of n. The etching solution is a mixture of hydrochloric acid, hydrogen peroxide, and water in a ratio of 1:1:3, and the boat is immersed in a container containing this solution. Etching time is approximately 30 minutes. After the etching was completed, water was replaced over a period of approximately 2 hours while ultrasonic cleaning was performed using deionized water. After replacing the water, the water is dried in a clean box through which purified nitrogen is circulated.

十分乾燥した後成長用の石英アンプルの中に入れて、2
00℃程度の温度で真空ベーキングを30分程度行なっ
た。その後第7図に示すようにこの石英アンプルの中に
赤リン(純度99.9999%)を入れて、I X 1
0−’Torrの真空度で、封じ切った。この石英アン
プルを用いて、第7図に示すように温度勾配凝固法によ
りInP結晶を成長させた。
After sufficiently drying, place it in a quartz ampoule for growth.
Vacuum baking was performed at a temperature of about 00°C for about 30 minutes. Thereafter, as shown in Fig. 7, red phosphorus (purity 99.9999%) was put into this quartz ampoule, and I
It was sealed off at a vacuum level of 0-'Torr. Using this quartz ampoule, InP crystal was grown by the temperature gradient solidification method as shown in FIG.

成長したInP結晶のインゴットの中央部よりウェハー
を切り出し、そのウェハーの質量分析(85MS測定)
の結果を第1表に示す。この結果原料In中に含まれて
いた不純物元素の濃度が著しく減少しその効果が認めら
れた。
A wafer is cut out from the center of the grown InP crystal ingot, and the wafer is subjected to mass spectrometry (85MS measurement).
The results are shown in Table 1. As a result, the concentration of impurity elements contained in the raw material In was significantly reduced, and this effect was recognized.

第1表 (注)単位はppmw、他の元素は検出感度以下であっ
た。
Table 1 (Note) The unit is ppmw, and other elements were below the detection sensitivity.

(発明の効果) 本発明によって、市販のIn(純度99.9999%)
の純度を高めることができ、高純度の1nP結晶成長を
行なうために極めて有効である。
(Effect of the invention) According to the present invention, commercially available In (purity 99.9999%)
It is extremely effective for growing high-purity 1nP crystals.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はInの真空ベーキングを行なうための−装置を
示す側面(一部所面)図、第2図はその電気炉を示す拡
大断面図、第3図は真空ベーキングを行なう時の温度プ
ロセスを示すグラフ、第4図は真空ベーキング保持時の
Inの入ったボート部の温度分布を示す図、第5図は冷
却開始後のボートの上下部の温度勾配を示す図、第6図
は250℃近傍(ボート底部)付近からの冷却プロセス
を示す図、第7図は温度勾配凝固法によりInPの結晶
成長を行なうための温度分布を示す図である。
Figure 1 is a side (partial) view of an apparatus for vacuum baking In, Figure 2 is an enlarged sectional view of the electric furnace, and Figure 3 is the temperature process during vacuum baking. Figure 4 is a graph showing the temperature distribution of the In-containing boat section during vacuum baking retention, Figure 5 is a graph showing the temperature gradient at the top and bottom of the boat after cooling has started, and Figure 6 is a graph showing the temperature distribution of the boat containing In during vacuum baking. FIG. 7 is a diagram showing the cooling process from the vicinity of .degree.

Claims (1)

【特許請求の範囲】[Claims]  Inを真空ベーキングした後、該Inを収納したボー
トの上下方向に温度差をつけ、一定の冷却速度で約25
0℃まで冷却し、さらにこの温度より冷却してボートの
下部からボートの上部へとInを固化させ、In中に含
まれる不純物をInの表面近傍に偏析させ、次いで偏析
した不純物を化学エッチングによって除去することを特
徴とする高純度Inの製造方法。
After vacuum baking the In, a temperature difference is created in the vertical direction of the boat containing the In, and the temperature is kept at a constant cooling rate for about 25 minutes.
The In is cooled to 0°C and further cooled from this temperature to solidify the In from the bottom of the boat to the top of the boat, and the impurities contained in the In are segregated near the surface of the In. Then, the segregated impurities are removed by chemical etching. A method for producing high-purity In, the method comprising removing In.
JP13104390A 1990-05-21 1990-05-21 Method for producing high purity In Expired - Lifetime JP2835143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13104390A JP2835143B2 (en) 1990-05-21 1990-05-21 Method for producing high purity In

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13104390A JP2835143B2 (en) 1990-05-21 1990-05-21 Method for producing high purity In

Publications (2)

Publication Number Publication Date
JPH0426728A true JPH0426728A (en) 1992-01-29
JP2835143B2 JP2835143B2 (en) 1998-12-14

Family

ID=15048685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13104390A Expired - Lifetime JP2835143B2 (en) 1990-05-21 1990-05-21 Method for producing high purity In

Country Status (1)

Country Link
JP (1) JP2835143B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005179778A (en) * 2003-11-28 2005-07-07 Mitsubishi Materials Corp High purity metal indium, and its production method and use
KR20160027085A (en) 2013-09-27 2016-03-09 제이엑스 킨조쿠 가부시키가이샤 HIGHLY PURE In AND MANUFACTURING METHOD THEREFOR
JP2016044318A (en) * 2014-08-20 2016-04-04 Jx日鉱日石金属株式会社 High-purity indium, and production method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005179778A (en) * 2003-11-28 2005-07-07 Mitsubishi Materials Corp High purity metal indium, and its production method and use
JP4544414B2 (en) * 2003-11-28 2010-09-15 三菱マテリアル株式会社 High purity metallic indium and its production method and application
KR20160027085A (en) 2013-09-27 2016-03-09 제이엑스 킨조쿠 가부시키가이샤 HIGHLY PURE In AND MANUFACTURING METHOD THEREFOR
JP2016044318A (en) * 2014-08-20 2016-04-04 Jx日鉱日石金属株式会社 High-purity indium, and production method thereof

Also Published As

Publication number Publication date
JP2835143B2 (en) 1998-12-14

Similar Documents

Publication Publication Date Title
US5403406A (en) Silicon wafers having controlled precipitation distribution
JP3725620B2 (en) Method and apparatus for producing high purity copper single crystal
JPH0426728A (en) Manufacture of high purity in
JP4436363B2 (en) Single crystal growth method and fiber molded body
JPH0367994B2 (en)
WO2011162012A1 (en) Method for producing raw material for silicon solar cell
JP3132956B2 (en) Method for producing oxide single crystal
JPH0798715B2 (en) Method for producing silicon single crystal
JPH039173B2 (en)
JPS5950086B2 (en) Semiconductor jig
JP7361061B2 (en) silicon wafer
JPS6344720B2 (en)
JP2833851B2 (en) Method for producing silicon single crystal
JPH05102167A (en) Heat treatment of silicon
JPH0776160B2 (en) Heat treatment method for compound semiconductor single crystal
JPH10130039A (en) Treatment of quartz boat and device therefor
JPH0218375A (en) Device for pulling up semiconductor single crystal
JP2002020196A (en) Quartz crucible and method of improving the same
JPH06305876A (en) Treatment of inner surface of silica boat
JP2749016B2 (en) Method for cleaning container for producing single crystal and method for producing single crystal
JPH01301598A (en) Uniformizing method of characteristic property of compound semiconductor single crystal
JPH05319990A (en) Production of granular silicon raw material
JPH04209791A (en) Apparatus for pulling up silicon single crystal
JPS62158189A (en) Production of single crystal of semiconductor and its device
JPS6212692A (en) Method for growing single crystal semiconductor