JP2005179778A - High purity metal indium, and its production method and use - Google Patents

High purity metal indium, and its production method and use Download PDF

Info

Publication number
JP2005179778A
JP2005179778A JP2004341794A JP2004341794A JP2005179778A JP 2005179778 A JP2005179778 A JP 2005179778A JP 2004341794 A JP2004341794 A JP 2004341794A JP 2004341794 A JP2004341794 A JP 2004341794A JP 2005179778 A JP2005179778 A JP 2005179778A
Authority
JP
Japan
Prior art keywords
indium
electrolysis
ppm
electrolytic
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004341794A
Other languages
Japanese (ja)
Other versions
JP4544414B2 (en
Inventor
Kenji Orito
賢治 織戸
Kazusuke Sato
佐藤一祐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2004341794A priority Critical patent/JP4544414B2/en
Publication of JP2005179778A publication Critical patent/JP2005179778A/en
Application granted granted Critical
Publication of JP4544414B2 publication Critical patent/JP4544414B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To produce high purity metal indium on a standard of purity 6N by electrolytic treatment without performing distillation. <P>SOLUTION: In electrolytic refining for metal indium, through electrolysis where first electrolysis and second electrolysis using electrolytic indium obtained by the first electrolysis are performed, and the total of the current densities in the first electrolysis and second electrolysis is controlled to the range of 100 to 500 A/m<SP>2</SP>, high purity metal indium in which each content of tin and cadmium is controlled to ≤0.05 ppm, and each content of lead and antimony is controlled to ≤0.01 ppm, is produced. Preferably, the electrolytic indium is melted, and, to the melted indium, as flux, sodium hydroxide or a mixture of sodium hydroxide and sodium nitrate is added, and an inert gas is blown therein. Thus, the content of chlorine can be reduced to ≤0.03 ppm, and the content of sulfur to ≤0.01 ppm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電解精製によって得られる純度6N水準の金属インジウムと、この高純度インジウムを製造する電解精製法に関する。より詳しくは、一定の電流密度範囲内で電解精製を繰り返すことによって、蒸留精製を行わずに、純度6N水準の高純度金属インジウムを製造する方法とこの製造方法によって得た高純度金属インジウムに関する。 The present invention relates to a 6N level metallic indium obtained by electrolytic purification and an electrolytic purification method for producing this high purity indium. More specifically, the present invention relates to a method for producing high-purity metallic indium having a purity level of 6N without performing distillation purification by repeating electrolytic purification within a certain current density range, and a high-purity metallic indium obtained by this production method.

従来、高純度の金属インジウムは主に蒸留精製法によって製造されている。例えば、特許文献1(特開2002−212647号)には、純度99.99%のインジウムを真空中で1250℃に加熱して蒸発させ、これを凝集させ、不純物が混入しないように回収して純度6Nの金属インジウムを製造する方法が開示されている。また、特許文献2(特開平04−026728号)には、インジウムを高温下で真空ベーキングして酸化物や揮発し易い不純物を除去した後に、揮発し難い不純物をゾーンメルト法で偏析させその部分をエッチングにより取り除くことによって高純度の金属インジウムを製造する方法が記載されている。さらに、特許文献3(特開平01−156437号)には、金属インジウムを塩素ガスと反応させて蒸留し、この蒸留塩化インジウムを蒸留水中で不均化反応を起こさせて金属インジウムと三塩化インジウムとし、金属インジウムを分離回収して水素中または真空中で溶融して高純度の金属インジウムを製造する方法が記載されている。 Conventionally, high-purity metal indium is mainly produced by a distillation purification method. For example, in Patent Document 1 (Japanese Patent Laid-Open No. 2002-212647), indium having a purity of 99.99% is heated to 1250 ° C. in a vacuum to evaporate, and this is aggregated and recovered so as not to be mixed with impurities. A method for producing 6N pure metal indium is disclosed. Further, in Patent Document 2 (Japanese Patent Laid-Open No. 04-026728), indium is vacuum-baked at a high temperature to remove oxides and volatile impurities, and then the volatile impurities are segregated by a zone melt method. A method for producing high-purity metal indium by etching is removed. Further, in Patent Document 3 (Japanese Patent Application Laid-Open No. 01-156437), metal indium is reacted with chlorine gas and distilled, and this indium chloride is subjected to a disproportionation reaction in distilled water to cause indium metal and indium trichloride. And indium metal is separated and recovered and melted in hydrogen or vacuum to produce high-purity metal indium.

一方、電解精製によって金属インジウムを回収する方法としては、特許文献4(特開平07−145432号)に、酸化インジウム−酸化錫(ITO)を高温下で還元して金属インジウムとし、更にこれを電解精製する方法が記載されている。さらに、特許文献5(特開2001−207282号)には、電解液を活性炭処理することによって液中の錫イオンを除去し、インジウムの回収効率を高める方法が記載されている。
特開2002−212647号公報 特開平04−026728号公報 特開平01−156437号公報 特開平07−145432号公報 特開2001−207282号公報
On the other hand, as a method for recovering metallic indium by electrolytic purification, Patent Document 4 (Japanese Patent Laid-Open No. 07-145432) discloses that indium oxide-tin oxide (ITO) is reduced at a high temperature to form metallic indium, which is further electrolyzed. A method of purification is described. Furthermore, Patent Document 5 (Japanese Patent Application Laid-Open No. 2001-207282) describes a method of removing the tin ions in the liquid by treating the electrolytic solution with activated carbon to increase the indium recovery efficiency.
JP 2002-212647 A Japanese Patent Laid-Open No. 04-026728 Japanese Patent Laid-Open No. 01-156437 Japanese Patent Application Laid-Open No. 07-145432 JP 2001-207282 A

蒸留精製法による従来の製造方法は蒸留処理に手間がかかり、さらに蒸留後に凝縮工程を必要とし、製造工程が煩雑である。一方、従来の電解精製によって得た金属インジウムの純度は蒸留精製法よりも低く、例えば特許文献4では電解によって得た金属インジウムの純度を6N以上に高めるには、電解後に蒸留処理やゾーンメルト処理を必要とすることが記載されている。 The conventional production method based on the distillation purification method takes time for the distillation treatment, and further requires a condensation step after the distillation, and the production step is complicated. On the other hand, the purity of metallic indium obtained by conventional electrolytic purification is lower than that of the distillation purification method. For example, in Patent Document 4, in order to increase the purity of metallic indium obtained by electrolysis to 6 N or more, distillation treatment or zone melt treatment is performed after electrolysis. It is described that it is necessary.

本発明は、純度6N水準の高純度金属インジウムの製造において、従来の製造方法における上記問題を解決したものであり、一定の電流密度範囲内で電解精製を繰り返すことによって、蒸留精製を行わずに、純度6N水準の高純度金属インジウムを製造する方法とこの製造方法によって得た高純度金属インジウムを提供するものである。 The present invention solves the above-mentioned problems in the conventional production method in the production of high purity metallic indium having a purity level of 6N, and repeats electrolytic purification within a certain current density range without performing distillation purification. The present invention provides a method for producing high purity metallic indium having a purity level of 6N and the high purity metallic indium obtained by this production method.

本発明は、以下の構成からなる高純度金属インジウムの製造方法と、その高純度金属インジウム、および用途に関する。
(1)金属インジウムの電解精製において、第一電解と、この第一電解によって得た電解インジウムを用いた第二電解を行い、第一電解と第二電解との電流密度の合計を100〜500A/m2の範囲に制御した電解精製によって、錫およびカドミウムの含有量がおのおの0.05ppm以下、鉛およびアンチモンの含有量がおのおの0.01ppm以下の高純度金属インジウムを製造することを特徴とする高純度金属インジウムの製造方法。
(2)第一電解と第二電解の電流密度の合計が上記範囲内であって、第二電解の電流密度が第一電解の電流密度よりも低い上記(1)の製造方法。
(3)第二電解によって得た電解インジウムを溶融し、この溶融インジウムに不活性ガスを吹き込んで残留揮発分を除去する上記(1)または(2)の製造方法。
(4)第二電解によって得た電解インジウムを溶融し、この溶融インジウムにフラックスとして水酸化ナトリウム、または水酸化ナトリウムと硝酸ナトリウムの混合物を添加して不活性ガスを吹き込むことによって塩素量を0.03ppm以下、イオウ量を0.01ppm以下に低減する上記(3)の製造方法。
(5)上記(1)または(2)の電解精製によって得た金属インジウムであって、錫およびカドミウムの含有量がおのおの0.05ppm以下、鉛およびアンチモンの含有量がおのおの0.01ppm以下である高純度電解金属インジウム。
(6)上記(4)の電解精製および溶融処理によって得た金属インジウムであって、錫およびカドミウムの含有量がおのおの0.05ppm以下、鉛およびアンチモンの含有量がおのおの0.01ppm以下、塩素量0.03ppm以下、イオウ量0.01ppm以下である高純度電解金属インジウム。
(7)上記(5)または上記(6)の高純度電解金属インジウムを用い、これに必要量の高純度リンを添加してインジウム・リン溶融体とし、これを単結晶引上げして得られるインジウム・リン化合物半導体。
The present invention relates to a method for producing high-purity metal indium having the following configuration, the high-purity metal indium, and applications.
(1) In electrolytic refining of metal indium, the first electrolysis and the second electrolysis using the electrolytic indium obtained by the first electrolysis are performed, and the total current density of the first electrolysis and the second electrolysis is 100 to 500A. high-purity metallic indium having a tin and cadmium content of 0.05 ppm or less and a lead and antimony content of 0.01 ppm or less, respectively, by electrolytic refining controlled to a range of / m 2. A method for producing high purity metallic indium.
(2) The method according to (1), wherein the total current density of the first electrolysis and the second electrolysis is within the above range, and the current density of the second electrolysis is lower than the current density of the first electrolysis.
(3) The production method of (1) or (2) above, wherein electrolytic indium obtained by the second electrolysis is melted, and an inert gas is blown into the molten indium to remove residual volatile components.
(4) Melting the electrolytic indium obtained by the second electrolysis, adding sodium hydroxide or a mixture of sodium hydroxide and sodium nitrate as a flux to the molten indium, and blowing an inert gas to reduce the chlorine content to 0. The production method of (3) above, wherein the sulfur content is reduced to 03 ppm or less and the sulfur content to 0.01 ppm or less.
(5) Indium metal obtained by electrolytic purification as described in (1) or (2) above, tin and cadmium contents are each 0.05 ppm or less, and lead and antimony contents are each 0.01 ppm or less. High purity electrolytic metal indium.
(6) Indium metal obtained by electrolytic refining and melting treatment of (4) above, tin and cadmium contents are each 0.05 ppm or less, lead and antimony contents are each 0.01 ppm or less, chlorine content High purity electrolytic metal indium having 0.03 ppm or less and sulfur content of 0.01 ppm or less.
(7) Using the high-purity electrolytic metal indium of (5) or (6) above, adding a necessary amount of high-purity phosphorus to obtain an indium-phosphorus melt, and indium obtained by pulling the single crystal・ Phosphorus compound semiconductors.

本発明の製造方法は、金属インジウムの電解精製を一定の電流密度範囲内で繰返すので、金属インジウムに含まれる錫や鉛などの不純物を効果的に除去することができる。なお、金属インジウムの電解精製を繰返す場合でも、上記範囲を越える高電流密度や低すぎる電流密度によって行うと不純物の錫や鉛を十分に除去するのが難しい。また、電解精製によって得た電解インジウムを溶融して不活性ガスを吹き込むことによって塩素やイオウなどの残留揮発成分の残量を更に低減することができる。このような電解精製処理および溶融処理によって、蒸留処理を必要とせずに、純度6N水準(純度6Nまたは6N以上)の高純度金属インジウムを得ることができる。 In the production method of the present invention, electrolytic refining of metallic indium is repeated within a certain current density range, so that impurities such as tin and lead contained in metallic indium can be effectively removed. Even when electrolytic refining of metal indium is repeated, it is difficult to sufficiently remove impurities such as tin and lead when the current density is too high or too low. Moreover, the residual amount of residual volatile components such as chlorine and sulfur can be further reduced by melting electrolytic indium obtained by electrolytic purification and blowing inert gas. By such electrolytic purification treatment and melting treatment, high-purity metallic indium having a purity level of 6N (purity of 6N or 6N or more) can be obtained without requiring a distillation treatment.

〔発明の具体的な説明〕
本発明の製造方法は、金属インジウムの電解精製において、第一電解と、この第一電解によって得た電解インジウムを用いた第二電解を行い、第一電解と第二電解との電流密度の合計を100〜500A/m2の範囲に制御した電解精製によって、錫およびカドミウムの含有量がおのおの0.05ppm以下、鉛およびアンチモンの含有量がおのおの0.01ppm以下の高純度金属インジウムを製造することを特徴とする高純度金属インジウムの製造方法である。
[Detailed Description of the Invention]
The production method of the present invention performs the first electrolysis and the second electrolysis using the electrolytic indium obtained by the first electrolysis in the electrolytic refining of metal indium, and the sum of the current densities of the first electrolysis and the second electrolysis Of high-purity metallic indium having a tin and cadmium content of 0.05 ppm or less and a lead and antimony content of 0.01 ppm or less by electrolytic refining in a range of 100 to 500 A / m 2 , respectively. Is a method for producing high-purity metallic indium.

最初の第一電解に用いる金属インジウムは純度99.99程度(純度4N水準と云うことがある)が適当である。最初の金属インジウムの純度が低すぎると第一電解および第二電解の負担が大きくなるので好ましくない。この金属インジウムの由来は制限されない。例えば、酸化インジウム−酸化錫(ITO)スクラップから回収した金属インジウムなどを用いることができる。ITOスクラップを酸溶解し、硫化水素を通じて硫化物沈澱を生成させ、これを中和して水酸化インジウムを回収し、焙焼して金属インジウムを得ることができる。また、ITOスクラップを高温下(750〜1200℃)で還元することによって金属インジウムを得ることができる。本発明の製造方法はこれらの金属インジウムを用いることができる。 The indium metal used for the first first electrolysis is suitably about 99.99 purity (sometimes referred to as 4N purity level). If the purity of the first metal indium is too low, the burden of the first electrolysis and the second electrolysis is increased, which is not preferable. The origin of the metal indium is not limited. For example, metal indium recovered from indium oxide-tin oxide (ITO) scrap can be used. The ITO scrap can be acid-dissolved to produce a sulfide precipitate through hydrogen sulfide, which can be neutralized to recover indium hydroxide and roasted to obtain metal indium. Further, indium metal can be obtained by reducing the ITO scrap at a high temperature (750 to 1200 ° C.). These metal indiums can be used in the production method of the present invention.

電流密度を除いて、第一電解と第二電解の電解条件は通常の条件でよい。具体的には、例えば、電解液は塩酸酸性溶液を用いることができるが、硫酸酸性溶液でもよい。また、金属インジウム板をアノードに用い、ステンレス板をカソードに用いて電解を行えばよい。電解液中のインジウムイオンの濃度は20〜80g/Lの範囲が適当であり、電解液に塩化ナトリウムおよび水酸化ナトリウムを適量添加して塩化ナトリウム濃度50〜150g/L、および電解液のpHを1.0〜2.5の範囲に調整すると良い。水酸化ナトリウムを添加して電解液中のインジウム濃度に適したpHに調整する。また、塩化ナトリウムを添加することによって電解液の液抵抗を下げることができる。さらに、カソードに電着する金属インジウム表面の平滑性を高めるためにゼラチン等を適量添加すると良い。 Except for the current density, the electrolysis conditions of the first electrolysis and the second electrolysis may be normal conditions. Specifically, for example, an acidic solution of hydrochloric acid can be used as the electrolytic solution, but an acidic solution of sulfuric acid may be used. Further, electrolysis may be performed using a metal indium plate as an anode and a stainless steel plate as a cathode. The concentration of indium ions in the electrolytic solution is suitably in the range of 20 to 80 g / L. Sodium chloride and sodium hydroxide are added in appropriate amounts to the electrolytic solution to adjust the sodium chloride concentration to 50 to 150 g / L, and the pH of the electrolytic solution. It is good to adjust to the range of 1.0-2.5. Sodium hydroxide is added to adjust to a pH suitable for the indium concentration in the electrolyte. Moreover, the liquid resistance of electrolyte solution can be lowered | hung by adding sodium chloride. Furthermore, an appropriate amount of gelatin or the like may be added to improve the smoothness of the surface of the metal indium electrodeposited on the cathode.

電流密度は最初の第一電解と次の第二電解との電流密度の合計が100〜500A/m2になるように制御する。上記電流密度の範囲内でも電解が1回の場合には不純物金属の除去が不十分になる。さらに電解を繰り返す場合にも、合計の電流密度がこの範囲を外れると不純物金属の残量を低減するのが難い。なお、第一電解と第二電解の電流密度の合計が上記範囲内であれば、第一電解の電流密度と第二電解の電流密度の何れか高くても良く、また両方の電流密度が同じでも良いが、第二電解の電流密度が第一電解の電流密度よりも低いほうが好ましい。第一電解によって濃度が低下した不純物に対して、第一電解よりも低い電流密度で第二電解を行うことによって、不純物の除去が進みやすくなる。 The current density is controlled so that the sum of the current densities of the first first electrolysis and the next second electrolysis is 100 to 500 A / m 2 . Even within the range of the current density, if the electrolysis is performed once, the removal of the impurity metal becomes insufficient. Further, when the electrolysis is repeated, it is difficult to reduce the remaining amount of the impurity metal if the total current density is out of this range. If the sum of the current densities of the first electrolysis and the second electrolysis is within the above range, either the current density of the first electrolysis or the current density of the second electrolysis may be higher, or both current densities are the same. However, it is preferable that the current density of the second electrolysis is lower than the current density of the first electrolysis. By performing the second electrolysis at a current density lower than that of the first electrolysis with respect to the impurities whose concentration has been reduced by the first electrolysis, the removal of the impurities can easily proceed.

最初の第一電解においてカソードに析出した電解インジウムを回収して溶融し、板状の鋳造して、これを次の第二電解のアノードに用いる。このような電流密を調整した電解精製の繰り返しによって、錫や鉛、カドミウムなどの不純物金属の含有量を大幅に低減することができる。具体的には、例えば、金属インジウムに含まれる不純物金属の錫およびカドミウムの含有量をおのおの0.05ppm以下に低減し、鉛およびアンチモンの含有量をおのおの0.01ppm以下に低減することができる。 The electrolytic indium deposited on the cathode in the first first electrolysis is recovered and melted, cast into a plate shape, and used as the anode for the next second electrolysis. The content of impurity metals such as tin, lead, and cadmium can be greatly reduced by repeating the electrolytic purification with the current density adjusted. Specifically, for example, the content of impurity metals tin and cadmium contained in metallic indium can be reduced to 0.05 ppm or less, and the content of lead and antimony can be reduced to 0.01 ppm or less.

第二電解によって得た電解インジウムを溶融し、この溶融インジウムに不活性ガスを吹き込んで塩素およびイオウなどの残留揮発分を除去する。この溶融処理の際に、溶融インジウムにフラックスとして水酸化ナトリウム、または水酸化ナトリウムと硝酸ナトリウムの混合物を添加して不活性ガスを吹き込むことによって、残留揮発分の除去効果を高めることができる。具体的には、例えば、電解液から混入する塩素の量を0.03ppm以下に低減し、イオウ量を0.01ppm以下に低減することができる。 The electrolytic indium obtained by the second electrolysis is melted, and an inert gas is blown into the molten indium to remove residual volatile components such as chlorine and sulfur. In this melting treatment, the removal effect of residual volatile matter can be enhanced by adding sodium hydroxide or a mixture of sodium hydroxide and sodium nitrate as a flux to molten indium and blowing an inert gas. Specifically, for example, the amount of chlorine mixed from the electrolytic solution can be reduced to 0.03 ppm or less, and the amount of sulfur can be reduced to 0.01 ppm or less.

本発明の製造方法によれば、一定の電流密度範囲内で金属インジウムの電解を繰り返すことによって、金属インジウムに含まれる錫や鉛などの不純物を大幅に低減することができる。また、電解精製によって得た電解インジウムを溶融して不活性ガスを吹き込むことによって塩素やイオウなどの残留揮発成分の残量を更に低減することができる。このような電解精製処理および溶融処理によって、蒸留処理を必要とせずに、純度6N水準の高純度金属インジウムを得ることができる。具体的には、錫およびカドミウムの含有量がおのおの0.05ppm以下であって、鉛およびアンチモンの含有量が各々0.01ppm以下、さらに塩素量0.03ppm以下、イオウ量0.01ppm以下の高純度金属インジウムを得ることができる。 According to the manufacturing method of the present invention, impurities such as tin and lead contained in metal indium can be greatly reduced by repeating electrolysis of metal indium within a certain current density range. Moreover, the residual amount of residual volatile components such as chlorine and sulfur can be further reduced by melting electrolytic indium obtained by electrolytic purification and blowing inert gas. By such electrolytic purification treatment and melting treatment, high purity metallic indium having a purity level of 6N can be obtained without requiring a distillation treatment. Specifically, the content of tin and cadmium is 0.05 ppm or less, the content of lead and antimony is 0.01 ppm or less, the chlorine content is 0.03 ppm or less, and the sulfur content is 0.01 ppm or less. Pure metal indium can be obtained.

本発明の製造方法によって得た高純度電解金属インジウムは、これに必要量の高純度リンを添加してインジウム・リン溶融体とし、これから単結晶引上げによってインジウム・リン化合物半導体を得ることができる。 The high-purity electrolytic metal indium obtained by the production method of the present invention can be obtained by adding a necessary amount of high-purity phosphorus to form an indium-phosphorus melt, and from this, an indium-phosphorus compound semiconductor can be obtained by pulling a single crystal.

以下、本発明を実施例によって具体的に示す。
〔実施例1〕
純度99.99%の金属インジウム2.2kgを電気炉で溶解し、アノード型(約700g)に鋳造し、アノードを計3枚作製した。一方、塩酸に金属インジウム、NaClおよびNaOHを添加してインジウム濃度50g/L、NaCl濃度100g/L、pH2.0の電解液を調製した。この電解液を用い、第一回目の電解は、上記アノード3枚を並列に設置して、その間にステンレス製カソードを2枚挿入した電極を形成した。電解液にゼラチンを1.0g/L添加し、表1に示す電流密度で110時間電解を行つた。電解終了後カソードに析出した金属インジウムを回収して洗浄乾燥し、電気炉で再度溶解し、アノード型に鋳造し約800gのアノード1枚を作製した。第二回目の電解はステンレス製カソード2枚の間に上記アノードをセットし、第一電解と同じ液組成の電解液を用い、電解液にゼラチンを1.0g/L添加し、表1に示す電流密度で110時間電解を行つた。電解終了後、カソードに析出した電解インジウムを回収し、洗浄乾燥して、再々度、電気炉で溶解した。溶湯温度300℃において、石英管(内径8mm)を用い、100ml/minの流速でArガスを溶融インジウムに30分間吹き込んだ後に鋳造し、純度6Nの精製金属インジウム約400gを得た。この金属インジウムの不純物量を表1に示した。
Hereinafter, the present invention will be specifically described by way of examples.
[Example 1]
2.2 kg of metal indium with a purity of 99.99% was melted in an electric furnace and cast into an anode type (about 700 g) to produce a total of three anodes. On the other hand, metallic indium, NaCl and NaOH were added to hydrochloric acid to prepare an electrolytic solution having an indium concentration of 50 g / L, an NaCl concentration of 100 g / L, and a pH of 2.0. Using this electrolytic solution, in the first electrolysis, the above three anodes were placed in parallel, and an electrode having two stainless steel cathodes inserted between them was formed. Gelatin was added to the electrolytic solution at 1.0 g / L, and electrolysis was performed at the current density shown in Table 1 for 110 hours. After completion of the electrolysis, the metal indium deposited on the cathode was collected, washed and dried, re-dissolved in an electric furnace, and cast into an anode mold to produce about 800 g of an anode. In the second electrolysis, the anode is set between two stainless steel cathodes, and an electrolytic solution having the same liquid composition as that of the first electrolysis is used, and 1.0 g / L of gelatin is added to the electrolytic solution. Electrolysis was performed at a current density for 110 hours. After completion of electrolysis, the electrolytic indium deposited on the cathode was collected, washed and dried, and again dissolved in an electric furnace. At a molten metal temperature of 300 ° C., a quartz tube (inner diameter: 8 mm) was used, and Ar gas was blown into molten indium for 30 minutes at a flow rate of 100 ml / min, followed by casting to obtain about 400 g of purified metallic indium having a purity of 6N. The amount of impurities of this metal indium is shown in Table 1.

〔実施例2〜5〕
電流密度を表1に示す値に制御し、第二電解によって得た電解インジウムを溶解するときにフラックスとしてNaOH(20g)、NaNO3(20g)を適宜添加した後にArガスの吹込みを行う以外は実施例1と同様にして金属インジウムの電解精製を行い、溶融処理して純度6Nの精製金属インジウム約400gを得た。各々の製造方法によって得た金属インジウムの不純物量を表1に示した。
[Examples 2 to 5]
The current density is controlled to the values shown in Table 1 and, when the electrolytic indium obtained by the second electrolysis is dissolved, NaOH (20 g) and NaNO 3 (20 g) are appropriately added as a flux, and then Ar gas is injected. Was subjected to electrolytic refining of metal indium in the same manner as in Example 1, and melted to obtain about 400 g of purified metal indium having a purity of 6N. Table 1 shows the amount of impurities of metallic indium obtained by each manufacturing method.

〔比較例1〜4〕
電流密度を表1に示す値に制御し、比較例1および2は第二電解を行わず、また比較例3および4は第一電解と第二電解の合計電流密度を発明の範囲よりも高くして金属インジウムの電解精製を行い、溶融処理した。各々の製造方法によって得た金属インジウムの不純物量を表1に示した。
[Comparative Examples 1-4]
The current density was controlled to the value shown in Table 1, Comparative Examples 1 and 2 did not perform the second electrolysis, and Comparative Examples 3 and 4 had the total current density of the first electrolysis and the second electrolysis higher than the scope of the invention. Then, indium metal was subjected to electrolytic purification and melted. Table 1 shows the amount of impurities of metallic indium obtained by each manufacturing method.

表1に示すように、本発明の製造方法によって得た金属インジウム(実施例:試料No.1〜No.5)は何れも、錫およびカドミウムの含有量がおのおの0.05ppm以下であって、鉛およびアンチモンの含有量がおのおの0.01ppm以下である。さらにガス吹き込みとフラックス処理を行ったもの(試料No.3〜No.5)は、塩素量が0.01ppmであり、イオウ量が0.01ppm以下である。一方、電解処理が1回の比較例1、2(試料No.6,7)では不純物金属が十分に除去されず、金属インジウムに含まれる不純物金属濃度が高い。同様に、第一電解と第二電解の合計電流密度が本発明の範囲より高い比較例3,4(試料No.8〜No.9)は電流密度が高くても金属インジウムに含まれる不純物金属濃度が高い。 As shown in Table 1, each of the metal indium obtained by the production method of the present invention (Example: Sample No. 1 to No. 5) has a content of tin and cadmium of 0.05 ppm or less, The lead and antimony contents are each 0.01 ppm or less. Further, those subjected to gas blowing and flux treatment (samples No. 3 to No. 5) have a chlorine content of 0.01 ppm and a sulfur content of 0.01 ppm or less. On the other hand, in Comparative Examples 1 and 2 (sample Nos. 6 and 7) in which the electrolytic treatment is performed once, the impurity metal is not sufficiently removed, and the concentration of impurity metal contained in the metal indium is high. Similarly, in Comparative Examples 3 and 4 (samples No. 8 to No. 9) in which the total current density of the first electrolysis and the second electrolysis is higher than the range of the present invention, the impurity metal contained in the metal indium even if the current density is high. Concentration is high.

Figure 2005179778
Figure 2005179778

Claims (7)

金属インジウムの電解精製において、第一電解と、この第一電解によって得た電解インジウムを用いた第二電解を行い、第一電解と第二電解との電流密度の合計を100〜500A/m2の範囲に制御した電解精製によって、錫およびカドミウムの含有量がおのおの0.05ppm以下、鉛およびアンチモンの含有量がおのおの0.01ppm以下の高純度金属インジウムを製造することを特徴とする高純度金属インジウムの製造方法。
In the electrolytic purification of metallic indium, the first electrolysis and the second electrolysis using the electrolytic indium obtained by the first electrolysis are performed, and the total current density of the first electrolysis and the second electrolysis is 100 to 500 A / m 2. High-purity metal in which high-purity metal indium having a tin and cadmium content of 0.05 ppm or less and a lead and antimony content of 0.01 ppm or less is produced by electrolytic refining controlled to the above range A method for producing indium.
第一電解と第二電解の電流密度の合計が上記範囲内であって、第二電解の電流密度が第一電解の電流密度よりも低い請求項1の製造方法。
The manufacturing method according to claim 1, wherein the total current density of the first electrolysis and the second electrolysis is within the above range, and the current density of the second electrolysis is lower than the current density of the first electrolysis.
第二電解によって得た電解インジウムを溶融し、この溶融インジウムに不活性ガスを吹き込んで残留揮発分を除去する請求項1または2の製造方法。
The manufacturing method according to claim 1 or 2, wherein the electrolytic indium obtained by the second electrolysis is melted, and an inert gas is blown into the molten indium to remove residual volatile components.
第二電解によって得た電解インジウムを溶融し、この溶融インジウムにフラックスとして水酸化ナトリウム、または水酸化ナトリウムと硝酸ナトリウムの混合物を添加して不活性ガスを吹き込むことによって塩素量を0.03ppm以下、イオウ量を0.01ppm以下に低減する請求項3の製造方法。
Melting the electrolytic indium obtained by the second electrolysis, adding sodium hydroxide or a mixture of sodium hydroxide and sodium nitrate as a flux to the molten indium, and blowing an inert gas, the chlorine content is 0.03 ppm or less, 4. The method according to claim 3, wherein the sulfur amount is reduced to 0.01 ppm or less.
請求項1または2の電解精製によって得た金属インジウムであって、錫およびカドミウムの含有量がおのおの0.05ppm以下、鉛およびアンチモンの含有量がおのおの0.01ppm以下である高純度電解金属インジウム。
A high-purity electrolytic metal indium obtained by electrolytic purification according to claim 1 or 2, wherein the content of tin and cadmium is 0.05 ppm or less and the content of lead and antimony is 0.01 ppm or less, respectively.
請求項4の電解精製および溶融処理によって得た金属インジウムであって、錫およびカドミウムの含有量がおのおの0.05ppm以下、鉛およびアンチモンの含有量がおのおの0.01ppm以下、塩素量0.03ppm以下、イオウ量0.01ppm以下である高純度電解金属インジウム。
5. Indium metal obtained by electrolytic refining and melting treatment according to claim 4, wherein tin and cadmium contents are each 0.05 ppm or less, lead and antimony contents are each 0.01 ppm or less, and chlorine content is 0.03 ppm or less. High-purity electrolytic metal indium having a sulfur content of 0.01 ppm or less.
請求項5または請求項6の高純度電解金属インジウムを用い、これに必要量の高純度リンを添加してインジウム・リン溶融体とし、これを単結晶引上げして得られるインジウム・リン化合物半導体。


An indium-phosphorus compound semiconductor obtained by using the high-purity electrolytic metal indium according to claim 5 or 6 and adding a necessary amount of high-purity phosphor to form an indium-phosphorus melt and pulling the single crystal.


JP2004341794A 2003-11-28 2004-11-26 High purity metallic indium and its production method and application Active JP4544414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004341794A JP4544414B2 (en) 2003-11-28 2004-11-26 High purity metallic indium and its production method and application

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003398369 2003-11-28
JP2004341794A JP4544414B2 (en) 2003-11-28 2004-11-26 High purity metallic indium and its production method and application

Publications (2)

Publication Number Publication Date
JP2005179778A true JP2005179778A (en) 2005-07-07
JP4544414B2 JP4544414B2 (en) 2010-09-15

Family

ID=34797341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004341794A Active JP4544414B2 (en) 2003-11-28 2004-11-26 High purity metallic indium and its production method and application

Country Status (1)

Country Link
JP (1) JP4544414B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092143A (en) * 2005-09-29 2007-04-12 Dowa Holdings Co Ltd High purity indium metal and its production method
JP2008088494A (en) * 2006-09-29 2008-04-17 Dowa Holdings Co Ltd Method for treating indium-containing solution
JP2012052215A (en) * 2010-08-31 2012-03-15 Jx Nippon Mining & Metals Corp Method for collecting indium
WO2015045754A1 (en) * 2013-09-27 2015-04-02 Jx日鉱日石金属株式会社 HIGHLY PURE In AND MANUFACTURING METHOD THEREFOR
WO2015064201A1 (en) * 2013-11-01 2015-05-07 Jx日鉱日石金属株式会社 HIGHLY PURE In AND PRODUCTION METHOD THEREFOR
JP2016044318A (en) * 2014-08-20 2016-04-04 Jx日鉱日石金属株式会社 High-purity indium, and production method thereof
JP2019203199A (en) * 2019-07-23 2019-11-28 Jx金属株式会社 Electrolytic method of bismuth

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6431988A (en) * 1987-07-29 1989-02-02 Sumitomo Metal Mining Co Method for refining indium
JPH01191753A (en) * 1988-01-28 1989-08-01 Mitsubishi Metal Corp Treatment of indium-containing scrap
JPH0426728A (en) * 1990-05-21 1992-01-29 Furukawa Electric Co Ltd:The Manufacture of high purity in
JP2002047592A (en) * 2000-05-22 2002-02-15 Nikko Materials Co Ltd Method for increasing purity of metal
JP2002285371A (en) * 2001-03-26 2002-10-03 Nikko Materials Co Ltd Method for metal purification

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6431988A (en) * 1987-07-29 1989-02-02 Sumitomo Metal Mining Co Method for refining indium
JPH01191753A (en) * 1988-01-28 1989-08-01 Mitsubishi Metal Corp Treatment of indium-containing scrap
JPH0426728A (en) * 1990-05-21 1992-01-29 Furukawa Electric Co Ltd:The Manufacture of high purity in
JP2002047592A (en) * 2000-05-22 2002-02-15 Nikko Materials Co Ltd Method for increasing purity of metal
JP2002285371A (en) * 2001-03-26 2002-10-03 Nikko Materials Co Ltd Method for metal purification

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092143A (en) * 2005-09-29 2007-04-12 Dowa Holdings Co Ltd High purity indium metal and its production method
JP2008088494A (en) * 2006-09-29 2008-04-17 Dowa Holdings Co Ltd Method for treating indium-containing solution
JP2012052215A (en) * 2010-08-31 2012-03-15 Jx Nippon Mining & Metals Corp Method for collecting indium
JP5996797B2 (en) * 2013-09-27 2016-09-21 Jx金属株式会社 High purity In and its manufacturing method
WO2015045754A1 (en) * 2013-09-27 2015-04-02 Jx日鉱日石金属株式会社 HIGHLY PURE In AND MANUFACTURING METHOD THEREFOR
TWI634216B (en) * 2013-09-27 2018-09-01 Jx日鑛日石金屬股份有限公司 High purity In and its manufacturing method
KR20160027085A (en) 2013-09-27 2016-03-09 제이엑스 킨조쿠 가부시키가이샤 HIGHLY PURE In AND MANUFACTURING METHOD THEREFOR
KR101696161B1 (en) 2013-09-27 2017-01-13 제이엑스금속주식회사 HIGHLY PURE In AND MANUFACTURING METHOD THEREFOR
JP2016216828A (en) * 2013-11-01 2016-12-22 Jx金属株式会社 HIGH PURITY In AND MANUFACTURING METHOD THEREFOR
JP5996771B2 (en) * 2013-11-01 2016-09-21 Jx金属株式会社 High purity In and its manufacturing method
WO2015064201A1 (en) * 2013-11-01 2015-05-07 Jx日鉱日石金属株式会社 HIGHLY PURE In AND PRODUCTION METHOD THEREFOR
JP2016044318A (en) * 2014-08-20 2016-04-04 Jx日鉱日石金属株式会社 High-purity indium, and production method thereof
JP2019203199A (en) * 2019-07-23 2019-11-28 Jx金属株式会社 Electrolytic method of bismuth

Also Published As

Publication number Publication date
JP4544414B2 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
JP5043027B2 (en) Recovery method of valuable metals from ITO scrap
JP3876253B2 (en) Manufacturing method of high purity nickel
JP4647695B2 (en) Method for recovering valuable metals from ITO scrap
JP5043029B2 (en) Recovery method of valuable metals from ITO scrap
JP4745400B2 (en) Recovery method of valuable metals from ITO scrap
JP5043028B2 (en) Recovery method of valuable metals from ITO scrap
JP3203587B2 (en) How to recover indium
KR20080074092A (en) Thermal and electrochemical process for metal production
JP5755572B2 (en) Method for producing bismuth anode for electrolytic purification
KR100614891B1 (en) Method for recovering high purity Indium
JP4544414B2 (en) High purity metallic indium and its production method and application
JP5944666B2 (en) Manufacturing method of high purity manganese
JP3151182B2 (en) Copper electrolyte cleaning method
JP2018016822A (en) Production method of high purity indium
JPS6327434B2 (en)
JPH04191340A (en) Production of high purity tin
JP5471735B2 (en) Method for removing tin and thallium and method for purifying indium
JP2016180184A (en) High purity manganese
KR100614890B1 (en) Method for manufacturing the high purity Indium and the apparatus therefor
JP4087196B2 (en) Method for recovering ruthenium and / or iridium
JP5993097B2 (en) Method for producing high purity cobalt chloride
JP2013227621A (en) Method of electrorefining bismuth
JP2012172194A (en) Electrolytic apparatus and electrowinning method using the same
KR101752727B1 (en) Method for recovering tin from tin residue
JP2006283047A (en) Production method of crude nickel sulfate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4544414

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100622