JP2002285371A - Method for metal purification - Google Patents

Method for metal purification

Info

Publication number
JP2002285371A
JP2002285371A JP2001087627A JP2001087627A JP2002285371A JP 2002285371 A JP2002285371 A JP 2002285371A JP 2001087627 A JP2001087627 A JP 2001087627A JP 2001087627 A JP2001087627 A JP 2001087627A JP 2002285371 A JP2002285371 A JP 2002285371A
Authority
JP
Japan
Prior art keywords
metal
electrolytic
purity
primary
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001087627A
Other languages
Japanese (ja)
Other versions
JP3825983B2 (en
Inventor
Yuichiro Shindo
裕一朗 新藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nikko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Materials Co Ltd filed Critical Nikko Materials Co Ltd
Priority to JP2001087627A priority Critical patent/JP3825983B2/en
Publication of JP2002285371A publication Critical patent/JP2002285371A/en
Application granted granted Critical
Publication of JP3825983B2 publication Critical patent/JP3825983B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrolytic refining-electrolytic winning method by which a high purity metal can efficiently be produced by effectively utilizing an electrode and a electrolytic solution for electrolytic refining produced in an electrolytic refining stage. SOLUTION: This method for metal purification consists of: a stage where a coarse metallic raw material is electrolyzed by primary electrolysis to obtain a primarily electrodeposited metal; a stage where the primarily electrodeposited metal obtained by the primary electrolysis stage is subjected to electrochemical dissolution or acid dissolution with the primarily electrodeposited metal as an anode to obtain an electrolytic solution having high purity; and a stage where a high purity metal is obtained from the electrolytic solution having high purity by electrolytic winning.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、電解工程におい
て製造する電極及び電解液を有効に利用する一次電解及
び必要に応じて数次電解を行い、かつ電解採取(電解精
製)により金属を高純度化する方法に関する。また、本
発明は有機物に起因する酸素含有量を低減させた金属の
高純度化に有用である高純度化方法に関する。さらに本
発明は、上記方法において高純度化する金属中のNa、
Kなどのアルカリ金属元素の含有量が総計で1ppm以
下、U、Thなどの放射性元素の含有量が総計で1pp
b以下、主成分として含有される場合を除きFe、N
i、Cr、Cuなどの遷移金属又は重金属元素が総計で
10ppm以下、残部が高純度する金属及びその他の不
可避的不純物である金属の高純度化方法に関する。な
お、明細書中で使用する%、ppm、ppbは全てwt
%、wtppm、wtppbを示す。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a primary electrolysis that effectively utilizes an electrode and an electrolytic solution produced in an electrolysis process and, if necessary, a few electrolysis, and a method of purifying a metal by electrowinning (electrolytic refining). About how to convert. Further, the present invention relates to a high-purification method useful for high-purification of a metal in which the oxygen content caused by an organic substance is reduced. Further, the present invention provides a method for purifying Na in a metal which is highly purified in the above method,
The total content of alkali metal elements such as K is 1 ppm or less, and the total content of radioactive elements such as U and Th is 1 pp.
b or less, Fe, N
The present invention relates to a method for purifying a metal whose transition metal or heavy metal element such as i, Cr, Cu or the like is 10 ppm or less in total, and whose balance is highly pure and other inevitable impurities. The percentages, ppm and ppb used in the specification are all wt.
%, Wtppm and wtppb.

【0002】[0002]

【従来の技術】従来、4N又は5N(それぞれ99.9
9wt%、99.999wt%を意味する。)レベルの
高純度金属を製造する場合に、多くは電解精製法を用い
て製造されているが、目的とする金属を電解する場合、
近似する元素が不純物となって残存するケースが多い。
例えば遷移金属である鉄のような場合には、同じく遷移
金属であるニッケル、コバルト等の多数の元素が不純物
として含まれる。これらの3Nレベルの粗金属を精製す
る場合、高純度の液を製造して電解を実施している。
2. Description of the Related Art Conventionally, 4N or 5N (99.9 each)
9 wt% and 99.999 wt%. ) When producing high-purity metals at the level, most are produced using electrolytic refining, but when electrolyzing the target metal,
In many cases, similar elements remain as impurities.
For example, in the case of iron which is a transition metal, many elements such as nickel and cobalt which are also transition metals are included as impurities. When purifying these 3N-level crude metals, a high-purity liquid is produced and electrolysis is performed.

【0003】このような電解において、純度の高い金属
を得るためには、不純物の少ない電解液を製造できるイ
オン交換あるいは溶媒抽出の方法を用いることが必要で
ある。このように、電解液の製造は、電解の前に予め精
製することが普通であり、このための作業はコスト高に
なる欠点を有していた。
In such electrolysis, in order to obtain a metal having a high purity, it is necessary to use a method of ion exchange or solvent extraction capable of producing an electrolyte solution having a small amount of impurities. As described above, in the production of the electrolytic solution, it is usual that the electrolytic solution is purified before the electrolysis, and the operation for this has a disadvantage of increasing the cost.

【0004】[0004]

【発明が解決しようとする課題】本発明は、電解工程に
おいて製造する電極及び電解液を有効に利用し、効率的
に高純度金属を製造することができる電解及び電解採取
法を提供することを目的としたものである。さらに本発
明は、有機物に起因する酸素含有量を低減させることが
でき、またNa、Kなどのアルカリ金属元素、U、Th
などの放射性元素、主成分として含有される以外のF
e、Ni、Cr、Cuなどの遷移金属又は重金属元素を
効果的に除去できる金属の高純度化方法提供することを
課題とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an electrolysis and electrowinning method capable of efficiently producing a high-purity metal by effectively utilizing an electrode and an electrolyte produced in an electrolysis step. It is intended. Further, the present invention can reduce the oxygen content due to organic substances, and can also contain alkali metal elements such as Na and K, U and Th.
Radioactive elements such as F
An object of the present invention is to provide a method for purifying a metal that can effectively remove transition metals or heavy metal elements such as e, Ni, Cr, and Cu.

【0005】[0005]

【課題を解決するための手段】上記問題点を解決するた
め、一次電解工程により得た一次電析金属をアノードと
して電解した電解液を使用し、これを電解採取するか又
は複数回の電解工程によってさらに高純度化しかつ電解
採取することにより、電解液の調合を簡素化しより純度
の高い金属を得ることができ、さらに電解液を浄液する
ことにより有機物に起因する酸素含有量を低減すること
ができるとの知見を得た。この知見に基づき、本発明は 1. 一次電解精製により粗金属原料を電解して一次電
析金属を得る工程、前記一次電解工程により得た一次電
析金属をアノードとして電気化学的溶解又は酸溶解し、
純度の高い電解液を得る工程、さらに該純度の高い電解
液から電解採取により高純度金属を得る工程からなるこ
とを特徴とする金属の高純度化方法。 2. 一次電解精製により粗金属原料を電解して一次電
析金属を得る工程、前記一次電解工程により得た一次電
析金属をアノードとして電気化学的溶解又は酸溶解し純
度の高い二次電解液を得る工程、該二次電解用の純度の
高い電解液を用いかつ前記一次電析金属をアノードとし
て二次電解精製する工程、該電解工程により得た電析金
属をアノードとして電気化学的溶解又は酸溶解し電解液
を得る工程、さらに該純度の高い電解液から一次又は数
次の電解採取により高純度金属を得る工程からなること
を特徴とする金属の高純度化方法。 3. 前電解工程により得た前電析金属をアノードとし
て電気化学的溶解又は酸溶解し純度の高い次電解液を得
る工程、該次電解用の純度の高い電解液を用いかつ前電
析金属をアノードとして電解する工程からなる数次電解
を行うことを特徴とする上記2記載の金属の高純度化方
法。 4. 電解採取後に電解精製を行うことを特徴とする上
記1〜3のそれぞれに記載の金属の高純度化方法。 5. 電解精製と電解採取を交互に又は間欠的に繰り返
すことを特徴とする上記3又は4記載の金属の高純度化
方法。 6. 電解液を活性炭槽に液循環させて高純度金属水溶
液中の有機物を除去し、該有機物に起因する酸素含有量
と30ppm以下とすることを特徴とする上記1〜5の
それぞれに記載の金属の高純度化方法。 7. 粗金属が3N以下の純度、一次電析金属が酸素等
のガス成分を除き3N〜4Nの純度、さらに電解精製及
び電解採取によって得られる高純度金属が4N〜5N以
上の純度をもつことを特徴とする上記1〜6のそれぞれ
に記載の金属の高純度化方法。 8. 粗金属が4N以下の純度、一次電析金属が酸素等
のガス成分を除き4N〜5Nの純度、さらに電解精製及
び電解採取によって得られる高純度金属が5N〜6N以
上の純度をもつことを特徴とする上記1〜6のそれぞれ
に記載の金属の高純度化方法。 9. 高純度金属中のNa、Kなどのアルカリ金属元素
の含有量が総計で1ppm以下、U、Thなどの放射性
元素の含有量が総計で1ppb以下、Fe、Ni、C
r、Cuなどの遷移金属又は重金属元素が総計で10p
pm以下、残部が高純度化する金属及びその他の不可避
的不純物であることを特徴とする上記1〜8のそれぞれ
に記載の金属の高純度化方法。 10. C含有量が30ppm以下及びS含有量が1p
pm以下であることを特徴とする上記1〜9のそれぞれ
に記載の金属の高純度化方法。 11. 電解採取又は電解精製によって得られた高純度
金属をさらに真空溶解又はAr雰囲気若しくはAr−H
雰囲気で溶解することを特徴とする上記1〜10のそ
れぞれに記載の金属の高純度化方法。を提供するもので
ある。
In order to solve the above-mentioned problems, an electrolytic solution obtained by electrolyzing a primary electrodeposited metal obtained in a primary electrolytic process as an anode is used, and the electrolytic solution is subjected to electrolytic sampling or a plurality of electrolytic processes. By further purifying and electrolytically collecting, it is possible to simplify the preparation of the electrolytic solution and obtain a metal of higher purity, and further reduce the oxygen content due to organic matter by purifying the electrolytic solution. I learned that I can do it. Based on this finding, the present invention provides: A step of obtaining a primary electrodeposited metal by electrolyzing a crude metal raw material by primary electrolytic refining, electrochemically dissolving or acid dissolving the primary electrodeposited metal obtained by the primary electrolytic step as an anode,
1. A method for purifying a metal, comprising: a step of obtaining a high-purity electrolytic solution; and a step of obtaining a high-purity metal by electrolytic sampling from the high-purity electrolytic solution. 2. A step of obtaining a primary electrodeposited metal by electrolyzing a crude metal material by primary electrolytic refining, and obtaining a highly pure secondary electrolytic solution by electrochemically dissolving or dissolving an acid using the primary electrodeposited metal obtained by the primary electrolytic step as an anode. A step of using a highly pure electrolytic solution for secondary electrolysis and a step of secondary electrorefining using the primary electrodeposited metal as an anode, and electrochemically dissolving or acid dissolving the electrodeposited metal obtained in the electrolytic step as an anode. A method for obtaining a high-purity metal by subjecting the high-purity electrolytic solution to primary or several-order electrowinning from the high-purity electrolytic solution. 3. A step of electrochemically dissolving or dissolving the acid by using the pre-deposited metal obtained in the pre-electrolysis step as an anode to obtain a highly pure secondary electrolyte, using the highly pure electrolytic solution for the secondary electrolysis, and converting the pre-deposited metal to an anode; 3. The method for purifying a metal according to the above item 2, wherein a plurality of order electrolysis steps are performed. 4. 4. The method for purifying a metal according to any one of the above 1 to 3, wherein the metal is subjected to electrolytic refining after electrowinning. 5. 5. The method for purifying a metal according to the above 3 or 4, wherein the electrolytic refining and the electrowinning are repeated alternately or intermittently. 6. The electrolytic solution is circulated through an activated carbon tank to remove organic substances in the high-purity metal aqueous solution, and the oxygen content due to the organic substances and 30 ppm or less of the metal according to any of the above 1 to 5, High purification method. 7. The crude metal has a purity of 3N or less, the primary electrodeposited metal has a purity of 3N to 4N excluding gas components such as oxygen, and the high purity metal obtained by electrolytic refining and electrowinning has a purity of 4N to 5N or more. 7. The method for purifying a metal according to any one of the above items 1 to 6. 8. The crude metal has a purity of 4N or less, the primary electrodeposited metal has a purity of 4N to 5N excluding gas components such as oxygen, and the high-purity metal obtained by electrolytic refining and electrowinning has a purity of 5N to 6N or more. 7. The method for purifying a metal according to any one of the above items 1 to 6. 9. The content of alkali metal elements such as Na and K in the high-purity metal is 1 ppm or less in total, and the content of radioactive elements such as U and Th is 1 ppb or less in total, Fe, Ni, C
Transition metals or heavy metal elements such as r and Cu are 10p in total
pm or less, the balance being a metal to be purified and other unavoidable impurities, the method for purifying a metal according to any one of the above items 1 to 8, 10. C content is 30ppm or less and S content is 1p
pm or less, wherein the metal is highly purified. 11. The high-purity metal obtained by electrolytic sampling or electrolytic refining is further melted in a vacuum or Ar atmosphere or Ar-H
11. The method for purifying a metal according to any one of the above items 1 to 10, wherein the metal is dissolved in two atmospheres. Is provided.

【0006】[0006]

【発明の実施の形態】本発明を図1に基づいて説明す
る。図1に一次電解工程と電解用電解液製造工程及び電
解採取工程の概要を示す。図1に示すように、一次電解
槽1においてアノードバスケット2に金属スクラップ等
の粗原料(3N以下又は4N以下の)金属3を入れ、粗
金属原料を電解してカソード4に一次電析金属を析出さ
せる。符号5は一次電解用アノードである。この場合、
最初の電解液は、事前に調合する。この一次電解精製に
よる一次電析金属の純度は3N〜4N又は4N〜5Nの
ものが得られる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described with reference to FIG. FIG. 1 shows an outline of the primary electrolysis step, the electrolytic solution production step for electrolysis, and the electrowinning step. As shown in FIG. 1, in a primary electrolytic cell 1, a raw material (3N or less or 4N or less) metal 3 such as metal scrap is put in an anode basket 2 and the crude metal material is electrolyzed to deposit a primary electrodeposited metal on a cathode 4. Precipitate. Reference numeral 5 denotes an anode for primary electrolysis. in this case,
The first electrolyte is prepared beforehand. The purity of the primary electrodeposited metal obtained by the primary electrolytic refining is 3N to 4N or 4N to 5N.

【0007】次に、この電析金属アノードとして電気化
学的溶解又は酸溶解し、純度の高い電解採取用の電解液
8を得るのであるが、図1ではアノード10として電気
化学的に溶解させる場合を示す。この電解液製造槽9に
おけるカソード11はアノード10からの金属が析出し
ないように、陰イオン交換膜を用いて遮断する。酸溶解
する場合には、一次電析金属を酸溶解し、pH調整を行
って純度の高い電解液を得る。このようにして製造した
電解液8を図1の電解精製槽12のカソードボックス1
3内に入れ、電解採取により高純度の電析金属を得る。
アノード14には不溶性アノードを用いる。カソードボ
ックス13は陰イオン交換膜7で仕切る。この電解採取
により、比較的容易に5Nレベル又は6Nレベルの純度
のものが得られる。符号16はカソードボックス13内
のカソードを示す。
Next, as the electrodeposited metal anode, an electrolytic solution 8 for electrowinning is obtained by electrochemical dissolution or acid dissolution, and in FIG. Is shown. The cathode 11 in the electrolytic solution production tank 9 is shut off using an anion exchange membrane so that the metal from the anode 10 does not precipitate. When dissolving in acid, the primary electrodeposited metal is dissolved in acid and the pH is adjusted to obtain a highly pure electrolytic solution. The electrolytic solution 8 thus produced is supplied to the cathode box 1 of the electrolytic refining tank 12 shown in FIG.
3 to obtain a highly pure electrodeposited metal by electrowinning.
An insoluble anode is used as the anode 14. The cathode box 13 is partitioned by the anion exchange membrane 7. By this electrowinning, a product having a purity of 5N level or 6N level can be obtained relatively easily. Reference numeral 16 denotes a cathode in the cathode box 13.

【0008】さらに純度を高める、あるいは上記一次電
解精製及び電解採取で目的とする純度が得られない場
合、二次以上の電解を行うことができる。例えば、二次
電解でカソードに析出した二次電析金属を三次電解槽
(図示せず)のアノードとし、また二次電析金属をアノ
ードとして得た三次電解液を製造し、この三次電解液を
三次電解槽の電解液として三次電解槽のカソードに三次
電析金属を析出させる。このようにして、逐次電析金属
の純度と向上させていく。上記においては、最終を電解
精製としたが、電解採取後に電解精製を行うこともでき
るし、また電解精製と電解採取を交互に又は間欠的に繰
り返すこともできる。電解精製と電解採取は上記の工程
で述べたものと同様である。
[0008] If the desired purity cannot be obtained by further increasing the purity or by the above-mentioned primary electrolytic refining and electrowinning, secondary or higher electrolysis can be performed. For example, a tertiary electrolytic solution obtained by using a secondary electrodeposited metal deposited on a cathode by secondary electrolysis as an anode of a tertiary electrolytic cell (not shown) and using the secondary electrodeposited metal as an anode is produced. Is used as an electrolytic solution in the tertiary electrolytic cell to deposit a tertiary electrodeposited metal on the cathode of the tertiary electrolytic cell. In this way, the purity of the deposited metal is successively improved. In the above description, the final step is electrolytic refining. However, electrolytic refining can be performed after electrolytic retrieving, or electrolytic refining and electrolytic retrieving can be repeated alternately or intermittently. Electrolytic refining and electrowinning are similar to those described in the above steps.

【0009】各電解工程に使用する電解液を活性炭槽に
液循環させて高純度金属水溶液中の有機物を除去し、該
有機物に起因する酸素含有量と30ppm以下とするこ
とができる。さらに、電解採取又は電解によって得られ
た高純度金属をさらに真空溶解又はAr雰囲気若しくは
Ar−H雰囲気で溶解し、純度を高めることができ
る。これによって、高純度金属中のNa、Kなどのアル
カリ金属元素の含有量が総計で1ppm以下、U、Th
などの放射性元素の含有量が総計で1ppb以下、F
e、Ni、Cr、Cuなどの遷移金属又は重金属元素が
総計で10ppm以下、残部が高純度化する金属及びそ
の他の不可避的不純物とすることができる。さらにま
た、C含有量が30ppm以下及びS含有量が1ppm
以下とすることができる。本発明の電解及び電解採取
は、鉄、カドミウム、亜鉛、銅、マンガン、コバルト、
ニッケル、クロム、銀、金、鉛、錫、インジウム、ビス
マス、ガリウム等の金属元素の電解採取に適用できる。
[0009] The electrolytic solution used in each electrolysis step is circulated through an activated carbon tank to remove organic substances in the high-purity metal aqueous solution, so that the oxygen content due to the organic substances can be reduced to 30 ppm or less. Furthermore, high-purity metal obtained by electrolytic extraction or electrolyte further dissolved in a vacuum melting or Ar atmosphere or Ar-H 2 atmosphere, it is possible to increase the purity. As a result, the total content of alkali metal elements such as Na and K in the high-purity metal is 1 ppm or less in total, U, Th
The total content of radioactive elements such as 1 ppb or less, F
Transition metals or heavy metal elements such as e, Ni, Cr, and Cu can be 10 ppm or less in total, and the remainder can be highly purified metals and other unavoidable impurities. Furthermore, C content is 30 ppm or less and S content is 1 ppm.
It can be: Electrolysis and electrowinning of the present invention, iron, cadmium, zinc, copper, manganese, cobalt,
The present invention is applicable to electrowinning of metal elements such as nickel, chromium, silver, gold, lead, tin, indium, bismuth, and gallium.

【0010】[0010]

【実施例及び比較例】次に、本発明の実施例について説
明する。なお、本実施例はあくまで一例であり、この例
に制限されるものではない。すなわち、本発明の技術思
想の範囲内で、実施例以外の態様あるいは変形を全て包
含するものである。
Examples and Comparative Examples Next, examples of the present invention will be described. This embodiment is merely an example, and the present invention is not limited to this example. That is, all aspects or modifications other than the examples are included within the scope of the technical idea of the present invention.

【0011】(実施例1)図1に示すような電解槽を用
い、3Nレベルの塊状の鉄をアノードとし、カソードに
4Nレベルの鉄を使用して電解精製を行った。浴温は5
0°C、塩酸系電解液でpH2、鉄濃度50g/L、電
流密度1A/dmで電解を実施した。これにより、電
流効率90%で純度4Nレベルの電解鉄(カソードに析
出)を得た。次に、この電解鉄を塩酸と過酸化水素水の
混合溶液で溶解し、アンモニアでpHを調整して電解採
取用の電解液とし、電解採取を実施した。電解条件は、
一次電解の電解条件と同一の条件である、浴温50°
C、塩酸系電解液でpH2、鉄濃度50g/Lで電解を
実施した。この結果、電流効率92%で純度5Nレベル
の電解鉄を得た。一次電解鉄及び電解採取により得た電
解鉄の分析結果を表1に示す。一次電解鉄では、Al:
3ppm、As:5ppm、Co:5ppm、Ni:6
ppm、Cu:1ppm、S:2ppmが不純物として
存在するが、電解採取によりCo:2ppm、Ni:1
ppmが存在することを除き、他は全て1ppm未満と
なった。また、使用済みの電解液は、一次電解液に戻し
て使用することができた。以上に示すように、高純度
(5N)の鉄が1回の電解精製とそれに続く電解採取に
より製造することができ、また電解液の製造が容易であ
るという優れた結果が得られた。
Example 1 Using an electrolytic cell as shown in FIG. 1, electrolytic refining was performed using 3N-level massive iron as an anode and 4N-level iron as a cathode. Bath temperature is 5
Electrolysis was performed at 0 ° C., a hydrochloric acid-based electrolyte at pH 2, an iron concentration of 50 g / L, and a current density of 1 A / dm 2 . Thus, electrolytic iron (precipitated on the cathode) having a current efficiency of 90% and a purity of 4N was obtained. Next, this electrolytic iron was dissolved in a mixed solution of hydrochloric acid and hydrogen peroxide solution, and the pH was adjusted with ammonia to obtain an electrolytic solution for electrolytic collection, and electrolytic collection was performed. The electrolysis conditions are
A bath temperature of 50 ° which is the same as the electrolysis condition of the primary electrolysis.
C, electrolysis was performed with a hydrochloric acid-based electrolyte at a pH of 2 and an iron concentration of 50 g / L. As a result, electrolytic iron having a current efficiency of 92% and a purity of 5N was obtained. Table 1 shows the results of analysis of primary electrolytic iron and electrolytic iron obtained by electrolytic sampling. In the primary electrolytic iron, Al:
3 ppm, As: 5 ppm, Co: 5 ppm, Ni: 6
ppm, Cu: 1 ppm and S: 2 ppm are present as impurities.
Except for the presence of ppm, all others were below 1 ppm. Also, the used electrolytic solution could be returned to the primary electrolytic solution and used. As described above, excellent results were obtained in that high-purity (5N) iron could be produced by one electrolytic refining and subsequent electrolytic extraction, and that the production of the electrolytic solution was easy.

【0012】[0012]

【表1】 [Table 1]

【0013】(実施例2)上記実施例1と同様に図1に
示すような電解槽を用い、3Nレベルの塊状のカドミウ
ムをアノードとし、カソードにチタンを使用して電解を
行った。浴温は30°C、硫酸80g/L、カドミウム
濃度70g/L、電流密度1A/dmで電解を実施し
た。これにより、電流効率85%で純度4Nレベルの電
解カドミウム(カソードに析出)を得た。次に、この電
解カドミウムを硫酸浴で電解し電解採取用の電解液とし
た。この電解液を用いて電解採取を実施した。電解条件
は、一次電解の電解条件と同一の条件である、浴温30
°C、硫酸80g/L、カドミウム濃度70g/L、電
流密度1A/dmで電解を実施した。この結果、電流
効率92%で純度5Nレベルの電解カドミウムを得た。
一次電解カドミウム及び電解採取後のカドミウムの分析
結果を表2に示す。一次電解カドミウムでは、Ag:1
ppm、Pb:7ppm、Cu:1ppm、Fe:30
ppmが不純物として存在するが、電解採取後ではP
b:1ppm、Fe:4ppmが不純物存在することを
除き、他は全て1ppm未満となった。また、実施例1
と同様に、使用済みの電解液は、一次電解液に戻して使
用することができた。以上に示すように、高純度(5
N)のカドミウムが1回の電解精製とそれに続く電解採
取により製造することができ、また電解液の製造が容易
であるという優れた結果が得られた。
Example 2 In the same manner as in Example 1 described above, electrolysis was carried out using an electrolytic cell as shown in FIG. 1 and using cadmium in the form of 3N-level massive cadmium as an anode and titanium as a cathode. Electrolysis was performed at a bath temperature of 30 ° C., sulfuric acid of 80 g / L, cadmium concentration of 70 g / L, and current density of 1 A / dm 2 . As a result, electrolytic cadmium (deposited on the cathode) having a current efficiency of 85% and a purity of 4N was obtained. Next, this electrolytic cadmium was electrolyzed in a sulfuric acid bath to obtain an electrolytic solution for electrolytic collection. Electrolytic sampling was performed using this electrolytic solution. The electrolysis conditions are the same as the electrolysis conditions of the primary electrolysis.
The electrolysis was carried out at 80 ° C., sulfuric acid 80 g / L, cadmium concentration 70 g / L, and current density 1 A / dm 2 . As a result, electrolytic cadmium having a current efficiency of 92% and a purity of 5N was obtained.
Table 2 shows the analysis results of the primary electrolytic cadmium and the cadmium after the electrolytic collection. In the primary electrolytic cadmium, Ag: 1
ppm, Pb: 7 ppm, Cu: 1 ppm, Fe: 30
ppm is present as an impurity, but after electrowinning, P
Except for b: 1 ppm and Fe: 4 ppm, impurities were all less than 1 ppm. Example 1
Similarly to the above, the used electrolytic solution could be returned to the primary electrolytic solution and used. As described above, high purity (5
The excellent result that the cadmium of N) can be produced by one electrolytic refining and subsequent electrolytic extraction, and that the production of the electrolytic solution is easy was obtained.

【0014】[0014]

【表2】 [Table 2]

【0015】(実施例3)上記実施例1と同様に図1に
示すような電解槽を用い、3Nレベルの塊状のコバルト
をアノードとし、カソードに4Nレベルのコバルトを使
用して電解を行った。浴温は40°C、塩酸系電解液で
pH2、コバルト濃度100g/L、電流密度1A/d
、電解時間40hr実施した。これにより、電流効
率90%で電解コバルト(カソードに析出)約1kgを
得た。純度は4Nを達成した。次に、この電解コバルト
を塩酸で溶解し、アンモニアでpH2に調整し電解採取
用の電解液とした。この電解液を使用して電解採取を実
施した。電解条件は、一次電解の電解条件と同一の条件
である浴温40°C、塩酸系電解液でpH2、コバルト
濃度100g/Lで電解を実施した。この結果、電流効
率92%で純度5Nレベルの電解コバルトを得た。一次
電解コバルト及び電解採取後のコバルトの分析結果を表
3に示す。原料コバルトでは、Na:15ppm、K:
2ppm、Fe:8ppm、Ni:460ppm、C
u:1.5ppm、Al:2.5ppm、Cr:0.5
ppm、S:1ppm、U:0.3ppb、Th:0.
2ppbが不純物として存在するが、一次電解ではF
e:4ppm、Ni:35ppmが残存することを除
き、他は全て0.1ppm以下となった。そして、電解
採取ではFe:1.5ppm、Ni:4ppmが残存す
るだけとなり、他は全て0.1ppm未満となり不純物
が大きく減少した。使用済みの電解液は、一次電解液に
戻して使用することができた。以上に示すように、高純
度(5N)のコバルトが1回の電解精製とそれに続く電
解採取により製造することができた。
Example 3 In the same manner as in Example 1 described above, electrolysis was carried out using an electrolytic cell as shown in FIG. 1 using a 3N level bulk cobalt as an anode and a 4N level cobalt as a cathode. . Bath temperature is 40 ° C, pH is 2 with hydrochloric acid electrolyte, cobalt concentration is 100g / L, current density is 1A / d
m 2 , electrolysis time was 40 hours. As a result, about 1 kg of electrolytic cobalt (deposited on the cathode) was obtained with a current efficiency of 90%. Purity achieved 4N. Next, this electrolytic cobalt was dissolved with hydrochloric acid and adjusted to pH 2 with ammonia to obtain an electrolytic solution for electrolytic collection. Electrolytic sampling was performed using this electrolytic solution. The electrolysis conditions were the same as the electrolysis conditions for the primary electrolysis, that is, electrolysis was performed at a bath temperature of 40 ° C., a hydrochloric acid-based electrolyte at pH 2, and a cobalt concentration of 100 g / L. As a result, electrolytic cobalt having a current efficiency of 92% and a purity of 5N was obtained. Table 3 shows the results of the analysis of the primary electrolytic cobalt and the cobalt after the electrolytic extraction. In the raw material cobalt, Na: 15 ppm, K:
2 ppm, Fe: 8 ppm, Ni: 460 ppm, C
u: 1.5 ppm, Al: 2.5 ppm, Cr: 0.5
ppm, S: 1 ppm, U: 0.3 ppb, Th: 0.
2ppb exists as an impurity, but in the primary electrolysis, F
e: Except that 4 ppm and Ni: 35 ppm remained, the others were 0.1 ppm or less. In the electrowinning, only 1.5 ppm of Fe and 4 ppm of Ni remained, and the others were less than 0.1 ppm, and the impurities were greatly reduced. The used electrolyte could be returned to the primary electrolyte and used. As described above, high purity (5N) cobalt could be produced by one electrolytic refining and subsequent electrolytic extraction.

【0016】[0016]

【表3】 [Table 3]

【0017】(実施例4)上記実施例1と同様に図1に
示すような電解槽を用い、4Nレベルの塊状のニッケル
をアノードとし、カソードに4Nレベルのニッケルを使
用して電解を行った。浴温は40°C、硫酸系電解液で
pH2、ニッケル濃度50g/L、電流密度1A/dm
、電解時間40hr実施した。これにより、電流効率
90%で電解ニッケル(カソードに析出)約1kgを得
た。純度は5Nを達成した。次に、この電解ニッケルを
硫酸で溶解し、アンモニアでpH2に調整し電解採取用
の電解液とした。この電解液を用いて電解採取を実施し
た。電解条件は、一次電解の電解条件と同一の条件であ
る浴温40°C、硫酸系電解液でpH2、ニッケル濃度
50g/Lで電解を実施した。この結果、電流効率92
%で純度6Nレベルの電解ニッケルを得た。一次電解ニ
ッケル及び電解採取後のニッケルの分析結果を表4に示
す。原料ニッケルでは、Na:25ppm、K:1.2
ppm、Fe:10ppm、Co:1.0ppm、C
u:1.5ppm、Al:0.5ppm、Cr0.2p
pm、S:2ppm、U:0.3ppb、Th:0.2
ppbが不純物として存在するが、一次電解ではFe:
4ppm、Co:0.2ppmが残存することを除き、
他は全て0.1ppm以下となった。そして、電解採取
によりFe:0.5ppmが残存するだけとなり、他は
全て0.1ppm未満となり不純物が大きく減少した。
使用済みの電解液は、一次電解液に戻して使用すること
ができた。以上に示すように、高純度(6N)のニッケ
ルが1回の電解精製とそれに続く電解採取により製造す
ることができ、また電解液の製造が容易であるという優
れた結果が得られた。
(Example 4) In the same manner as in Example 1 described above, electrolysis was performed using an electrolytic cell as shown in FIG. 1 and using 4N level nickel as a cathode and 4N level nickel as a cathode. . Bath temperature is 40 ° C, pH is 2 with sulfuric acid electrolyte, nickel concentration is 50g / L, current density is 1A / dm
2. The electrolysis time was 40 hours. As a result, about 1 kg of electrolytic nickel (deposited on the cathode) was obtained with a current efficiency of 90%. Purity achieved 5N. Next, this electrolytic nickel was dissolved with sulfuric acid and adjusted to pH 2 with ammonia to obtain an electrolytic solution for electrolytic collection. Electrolytic sampling was performed using this electrolytic solution. The electrolysis conditions were the same as the electrolysis conditions of the primary electrolysis, that is, electrolysis was performed at a bath temperature of 40 ° C., a sulfuric acid-based electrolyte at pH 2, and a nickel concentration of 50 g / L. As a result, the current efficiency 92
% Of electrolytic nickel having a purity of 6N was obtained. Table 4 shows the results of the analysis of the primary electrolytic nickel and the nickel after electrowinning. In the raw material nickel, Na: 25 ppm, K: 1.2
ppm, Fe: 10 ppm, Co: 1.0 ppm, C
u: 1.5 ppm, Al: 0.5 ppm, Cr 0.2 p
pm, S: 2 ppm, U: 0.3 ppb, Th: 0.2
ppb exists as an impurity, but in the primary electrolysis, Fe:
4 ppm, except that Co: 0.2 ppm remains
All others were 0.1 ppm or less. Then, only 0.5 ppm of Fe remained by electrowinning, and all the others were less than 0.1 ppm, and the impurities were greatly reduced.
The used electrolyte could be returned to the primary electrolyte and used. As described above, high-purity (6N) nickel can be produced by one electrolytic refining and subsequent electrolytic extraction, and an excellent result that the production of the electrolytic solution is easy was obtained.

【0018】[0018]

【表4】 [Table 4]

【0019】(実施例5)実施例3に使用したものとは
異なる4Nレベルの原料コバルトを用いて、別途一次電
解精製及び電解採取を行い、その際に電解液を活性炭槽
に循環させて高純度金属水溶液中の有機物を除去した。
この場合の精製により得られた不純物元素の分析結果を
表5に示す。上記一次電解及び電解採取により、電解コ
バルトに含有する不純物は、1ppmを超えるものとし
てTi:0.6ppm、Fe:1.6ppm、Ni:
3.8ppmが残存するだけとなり、酸素等のガス成分
を除き、他は全て1ppm未満となり不純物が大きく減
少した。なお、酸素については同表には示していない
が、活性炭により著しく除去され、30ppm以下とな
った。以上に示すように、高純度(5N)のコバルト
が、1回の電解精製とそれに続く電解採取により製造す
ることができた。
Example 5 Primary electrolytic refining and electrowinning were separately performed using a 4N-level raw material cobalt different from that used in Example 3, and at this time, the electrolytic solution was circulated through an activated carbon tank to increase Organic substances in the pure metal aqueous solution were removed.
Table 5 shows the analysis results of the impurity elements obtained by the purification in this case. As a result of the primary electrolysis and the electrowinning, the impurities contained in the electrolytic cobalt exceeded 0.6 ppm, Ti: 0.6 ppm, Fe: 1.6 ppm, Ni:
Only 3.8 ppm remained, except for gas components such as oxygen. In addition, although oxygen is not shown in the table, it was significantly removed by activated carbon, and it became 30 ppm or less. As shown above, high purity (5N) cobalt could be produced by one electrolytic refining followed by electrolytic harvesting.

【0020】[0020]

【表5】 [Table 5]

【0021】(実施例6)実施例1とは、異なる3Nレ
ベルの塊状の鉄をアノードとし、カソードに4Nレベル
の鉄を使用して電解精製を行った。電解条件は実施例1
と同様である。これにより4Nレベルの電解鉄(カソー
ドに析出)を得た。次に、この電解鉄をアノードとして
電解精製を行い、5Nレベルの電解鉄を得た。そして、
この5Nレベルの電解鉄を酸で溶解し、ph調整して電
解液とし電解採取を実施した。この結果、純度5〜6N
レベルの電解鉄を得た。一次電解鉄、二次電解鉄及び電
解採取により得た電解鉄の分析結果を表6に示す。一次
電解鉄では、Al:4.5ppm、As:6ppm、C
o:9ppm、Ni:10ppm、Zn:3ppm、C
u:2ppm、S:3ppmが不純物として存在し、二
次電解鉄では、Al:1ppm、As:1.2ppm、
Co:3.5ppm、Ni:2.5ppm、Cu:0.
5ppm、S:1ppmまで低下し、電解採取後では、
全て1ppm未満となった。以上に示すように、高純度
(5〜6N)の鉄が2回の電解精製とそれに続く電解採
取により製造することができるという結果が得られた。
Example 6 Electrorefining was performed using a 3N-level massive iron different from Example 1 as an anode and 4N-level iron as a cathode. The electrolysis conditions were as in Example 1.
Is the same as Thereby, 4N level electrolytic iron (precipitated on the cathode) was obtained. Next, electrolytic refining was performed using this electrolytic iron as an anode to obtain 5N-level electrolytic iron. And
The 5N-level electrolytic iron was dissolved with an acid, and the pH was adjusted to obtain an electrolytic solution, and electrowinning was performed. As a result, the purity is 5-6N.
Level of electrolytic iron was obtained. Table 6 shows the analysis results of the primary electrolytic iron, the secondary electrolytic iron, and the electrolytic iron obtained by electrolytic sampling. In the primary electrolytic iron, Al: 4.5 ppm, As: 6 ppm, C
o: 9 ppm, Ni: 10 ppm, Zn: 3 ppm, C
u: 2 ppm, S: 3 ppm exist as impurities, and in the secondary electrolytic iron, Al: 1 ppm, As: 1.2 ppm,
Co: 3.5 ppm, Ni: 2.5 ppm, Cu: 0.
5 ppm, S: reduced to 1 ppm, and after electrowinning,
All were less than 1 ppm. As described above, the result was that high-purity (5 to 6N) iron could be produced by two electrolytic purifications and subsequent electrolytic extraction.

【0022】[0022]

【表6】 [Table 6]

【0023】[0023]

【発明の効果】以上に示すように、一次電析金属をアノ
ードとして電解することによって電解液を製造し、その
電解液を用いて電解採取することによって、5N〜6N
レベルの高純度の金属を得ることを可能とするととも
に、4N〜5Nレベルの電解液の製造コストを低減でき
るという優れた特徴を有する。また、必要に応じて電解
精製及び電解採取を繰り返して、純度をさらに向上させ
ることができるという著しい効果を有する。
As described above, the electrolytic solution is produced by electrolyzing the primary electrodeposited metal as an anode, and the electrolytic solution is used for electrowinning to obtain 5N to 6N.
It has an excellent feature that it is possible to obtain a metal having a high purity at a level, and it is possible to reduce the manufacturing cost of an electrolytic solution having a level of 4N to 5N. In addition, there is a remarkable effect that the purity can be further improved by repeating electrorefining and electrowinning as needed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】一次電解工程及び電解採取工程と電解採取用電
解液の製造工程の概要を示す図である。
FIG. 1 is a diagram showing an outline of a primary electrolysis process, an electrowinning process, and a manufacturing process of an electrolysis electrolysis solution.

【符号の説明】 1 一次電解槽 2 アノードバスケット 3 粗原料金属 4、11、16 カソード 5 一次電解用アノード 7 陰イオン交換膜 8 電解採取用の電解液 9 電解液製造槽 10 アノード 12 電解精製槽 13 カソードボックス 14 不溶性アノード[Description of Signs] 1 Primary electrolysis tank 2 Anode basket 3 Raw material metal 4, 11, 16 Cathode 5 Anode for primary electrolysis 7 Anion exchange membrane 8 Electrolyte for electrowinning 9 Electrolyte production tank 10 Anode 12 Electrolysis purification tank 13 Cathode box 14 Insoluble anode

【手続補正書】[Procedure amendment]

【提出日】平成13年4月11日(2001.4.1
1)
[Submission date] April 11, 2001 (2001.4.1
1)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0007】次に、この電析金属アノードとして電気化
学的溶解又は酸溶解し、純度の高い電解採取用の電解液
8を得るのであるが、図1ではアノード10として電気
化学的に溶解させる場合を示す。この電解液製造槽9に
おけるカソード11はアノード10からの金属が析出し
ないように、陰イオン交換膜を用いて遮断する。酸溶解
する場合には、一次電析金属を酸溶解し、pH調整を行
って純度の高い電解液を得る。このようにして製造した
電解液8を図1の電解槽12のカソードボックス13内
に入れ、電解採取により高純度の電析金属を得る。アノ
ード14には不溶性アノードを用いる。カソードボック
ス13は陰イオン交換膜7で仕切る。この電解採取によ
り、比較的容易に5Nレベル又は6Nレベルの純度のも
のが得られる。符号16はカソードボックス13内のカ
ソードを示す。
Next, as the electrodeposited metal anode, an electrolytic solution 8 for electrowinning is obtained by electrochemical dissolution or acid dissolution, and in FIG. Is shown. The cathode 11 in the electrolytic solution production tank 9 is shut off using an anion exchange membrane so that the metal from the anode 10 does not precipitate. When dissolving in acid, the primary electrodeposited metal is dissolved in acid and the pH is adjusted to obtain a highly pure electrolytic solution. The electrolytic solution 8 thus produced is put into the cathode box 13 of the electrolytic cell 12 in FIG. 1, and a high purity electrodeposited metal is obtained by electrolytic sampling. An insoluble anode is used as the anode 14. The cathode box 13 is partitioned by the anion exchange membrane 7. By this electrowinning, a product having a purity of 5N level or 6N level can be obtained relatively easily. Reference numeral 16 denotes a cathode in the cathode box 13.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0021[Correction target item name] 0021

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0021】(実施例6)実施例1とは、異なる3Nレ
ベルの塊状の鉄をアノードとし、カソードに4Nレベル
の鉄を使用して電解精製を行った。電解条件は実施例1
と同様である。これにより4Nレベルの電解鉄(カソー
ドに析出)を得た。次に、この電解鉄をアノードとして
電解精製を行い、5Nレベルの電解鉄を得た。そして、
この5Nレベルの電解鉄を酸で溶解し、pH調整して電
解液とし電解採取を実施した。この結果、純度5〜6N
レベルの電解鉄を得た。一次電解鉄、二次電解鉄及び電
解採取により得た電解鉄の分析結果を表6に示す。一次
電解鉄では、Al:4.5ppm、As:6ppm、C
o:9ppm、Ni:10ppm、Zn:3ppm、C
u:2ppm、S:3ppmが不純物として存在し、二
次電解鉄では、Al:1ppm、As:1.2ppm、
Co:3.5ppm、Ni:2.5ppm、Cu:0.
5ppm、S:1ppmまで低下し、電解採取後では、
全て1ppm未満となった。以上に示すように、高純度
(5〜6N)の鉄が2回の電解精製とそれに続く電解採
取により製造することができるという結果が得られた。
Example 6 Electrorefining was performed using a 3N-level massive iron different from Example 1 as an anode and 4N-level iron as a cathode. The electrolysis conditions were as in Example 1.
Is the same as Thereby, 4N level electrolytic iron (precipitated on the cathode) was obtained. Next, electrolytic refining was performed using this electrolytic iron as an anode to obtain 5N-level electrolytic iron. And
The 5N-level electrolytic iron was dissolved with an acid, and the pH was adjusted to obtain an electrolytic solution, and electrowinning was performed. As a result, the purity is 5-6N.
Level of electrolytic iron was obtained. Table 6 shows the analysis results of the primary electrolytic iron, the secondary electrolytic iron, and the electrolytic iron obtained by electrolytic sampling. In the primary electrolytic iron, Al: 4.5 ppm, As: 6 ppm, C
o: 9 ppm, Ni: 10 ppm, Zn: 3 ppm, C
u: 2 ppm, S: 3 ppm exist as impurities, and in the secondary electrolytic iron, Al: 1 ppm, As: 1.2 ppm,
Co: 3.5 ppm, Ni: 2.5 ppm, Cu: 0.
5 ppm, S: reduced to 1 ppm, and after electrowinning,
All were less than 1 ppm. As described above, the result was that high-purity (5 to 6N) iron could be produced by two electrolytic purifications and subsequent electrolytic extraction.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Correction target item name] Brief description of drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図面の簡単な説明】[Brief description of the drawings]

【図1】一次電解工程及び電解採取工程と電解採取用電
解液の製造工程の概要を示す図である。
FIG. 1 is a diagram showing an outline of a primary electrolysis process, an electrowinning process, and a manufacturing process of an electrolysis electrolysis solution.

【符号の説明】 1 一次電解槽 2 アノードバスケット 3 粗原料金属 4、11、16 カソード 5 一次電解用アノード 7 陰イオン交換膜 8 電解採取用の電解液 9 電解液製造槽 10 アノード 12 電解槽 13 カソードボックス 14 不溶性アノード[Description of Signs] 1 Primary electrolysis tank 2 Anode basket 3 Raw material metal 4, 11, 16 Cathode 5 Anode for primary electrolysis 7 Anion exchange membrane 8 Electrolyte for electrowinning 9 Electrolyte production tank 10 Anode 12 Electrolysis tank 13 Cathode box 14 Insoluble anode

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K001 AA01 AA04 AA05 AA06 AA07 AA08 AA09 AA10 AA11 AA15 AA16 AA19 AA20 AA21 AA30 BA23 EA02 EA03 4K058 AA12 BA17 BA18 BA25 BB03 BB04 DD22 EC07  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4K001 AA01 AA04 AA05 AA06 AA07 AA08 AA09 AA10 AA11 AA15 AA16 AA19 AA20 AA21 AA30 BA23 EA02 EA03 4K058 AA12 BA17 BA18 BA25 BB03 BB04 DD22 EC07

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 一次電解精製により粗金属原料を電解し
て一次電析金属を得る工程、前記一次電解工程により得
た一次電析金属をアノードとして電気化学的溶解又は酸
溶解し、純度の高い電解液を得る工程、さらに該純度の
高い電解液から電解採取により高純度金属を得る工程か
らなることを特徴とする金属の高純度化方法。
1. A step of obtaining a primary electrodeposited metal by electrolyzing a crude metal raw material by primary electrolytic refining, and electrochemically dissolving or acid dissolving the primary electrodeposited metal obtained in the primary electrolysis step as an anode to obtain high purity. A method for purifying a metal, comprising a step of obtaining an electrolytic solution and a step of obtaining a high-purity metal by electrolytic sampling from the high-purity electrolytic solution.
【請求項2】 一次電解精製により粗金属原料を電解し
て一次電析金属を得る工程、前記一次電解工程により得
た一次電析金属をアノードとして電気化学的溶解又は酸
溶解し純度の高い二次電解液を得る工程、該二次電解用
の純度の高い電解液を用いかつ前記一次電析金属をアノ
ードとして二次電解精製する工程、該電解工程により得
た電析金属をアノードとして電気化学的溶解又は酸溶解
し電解液を得る工程、さらに該純度の高い電解液から一
次又は数次の電解採取により高純度金属を得る工程から
なることを特徴とする金属の高純度化方法。
2. A step of obtaining a primary electrodeposited metal by electrolyzing a crude metal raw material by primary electrolytic refining, and electrochemically dissolving or acid dissolving the primary electrodeposited metal obtained by the primary electrodeposition step as an anode. A step of obtaining a secondary electrolytic solution, a step of using the high-purity electrolytic solution for the secondary electrolysis, and a step of performing secondary electrolytic purification using the primary electrodeposited metal as an anode, and using the electrodeposited metal obtained in the electrolytic step as an anode to perform electrochemical purification. 1. A method for purifying a metal, comprising: a step of obtaining an electrolytic solution by subjecting the solution to acid or acid dissolution; and a step of obtaining a high-purity metal by primary or several times of electrowinning from the high-purity electrolytic solution.
【請求項3】 前電解工程により得た前電析金属をアノ
ードとして電気化学的溶解又は酸溶解し純度の高い次電
解液を得る工程、該次電解用の純度の高い電解液を用い
かつ前電析金属をアノードとして電解する工程からなる
数次電解を行うことを特徴とする請求項2記載の金属の
高純度化方法。
3. A step of electrochemically dissolving or dissolving an acid using the pre-deposited metal obtained in the pre-electrolysis step as an anode to obtain a high purity secondary electrolyte, using a high purity electrolytic solution for the next electrolysis, and 3. The method for purifying a metal according to claim 2, wherein a number-order electrolysis is carried out, comprising a step of electrolyzing the electrodeposited metal as an anode.
【請求項4】 電解採取後に電解精製を行うことを特徴
とする請求項1〜3のそれぞれに記載の金属の高純度化
方法。
4. The method for purifying a metal according to claim 1, wherein electrolytic refining is performed after the electrowinning.
【請求項5】 電解精製と電解採取を交互に又は間欠的
に繰り返すことを特徴とする請求項3又は4記載の金属
の高純度化方法。
5. The method for purifying a metal according to claim 3, wherein the electrorefining and the electrowinning are repeated alternately or intermittently.
【請求項6】 電解液を活性炭槽に液循環させて高純度
金属水溶液中の有機物を除去し、該有機物に起因する酸
素含有量と30ppm以下とすることを特徴とする請求
項1〜5のそれぞれに記載の金属の高純度化方法。
6. The method according to claim 1, wherein the electrolyte is circulated through an activated carbon tank to remove organic substances in the high-purity metal aqueous solution, and to reduce the oxygen content due to the organic substances to 30 ppm or less. A method for purifying the metal described in each of them.
【請求項7】 粗金属が3N以下の純度、一次電析金属
が酸素等のガス成分を除き3N〜4Nの純度、さらに電
解精製及び電解採取によって得られる高純度金属が4N
〜5N以上の純度をもつことを特徴とする請求項1〜6
のそれぞれに記載の金属の高純度化方法。
7. The crude metal has a purity of 3N or less, the primary electrodeposited metal has a purity of 3N to 4N excluding gas components such as oxygen, and the high purity metal obtained by electrolytic refining and electrolytic sampling is 4N.
7. The composition according to claim 1, which has a purity of at least 5 N.
The method for purifying a metal according to any one of the above.
【請求項8】 粗金属が4N以下の純度、一次電析金属
が酸素等のガス成分を除き4N〜5Nの純度、さらに電
解精製及び電解採取によって得られる高純度金属が5N
〜6N以上の純度をもつことを特徴とする請求項1〜6
のそれぞれに記載の金属の高純度化方法。
8. The crude metal has a purity of 4N or less, the primary electrodeposited metal has a purity of 4N to 5N excluding gas components such as oxygen, and the high-purity metal obtained by electrolytic refining and electrowinning has a purity of 5N.
7. The composition according to claim 1, which has a purity of at least 6 N.
The method for purifying a metal according to any one of the above.
【請求項9】 高純度金属中のNa、Kなどのアルカリ
金属元素の含有量が総計で1ppm以下、U、Thなど
の放射性元素の含有量が総計で1ppb以下、Fe、N
i、Cr、Cuなどの遷移金属又は重金属元素が総計で
10ppm以下、残部が高純度化する金属及びその他の
不可避的不純物であることを特徴とする請求項1〜8の
それぞれに記載の金属の高純度化方法。
9. The total content of alkali metal elements such as Na and K in a high purity metal is 1 ppm or less, the content of radioactive elements such as U and Th is 1 ppb or less in total, Fe, N
The transition metal or heavy metal element such as i, Cr, or Cu in total is 10 ppm or less, and the balance is a metal to be highly purified and other unavoidable impurities. High purification method.
【請求項10】 C含有量が30ppm以下及びS含有
量が1ppm以下であることを特徴とする請求項1〜9
のそれぞれに記載の金属の高純度化方法。
10. The method according to claim 1, wherein the C content is 30 ppm or less and the S content is 1 ppm or less.
The method for purifying a metal according to any one of the above.
【請求項11】 電解採取又は電解精製によって得られ
た高純度金属をさらに真空溶解又はAr雰囲気若しくは
Ar−H雰囲気で溶解することを特徴とする請求項1
〜10のそれぞれに記載の金属の高純度化方法。
11. The high-purity metal obtained by electrowinning or electrorefining is further melted in a vacuum or in an Ar atmosphere or an Ar—H 2 atmosphere.
10. The method for purifying a metal according to any one of items 10 to 10.
JP2001087627A 2001-03-26 2001-03-26 Metal purification method Expired - Lifetime JP3825983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001087627A JP3825983B2 (en) 2001-03-26 2001-03-26 Metal purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001087627A JP3825983B2 (en) 2001-03-26 2001-03-26 Metal purification method

Publications (2)

Publication Number Publication Date
JP2002285371A true JP2002285371A (en) 2002-10-03
JP3825983B2 JP3825983B2 (en) 2006-09-27

Family

ID=18942852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001087627A Expired - Lifetime JP3825983B2 (en) 2001-03-26 2001-03-26 Metal purification method

Country Status (1)

Country Link
JP (1) JP3825983B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005179778A (en) * 2003-11-28 2005-07-07 Mitsubishi Materials Corp High purity metal indium, and its production method and use
JP2009041947A (en) * 2007-08-06 2009-02-26 Nikko Kinzoku Kk Nickel crucible
JP2011107148A (en) * 2006-02-22 2011-06-02 Jx Nippon Mining & Metals Corp Nickel crucible for melting analysis sample, preparation method and analysis method for analysis sample
JP2012525502A (en) * 2009-04-30 2012-10-22 メタル オキシジェン セパレーション テクノロジーズ インコーポレイテッド Primary production of elemental materials
JP2013185214A (en) * 2012-03-08 2013-09-19 Jx Nippon Mining & Metals Corp BISMUTH OR BISMUTH ALLOY HAVING SMALL AMOUNT OF α-RAY, AND METHOD FOR PRODUCING THE SAME
JP5903497B2 (en) * 2012-11-02 2016-04-13 Jx金属株式会社 Method for producing low α-ray bismuth, low α-ray bismuth and bismuth alloy
JP2017002398A (en) * 2014-02-20 2017-01-05 Jx金属株式会社 Production method of low alpha-ray emitting bismuth, and low alpha-ray emitting bismuth
JP2017057451A (en) * 2015-09-15 2017-03-23 Jx金属株式会社 LOW-α RAY HIGH-PURITY ZINC AND METHOD FOR PRODUCING LOW-α RAY HIGH-PURITY ZINC

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005179778A (en) * 2003-11-28 2005-07-07 Mitsubishi Materials Corp High purity metal indium, and its production method and use
JP4544414B2 (en) * 2003-11-28 2010-09-15 三菱マテリアル株式会社 High purity metallic indium and its production method and application
JP2011107148A (en) * 2006-02-22 2011-06-02 Jx Nippon Mining & Metals Corp Nickel crucible for melting analysis sample, preparation method and analysis method for analysis sample
JP2009041947A (en) * 2007-08-06 2009-02-26 Nikko Kinzoku Kk Nickel crucible
JP2012525502A (en) * 2009-04-30 2012-10-22 メタル オキシジェン セパレーション テクノロジーズ インコーポレイテッド Primary production of elemental materials
US8795506B2 (en) 2009-04-30 2014-08-05 Infinium, Inc. Primary production of elements
JP2013185214A (en) * 2012-03-08 2013-09-19 Jx Nippon Mining & Metals Corp BISMUTH OR BISMUTH ALLOY HAVING SMALL AMOUNT OF α-RAY, AND METHOD FOR PRODUCING THE SAME
JP5903497B2 (en) * 2012-11-02 2016-04-13 Jx金属株式会社 Method for producing low α-ray bismuth, low α-ray bismuth and bismuth alloy
JP2017002398A (en) * 2014-02-20 2017-01-05 Jx金属株式会社 Production method of low alpha-ray emitting bismuth, and low alpha-ray emitting bismuth
US10711358B2 (en) 2014-02-20 2020-07-14 Jx Nippon Mining & Metals Corporation Method of producing low alpha-ray emitting bismuth, and low alpha-ray emitting bismuth
JP2017057451A (en) * 2015-09-15 2017-03-23 Jx金属株式会社 LOW-α RAY HIGH-PURITY ZINC AND METHOD FOR PRODUCING LOW-α RAY HIGH-PURITY ZINC

Also Published As

Publication number Publication date
JP3825983B2 (en) 2006-09-27

Similar Documents

Publication Publication Date Title
KR100512644B1 (en) Method of producing a higher-purity metal
CA2717887C (en) Electrochemical process for the recovery of metallic iron and sulfuric acid values from iron-rich sulfate wastes, mining residues and pickling liquors
JP3876253B2 (en) Manufacturing method of high purity nickel
CN1418985A (en) Electrochemical decomposition method for high-temp. alloy
JP2002285371A (en) Method for metal purification
JP3878402B2 (en) Metal purification method
TWI252875B (en) Method and device for producing high-purity metal
JP2014025121A (en) Electrolytic extraction method for tin and method for recovering tin
JP3878407B2 (en) Metal purification method
KR102211986B1 (en) Method for recovering metal from scrap
CN113026056B (en) Method for producing electrolytic cobalt by adopting secondary electrolysis of cobalt intermediate product
JPH073486A (en) High-purity cobalt and production of thereof
US3880733A (en) Preconditioning of anodes for the electrowinning of copper from electrolytes having a high free acid content
JP2805492B2 (en) Method for recovering cadmium from nickel-cadmium waste material
JP7180039B1 (en) Method for separating tin and nickel from mixtures containing tin and nickel
JP3095730B2 (en) Method for producing high purity cobalt
JP2004083992A (en) Method for producing high purity antimony and high purity antimony
JP4142769B2 (en) Method for producing high purity cobalt
JPH11343588A (en) Production of high-purity cobalt
JPH11315391A (en) Method for refining cobalt
Cole Jr et al. Electrolytic method for recovery of lead from scrap batteries. Report of investigations
Kumari et al. Synthesis of electrolytic copper and nickel powders from the copper bleed electrolyte of a copper smelter
JPH1046274A (en) High-purity zinc and its production
JP2014095106A (en) Method for treating zinc electrolytic pre-solution and zinc electrolytic solution used for zinc electrolytic extraction, and zinc electrolytic extraction method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20010411

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20030109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060703

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3825983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term