JPH073486A - High-purity cobalt and production of thereof - Google Patents
High-purity cobalt and production of thereofInfo
- Publication number
- JPH073486A JPH073486A JP16739393A JP16739393A JPH073486A JP H073486 A JPH073486 A JP H073486A JP 16739393 A JP16739393 A JP 16739393A JP 16739393 A JP16739393 A JP 16739393A JP H073486 A JPH073486 A JP H073486A
- Authority
- JP
- Japan
- Prior art keywords
- stage
- cobalt
- cathode
- final stage
- electrolytic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Electrolytic Production Of Metals (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、高純度コバルト及びそ
の製造方法に関するものであり、特に複数段電解精製法
と溶媒抽出法とを組合せることにより半導体デバイス製
造用のコバルト・スパッタリングターゲット材等として
重要である5N以上の高純度のコバルトの製造のための
電解精製方法に関する。本発明により精製された高純度
コバルトは、特に鉄及びニッケルを含め半導体デバイス
に有害な金属不純物が要求量以下に低減されており、半
導体デバイス製造用のコバルト・スパッタリングターゲ
ット材等として好適である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to high-purity cobalt and a method for producing the same, and in particular, a cobalt sputtering target material for producing a semiconductor device by combining a multi-step electrolytic refining method and a solvent extraction method. And an electrolytic refining method for producing high-purity cobalt having a purity of 5 N or more. The high-purity cobalt purified according to the present invention is suitable for use as a cobalt / sputtering target material for semiconductor device production, since the amount of metal impurities harmful to semiconductor devices including iron and nickel is reduced to a required amount or less.
【0002】[0002]
【従来の技術】従来、半導体デバイスにおける電極材料
としてシリコンが主に用いられてきたが、LSIの高集
積化に伴い、モリブデン、タングステン等のシリサイド
に置き換えられつつあり、更には最近ではチタン及びコ
バルトのシリサイドの活用に関心が高まりつつある。ま
た、従来から用いられてきたアルミニウムやアルミニウ
ム合金に替えてコバルトを配線材として用いる試みも進
んでいる。こうしたコバルト及びコバルトシリサイド製
電極や配線は代表的に、コバルト製ターゲットをアルゴ
ン中で、必要に応じシリコンターゲットと共にスパッタ
することにより形成される。2. Description of the Related Art Conventionally, silicon has been mainly used as an electrode material in semiconductor devices, but it has been replaced with silicide such as molybdenum and tungsten with the high integration of LSI, and more recently, titanium and cobalt. There is growing interest in the utilization of silicide. In addition, attempts are being made to use cobalt as a wiring material in place of aluminum and aluminum alloys that have been conventionally used. Such cobalt and cobalt silicide electrodes and wirings are typically formed by sputtering a cobalt target in argon together with a silicon target as necessary.
【0003】スパッタリング後に生成される半導体デバ
イス部材は、信頼性のある半導体動作性能を保証するた
めには、半導体デバイスに有害な金属不純物が最小限し
か含まれていないことが重要である。そのためには、コ
バルトターゲットの純度を確保すること、すなわちター
ゲット原料自体の高純度化が必須である。半導体デバイ
スに有害な不純物は主として、(1)Na、K、Li等
のアルカリ金属、(2)U、Th等の放射性金属及び
(3)Fe、Ni等の重金属である。Na、K、Li等
のアルカリ金属は、ゲート絶縁膜中を容易に移動し、M
OS−LSI界面特性の劣化の原因となる。U、Th等
の放射性金属は、それから放出されるα線によって素子
のソフトエラーの原因となる。Fe、Ni等の重金属は
界面接合部におけるリーク現象の原因となる。It is important that the semiconductor device member produced after sputtering contains a minimum amount of metal impurities harmful to the semiconductor device in order to ensure reliable semiconductor operation performance. For that purpose, it is essential to ensure the purity of the cobalt target, that is, to increase the purity of the target raw material itself. Impurities harmful to semiconductor devices are mainly (1) alkali metals such as Na, K and Li, (2) radioactive metals such as U and Th, and (3) heavy metals such as Fe and Ni. Alkali metals such as Na, K and Li easily move in the gate insulating film, and M
This causes deterioration of the OS-LSI interface characteristics. Radioactive metals such as U and Th cause a soft error of the device due to the α rays emitted from them. Heavy metals such as Fe and Ni cause a leak phenomenon at the interface joint.
【0004】現在の基準では、アルカリ金属含有率が
0.1ppm以下、放射性元素含有率が0.1ppb以
下そして重金属含有率が10ppm以下であることが要
望されている。According to current standards, it is required that the alkali metal content is 0.1 ppm or less, the radioactive element content is 0.1 ppb or less, and the heavy metal content is 10 ppm or less.
【0005】一般的に入手されるコバルト、いわゆる粗
コバルト塊は、数ppm〜数十ppmの鉄そして数百p
pmのニッケルその他の不純物を含有している。高純度
コバルトの製造方法としては、純度の低いコバルトを電
気化学的に溶解し、イオン交換法を用いて、コバルト水
溶液中の不純物を取り除き、溶液を濃縮して、さらに電
解採取により高純度電解コバルトを製造する方法が、例
えばBourahla,Acad.Sci,Ser,
C.278(10)679−680(1974)に記載
されている。しかし、この方法は、バッチ式であり、従
って少量生産向きであリ、工程が多くコストが高い等の
問題があった。Commonly available cobalt, so-called crude cobalt agglomerates, contains several ppm to several tens of ppm of iron and several hundreds of p.
It contains pm of nickel and other impurities. As a method for producing high-purity cobalt, low-purity cobalt is electrochemically dissolved, impurities are removed from the cobalt aqueous solution by using an ion exchange method, the solution is concentrated, and further high-purity electrolytic cobalt is obtained by electrowinning. The method for producing the compound is described in, for example, Bourahla, Acad. Sci, Ser,
C. 278 (10) 679-680 (1974). However, this method has a problem that it is a batch method, and therefore it is suitable for small-scale production, has many steps, and is expensive.
【0006】電解採取は、目的金属を含む溶液を電解液
として、不溶性のアノードを用いて電解液を電気分解し
てカソードに目的金属を析出させる方法である。そのた
め、例えば硫酸コバルト水溶液からのコバルトの電解採
取法においては、アノードにおける酸素ガス発生のため
の過電圧が必要であり、目的金属を可溶性アノードとし
て電解してカソードに目的金属を析出させる電解精製法
と比較して、上記の問題以外にも槽電圧が約2V程度高
くなり、又コバルト濃度及びpH調整が必要である等種
々の問題点があった。The electrowinning is a method in which a solution containing a target metal is used as an electrolytic solution and the electrolytic solution is electrolyzed using an insoluble anode to deposit the target metal on the cathode. Therefore, for example, in the electrowinning method of cobalt from an aqueous solution of cobalt sulfate, an overvoltage is required for oxygen gas generation in the anode, and an electrolytic refining method in which the target metal is electrolyzed as a soluble anode to deposit the target metal on the cathode. In comparison, in addition to the above problems, there were various problems such that the cell voltage became higher by about 2 V, and the cobalt concentration and pH had to be adjusted.
【0007】一方、電解精製法も考慮しうるが、電解精
製法では不純物であるニッケル及び鉄とコバルトとの標
準電極電位が非常に近いため、電解精製法による高純度
化は難しいとされてきた。On the other hand, although the electrolytic refining method can be considered, it has been considered difficult to achieve high purification by the electrolytic refining method because the standard electrode potentials of impurities nickel and iron and cobalt are very close to each other. .
【0008】[0008]
【発明が解決しようとする課題】本発明の課題は、ター
ゲット等の用途に適したニッケル及び鉄等の不純物を最
小限しか含まない5N(99.999%、以下単に5N
と記す)レベル以上の水準の高純度のコバルト製造技術
を開発することである。SUMMARY OF THE INVENTION An object of the present invention is to provide 5N (99.999%, hereinafter simply referred to as 5N) containing a minimum amount of impurities such as nickel and iron suitable for a target application.
It is to develop a high-purity cobalt manufacturing technology of a level higher than the above level.
【0009】[0009]
【課題を解決するための手段】本発明者らは、硫酸コバ
ルト水溶液を電解液としてアノードからカソード上に精
製コバルト金属を電析させる電解槽を第1段から最終段
まで複数段用いてコバルトの段階的精製を基本とし、そ
こに、各段のアノードはその前の段で得られたカソード
を使用し、電解液は最終段から第1段に向けて間欠的或
いは連続的に流しつつ、第1段の電解槽からの電解液を
溶媒抽出により主としてニッケルを除去した後最終段に
循環し、そして最終段において電解液を溶媒抽出により
主として鉄を除去することにより、更には最終段から回
収したカソードを真空溶解することにより、ニッケル及
び鉄等の不純物を最小限しか含まない5Nレベル以上の
水準の高純度のコバルトを容易に製造することができる
ことを見出した。Means for Solving the Problems The inventors of the present invention used a plurality of electrolytic cells for electrolytically depositing purified cobalt metal from the anode to the cathode using an aqueous solution of cobalt sulfate as an electrolytic solution. Based on stepwise purification, the anode of each stage uses the cathode obtained in the preceding stage, and the electrolyte is intermittently or continuously flowed from the final stage to the first stage, The electrolytic solution from the first-stage electrolytic cell was circulated to the final stage after removing nickel mainly by solvent extraction, and the electrolytic solution was recovered from the final stage by removing mainly iron by solvent extraction in the final stage. It has been found that by vacuum melting the cathode, it is possible to easily produce high-purity cobalt at a level of 5N level or higher, which contains impurities such as nickel and iron at a minimum.
【0010】この知見に基づいて、本発明は、(1)硫
酸コバルト水溶液を電解液としてアノードからカソード
上に精製コバルト金属を電析させる電解槽を第1段から
最終段まで複数段用いてコバルトの段階的精製による高
純度コバルト製造方法であって、電解液は最終段から第
1段に向けて間欠的或いは連続的に流し、第1段の電解
槽からの電解液を溶媒抽出により主としてニッケルを除
去した後最終段に循環し、第1段のアノードは粗コバル
ト金属を使用しそして第2段以降の各段のアノードはそ
の前の段で得られたカソードを使用し、そして最終段に
おいて間欠的に或いは連続的に電解液を抜き出して溶媒
抽出により主として鉄を除去し、そして最終段のカソー
ドを回収することを特徴とする高純度コバルトの製造方
法、(2)硫酸コバルト水溶液を電解液としてアノード
からカソード上に精製コバルト金属を電析させる電解槽
を第1段から最終段まで複数段用いてコバルトの段階的
精製による高純度コバルト製造方法であって、電解液は
最終段から第1段に向けて間欠的或いは連続的に流し、
第1段の電解槽からの電解液を溶媒抽出により主として
ニッケルを除去した後最終段に循環し、第1段のアノー
ドは粗コバルト金属を使用しそして第2段以降の各段の
アノードはその前の段で得られたカソードを使用し、そ
して最終段において間欠的に或いは連続的に電解液を抜
き出して溶媒抽出により主として鉄を除去し、最終段の
カソードを回収し、そして回収したカソードを真空溶解
することを特徴とする高純度コバルトの製造方法、及び
(3)アルカリ金属含有率が0.1ppm以下、放射性
元素含有率が0.1ppb以下そして重金属含有率が1
0ppm以下であることを特徴とする高純度コバルト、
を提供するものである。Based on this knowledge, the present invention provides (1) a plurality of electrolytic cells for electrodepositing purified cobalt metal from an anode to a cathode using an aqueous solution of cobalt sulfate as an electrolytic solution, from a first stage to a final stage. In the method for producing high-purity cobalt by stepwise purification, the electrolytic solution is made to flow intermittently or continuously from the final stage to the first stage, and the electrolytic solution from the electrolytic bath at the first stage is mainly extracted by nickel extraction. To the final stage after the removal of hydrogen, the anode of the first stage uses crude cobalt metal and the anode of each stage after the second stage uses the cathode obtained in the preceding stage, and in the final stage (2) A method for producing high-purity cobalt, characterized in that the electrolytic solution is extracted intermittently or continuously, iron is mainly removed by solvent extraction, and the final stage cathode is recovered. A method for producing high-purity cobalt by stepwise refining cobalt by using a plurality of electrolytic cells for electrodepositing purified cobalt metal from an anode to a cathode using an aqueous solution of lithium as an electrolytic solution from the first stage to the final stage. Run from the last stage to the first stage intermittently or continuously,
The electrolytic solution from the first-stage electrolytic cell is circulated to the final stage after removing nickel mainly by solvent extraction, the crude cobalt metal is used as the first-stage anode, and the anode of each stage after the second stage is Using the cathode obtained in the previous stage, and intermittently or continuously withdrawing the electrolyte in the final stage to remove mainly iron by solvent extraction, recovering the final stage cathode, and recovering the recovered cathode. A method for producing high-purity cobalt characterized by vacuum melting, and (3) an alkali metal content of 0.1 ppm or less, a radioactive element content of 0.1 ppb or less, and a heavy metal content of 1
High-purity cobalt characterized by being 0 ppm or less,
Is provided.
【0011】[0011]
【作用】電解液の流れを最終段から第1段まで間欠的或
いは連続的に流し、電析したコバルトを純度に応じて次
段の電解液中の不純物濃度の低い電解槽のアノードとし
て用い、第1段の電解槽からの電解液を溶媒抽出により
主としてニッケルを除去した後最終段に循環しそして最
終段において電解液を溶媒抽出により主として鉄を除去
することにより電解作用及び溶媒抽出作用により重金属
及び放射性元素を除去し、そして最終段の回収したカソ
ードを真空溶解することにより揮発性のアルカリ金属を
除去する。Function: The electrolytic solution is intermittently or continuously flowed from the final stage to the first stage, and the electrodeposited cobalt is used as the anode of the electrolytic cell having a low impurity concentration in the electrolytic solution of the next stage depending on the purity. The electrolytic solution from the first-stage electrolytic cell is circulated to the final stage after removing nickel mainly by solvent extraction, and in the final stage the electrolytic solution is mainly solvent-extracting iron to remove heavy metals by electrolytic action and solvent extraction action. And radioactive elements are removed, and the volatile alkali metal is removed by vacuum melting the recovered cathode in the final stage.
【0012】図1は、硫酸コバルト水溶液を電解液とし
てアノードからカソード上に精製コバルト金属を電析さ
せる3段の電解槽1、2、3を用いてコバルトの段階的
精製による高純度コバルト製造方法を示す流れ図であ
る。電解槽の材質は、不純物の溶出が少ない塩化ビニ
ル、ポリプロピレン、ポリエチレン等が好ましい。電解
液は最終段である第3段から第1段に向けて間欠的或い
は連続的に流される。従って、下流にいくほど電解液中
の不純物濃度は高くなる。第1段の電解槽からの不純物
の多くなった電解液は、必要に応じ、コバルトを補加し
た後、溶媒抽出ステージ4において溶媒抽出により主と
してニッケルを除去した後最終段に循環される。第1段
の電解槽1では、3N程度の純度の粗コバルト塊をアノ
ードボックスに装入したものをアノードA1としそして
コバルト、チタン等を種板とするカソードC1の間で電
解精製が行われる。なお、コバルトを種板とする場合に
は、予め本方法等で製造した所定の純度のコバルト板を
使用すれば良い(以下、同様)。コバルトがカソードC
1上に電析する。第2段の電解槽2では、電析したカソ
ードC1をアノードA2として用いて、同様にカソード
C2上に電析を行う。第3段の電解槽3では、第2段の
電析したカソードC2をアノードA3として用いてカソ
ードC3上に電析を行う。第3段は、隔膜5を用いて電
解槽をアノライトとカソライトに仕切り、アノードA3
とカソードC3とがそれぞれに配置されている。アノラ
イトからの電解液を溶媒抽出ステージ6において溶媒抽
出により主として鉄を除去した後、カソライトに循環す
る。そして最終段の電析カソードC3が回収される。FIG. 1 shows a method for producing high-purity cobalt by stepwise refining cobalt by using three-stage electrolytic cells 1, 2, and 3 in which purified cobalt metal is electrodeposited from an anode to a cathode using an aqueous solution of cobalt sulfate as an electrolytic solution. 2 is a flowchart showing The material of the electrolytic cell is preferably vinyl chloride, polypropylene, polyethylene or the like, which hardly elutes impurities. The electrolytic solution is intermittently or continuously flowed from the final stage, the third stage, to the first stage. Therefore, the concentration of impurities in the electrolytic solution increases as it goes downstream. The electrolytic solution containing a large amount of impurities from the first-stage electrolytic cell is circulated to the final stage after nickel is removed mainly by solvent extraction in the solvent extraction stage 4 after supplementing cobalt as necessary. In the first-stage electrolytic cell 1, electrolytic refining is carried out between a cathode C1 having a crude cobalt ingot having a purity of about 3N charged in an anode box as an anode A1 and cobalt, titanium or the like as a seed plate. When cobalt is used as the seed plate, a cobalt plate having a predetermined purity manufactured in advance by this method or the like may be used (the same applies hereinafter). Cobalt is cathode C
Electrodeposit on 1. In the second-stage electrolytic cell 2, the electrodeposited cathode C1 is used as the anode A2, and electrodeposition is similarly performed on the cathode C2. In the third-stage electrolytic cell 3, the second-stage electrodeposited cathode C2 is used as the anode A3 to perform electrodeposition on the cathode C3. In the third stage, the diaphragm 5 is used to partition the electrolytic cell into anolyte and catholyte.
And the cathode C3 are arranged respectively. The electrolytic solution from anolyte is subjected to solvent extraction in the solvent extraction stage 6 to remove mainly iron, and then circulated to catholyte. Then, the final electrodeposition cathode C3 is recovered.
【0013】本発明で用いる電解液は、硫酸酸性とした
硫酸コバルト水溶液である。その電解液中の最適コバル
ト濃度は、一般に40〜140g/lであり、より好ま
しくは、70〜120g/lである。40g/l未満で
は、水素の発生量が多くなるため電流効率が非常に悪く
なり、また電析コバルト中の不純物濃度も上がるため好
ましくない。140g/lを超えると、硫酸コバルトが
析出して電析状態に悪影響を及ぼすため好ましくない。The electrolytic solution used in the present invention is an aqueous solution of cobalt sulfate acidified with sulfuric acid. The optimum cobalt concentration in the electrolytic solution is generally 40 to 140 g / l, and more preferably 70 to 120 g / l. If it is less than 40 g / l, the amount of hydrogen generated is large, so that the current efficiency is very poor and the impurity concentration in the electrodeposited cobalt is also increased, which is not preferable. When it exceeds 140 g / l, cobalt sulfate is precipitated and adversely affects the electrodeposition state, which is not preferable.
【0014】電解液の最適pHの範囲は、一般に0.5
〜3であり、より好ましくは1.5〜2.5である。p
H0.5未満では、水素の発生量が多くなり電流効率が
非常に低下するため好ましくない。pH3を超えると、
電析コバルト中の不純物、特にニッケルの含有量が急激
に増加するため好ましくない。The optimum pH range of the electrolytic solution is generally 0.5.
˜3, and more preferably 1.5 to 2.5. p
If it is less than H0.5, the amount of hydrogen generated is large and the current efficiency is greatly reduced, which is not preferable. Above pH 3,
The content of impurities, especially nickel, in the electrodeposited cobalt is rapidly increased, which is not preferable.
【0015】最適カソード電流密度の範囲は0.001
〜1A/cm2 である。0.001A/cm2 未満であ
れば、生産性が低下し、効率的でない。他方、1A/c
m2を超えると、電析コバルト中の不純物濃度が上がり
さらに電流効率も低くなり好ましくない。The range of the optimum cathode current density is 0.001.
Is about 1 A / cm 2 . If it is less than 0.001 A / cm 2 , productivity is lowered and it is not efficient. On the other hand, 1A / c
When it exceeds m 2 , the impurity concentration in the electrodeposited cobalt increases and the current efficiency also decreases, which is not preferable.
【0016】電解温度は、10〜65℃の範囲が好まし
く、より好ましくは、35〜55℃である。10℃未満
であれば、電流効率が低下し、好ましくない。65℃を
超えると、電解液の蒸発が多くなり、電解液中のコバル
ト濃度が変動したり、硫酸コバルトが析出したりして好
ましくない。The electrolysis temperature is preferably in the range of 10 to 65 ° C, more preferably 35 to 55 ° C. If it is lower than 10 ° C, the current efficiency is lowered, which is not preferable. If it exceeds 65 ° C., the amount of evaporation of the electrolytic solution increases, the cobalt concentration in the electrolytic solution fluctuates, and cobalt sulfate precipitates, which is not preferable.
【0017】以上の電解条件で用いる電解液中の不純物
濃度は、電析コバルト中の不純物含有量に予想以上に強
く影響を及ぼすことが判明した。図2は、電解液中のニ
ッケル平均濃度と電析コバルト中のニッケル濃度の関係
を示したグラフである。液中のニッケル平均濃度(平均
濃度とは電解開始時と電解終了時の濃度の平均値であ
る)と電析コバルト中のニッケル含有量の関係式を求め
たところ、Y=0.78Xで表わされることが判明し
た。これより、5N以上を目指すには、電析コバルト中
のニッケル含有量を10ppm未満、より安全を考えて
1ppm以下にする必要があり、この場合電解液中のニ
ッケルの平均濃度を1.3mg/l以下にしなければな
らないことがわかる。It was found that the impurity concentration in the electrolytic solution used under the above electrolysis conditions had an unexpectedly strong effect on the content of impurities in the electrodeposited cobalt. FIG. 2 is a graph showing the relationship between the average nickel concentration in the electrolytic solution and the nickel concentration in the electrodeposited cobalt. The relational expression between the average nickel concentration in the liquid (the average concentration is the average of the concentrations at the start and end of electrolysis) and the nickel content in the electrodeposited cobalt was calculated to be Y = 0.78X. It turned out that From this, in order to achieve 5N or more, the nickel content in the electrodeposited cobalt must be less than 10 ppm, and in consideration of safety, it should be 1 ppm or less. In this case, the average concentration of nickel in the electrolytic solution is 1.3 mg / It can be seen that it must be 1 or less.
【0018】溶媒抽出ステージ4においては、コバルト
に対してニッケルを主とする不純物優先抽出の溶媒とし
て、アルキルリン酸と非キレート系のアルキルオキシム
の混合系が最適である。アルキルリン酸としては、D2
EHPA等を挙げることができる。非キレート系のアル
キルオキシムとして、2エチルヘキサナールオキシム
(EHO)、3,5,5−トリメチルヘキサナールオキ
シム(TMHO)等を挙げることができる。希釈剤とし
ては、ノルマルパラフィン、キシレン等使用できる。な
お、抽出剤と希釈剤のみの場合、抽出及び逆抽出等にお
いて、有機相の相分離、有機金属塩の析出、エマルジョ
ンの生成、粘度の上昇等の問題が発生する場合がある。
この様な場合、調整剤を加えることにより、上記の様な
問題点を解消できることがある。代表的な調整剤とし
て、トリデカノール等がある。この溶媒抽出操作後、活
性炭等を用いて液中の油を除去して、電解液として使用
する。In the solvent extraction stage 4, a mixed system of alkyl phosphoric acid and a non-chelate type alkyl oxime is optimal as a solvent for preferentially extracting impurities containing nickel as a main component with respect to cobalt. As alkyl phosphoric acid, D2
EHPA etc. can be mentioned. Examples of non-chelating alkyl oximes include 2 ethylhexanal oxime (EHO) and 3,5,5-trimethylhexanal oxime (TMHO). As the diluent, normal paraffin, xylene or the like can be used. When only the extractant and the diluent are used, problems such as phase separation of the organic phase, precipitation of an organic metal salt, formation of an emulsion, and increase in viscosity may occur during extraction and back extraction.
In such a case, the above problems may be solved by adding an adjusting agent. A typical regulator is tridecanol. After this solvent extraction operation, the oil in the liquid is removed by using activated carbon or the like and used as an electrolytic solution.
【0019】コバルトに対してニッケルを主とする不純
物を優先抽出するための抽出剤の使用可能な組成範囲は
次の通りである: アルキルリン酸:0.2〜2モル/l アルキルオキシム:0.5〜4モル/l 調整剤:0.5〜4容積% 稀釈剤:残部 そして、Niを含む電解液からNiを抽出して電解液中
のNi濃度を低減させるためには、公知の方法で電解液
のpH、O/A比、抽出段数等を決めれば良い。例え
ば、Ni濃度80mg/lの電解液の場合、pH=2、
O/A=2、そして抽出段数を6段とすれば、Ni濃度
を0.1mg/lとすることができる。なお、Niの逆
抽出は例えば硫酸を用いれば良い。The usable composition range of the extractant for preferentially extracting nickel-based impurities from cobalt is as follows: Alkyl phosphoric acid: 0.2 to 2 mol / l Alkyl oxime: 0 0.5 to 4 mol / l Regulator: 0.5 to 4% by volume Diluent: balance And, in order to reduce Ni concentration in the electrolytic solution by extracting Ni from the electrolytic solution containing Ni, a known method is used. The pH of the electrolyte, the O / A ratio, the number of extraction stages, etc. may be determined. For example, in the case of an electrolyte solution having a Ni concentration of 80 mg / l, pH = 2,
If O / A = 2 and the number of extraction stages is 6, the Ni concentration can be 0.1 mg / l. For the back extraction of Ni, for example, sulfuric acid may be used.
【0020】溶媒抽出ステージ6においては、主として
鉄の除去を行う。原料中の鉄がそのまま移行して電析す
るので、本発明では最終段において鉄を主として除去す
るために、アノライトの電解液を抜き出し、アルキルリ
ン酸等の抽出剤を用いての溶媒抽出が行われ、必要に応
じ、活性炭等で油を除去した後カソライトに循環され
る。アルキルリン酸としては、D2EHPA、PC88
A等が代表例である。In the solvent extraction stage 6, iron is mainly removed. Since iron in the raw material migrates as it is and is electrodeposited, in the present invention, in order to mainly remove iron in the final stage, the electrolyte solution of anolyte is extracted and solvent extraction is performed using an extractant such as alkylphosphoric acid. If necessary, the oil is removed with activated carbon or the like and then circulated through the catholyte. As alkylphosphoric acid, D2EHPA, PC88
A is a typical example.
【0021】コバルトに対して鉄を主とする不純物を優
先抽出するための抽出剤の使用可能な組成範囲は次の通
りである: アルキルリン酸:0.2〜2モル/l 調整剤:0.5〜4容積% 稀釈剤:残部 そして、Feを含む電解液からFeを抽出し、電解液中
のFe濃度を低減させるためには、公知の方法で電解液
のpH、O/A比、抽出段数等を決めれば良い。例え
ば、Fe濃度0.04mg/lの電解液の場合、pH=
2、O/A=1、そして抽出段数を1段とすれば、Fe
濃度を0.01mg/l以下とすることができる。な
お、Feの逆抽出は例えば硫酸、塩酸、シュウ酸等を用
いれば良い。The usable composition range of the extractant for preferentially extracting impurities mainly composed of iron with respect to cobalt is as follows: Alkyl phosphoric acid: 0.2 to 2 mol / l Modifier: 0 0.5 to 4% by volume Diluent: balance And, in order to extract Fe from the electrolytic solution containing Fe and reduce the Fe concentration in the electrolytic solution, the pH of the electrolytic solution, the O / A ratio, It suffices to determine the number of extraction stages. For example, in the case of an electrolyte solution having a Fe concentration of 0.04 mg / l, pH =
2, O / A = 1, and if the number of extraction stages is 1, Fe
The concentration can be 0.01 mg / l or less. For the back extraction of Fe, for example, sulfuric acid, hydrochloric acid, oxalic acid or the like may be used.
【0022】第1段電解槽のNi不純物濃度は例えば平
均約40〜50mg/lとされ、この場合電析コバルト
のNi含有量は約30〜40ppmである。第2段電解
槽のNi不純物濃度は例えば平均約4〜5mg/lとさ
れ、この場合電析コバルトのNi含有量は約3〜4pp
mである。第3段電解槽のNi不純物濃度は例えば平均
約0.5〜1mg/lとされ、この場合回収された電析
コバルトのNi含有量は約1ppm以下である。なお、
この操作において、各電解槽の液は連続的に流しても良
いが、電解液流量のコントロールの必要性等を考慮に入
れると、生産量が少ない場合にはバッチ式で(間欠的
に)行うのが簡便である。The Ni impurity concentration in the first-stage electrolytic cell is, for example, about 40 to 50 mg / l on average, and in this case, the Ni content of the electrodeposited cobalt is about 30 to 40 ppm. The Ni impurity concentration in the second-stage electrolytic cell is, for example, about 4 to 5 mg / l on average, and in this case, the Ni content of the electrodeposited cobalt is about 3 to 4 pp.
m. The Ni impurity concentration in the third-stage electrolytic cell is, for example, about 0.5 to 1 mg / l on average, and in this case, the Ni content of the electrodeposited cobalt recovered is about 1 ppm or less. In addition,
In this operation, the liquid in each electrolytic cell may be continuously flowed, but in consideration of the necessity of controlling the flow rate of the electrolytic solution and the like, when the production amount is small, the batch type (intermittent) operation is performed. Is convenient.
【0023】以上の電解条件により製造した電析コバル
ト中には、不純物、特に放射性元素が0.1ppb以下
そしてニッケル及び鉄含有量が10ppm以下、特には
0.5ppm以下に低減されている。In the electrodeposited cobalt produced under the above electrolysis conditions, impurities, particularly radioactive elements, are reduced to 0.1 ppb or less, and nickel and iron contents are reduced to 10 ppm or less, particularly 0.5 ppm or less.
【0024】回収した電析カソードC3は、エレクトロ
ンビーム溶解等の真空溶解方法で溶解し、そこに含まれ
るNa、K等の揮発性元素が取り除かれる。エレクトロ
ンビーム溶解は、電極(ここでは電析Co)をまず作製
し、それを再溶解して高純度のインゴットを得る方法で
ある。電極の高温での溶解中、揮発成分が蒸発する。例
えば、次の条件で、エレクトロンビーム溶解が実施され
る: 電流:0.7A 電圧:20V 真空度:10-5mmHg 溶解量:5kg 時間:2hrThe recovered electrodeposition cathode C3 is melted by a vacuum melting method such as electron beam melting, and volatile elements such as Na and K contained therein are removed. Electron beam melting is a method in which an electrode (here, electrodeposited Co) is first prepared and then remelted to obtain a high-purity ingot. During melting of the electrode at high temperature, volatile components evaporate. For example, electron beam melting is performed under the following conditions: Current: 0.7 A Voltage: 20 V Vacuum degree: 10 −5 mmHg Melting amount: 5 kg Time: 2 hr
【0025】[0025]
【実施例】以下に本発明の実施例を呈示する。EXAMPLES Examples of the present invention will be presented below.
【0026】(実施例1)段数が2段で、電解液流量9
0lとし、バッチ式で行った場合の例を示す。表1に示
す純度の粗コバルト塊を第1段の電解槽においてアノー
ドボックスに装入した。カソード種板としては厚さ2m
m×巾200mm×長さ300mmのコバルト板を用い
た。第1段電解槽のNi濃度は平均15mg/lであっ
た。電解液中のCo濃度は約100g/lであった。電
解は、温度:約50℃、pH:2そしてカソード電流密
度:0.02A/cm2 として実施した。これによって
得た電析コバルトカソードを隔膜でアノライトとカソラ
イトに仕切った第2段の電解槽のアノライトに装入し
た。カソライトのカソードとしては、第1段と同じくカ
ソード種板としての厚さ2mm×巾200mm×長さ3
00mmのコバルト板を用いた。第2段の電解槽での電
解条件は第1段と同じとした。第1段の電解槽からの電
解後液をD2EHPAを0.5mol/l、EHOを2
mol/l、トリデカノールを2vol%そして残りを
ノルマルパラフィンとした抽出液を用いて溶媒抽出(p
H=2、O/A=2、抽出段数=6段)により主にNi
除去後活性炭で油を除去した後第2段の電解液として用
いた。第2段の電解槽においては、アノライトから電解
液を連続的に抜き出し、D2EHPAを0.5mol/
l、トリデカノールを2vol%そして残りをノルマル
パラフィンとした抽出液を用いて溶媒抽出(pH=2、
O/A=1、抽出段数=1段)により主にFeを除去後
(Fe<0.01mg/l)、活性炭で油を除去した後
カソライトに循環させた。第2段の電解槽のNi濃度は
平均0.64mg/l、Fe濃度は平均0.01mg/
l未満であった。なお、電着したCo量は8.7kgで
あった。第2段での電析コバルトの不純物含有量を表1
に示す。第2段の電解槽から回収した電析カソードをエ
レクトロンビーム溶解した後の不純物含有量をも表1に
示す。(Embodiment 1) The number of stages is 2 and the flow rate of the electrolyte is 9
An example of the case where the batch method is performed with 0 liter is shown. Crude cobalt agglomerates having the purities shown in Table 1 were charged into the anode box in the first-stage electrolytic cell. 2m thick as cathode seed plate
A cobalt plate of m × width 200 mm × length 300 mm was used. The average Ni concentration in the first-stage electrolytic cell was 15 mg / l. The Co concentration in the electrolytic solution was about 100 g / l. The electrolysis was carried out at a temperature of about 50 ° C., a pH of 2 and a cathode current density of 0.02 A / cm 2 . The electrodeposited cobalt cathode thus obtained was charged into the anolyte of the second-stage electrolytic cell partitioned into anolyte and catholyte by a diaphragm. As the cathode of the catholyte, the thickness of the cathode seed plate is 2 mm × width 200 mm × length 3 as in the first stage.
A 00 mm cobalt plate was used. The electrolysis conditions in the second-stage electrolytic cell were the same as those in the first stage. After the electrolysis from the first-stage electrolyzer, D2EHPA was 0.5 mol / l and EHO was 2 mol.
Solvent extraction (p / mol), tridecanol 2 vol% and the rest normal n-paraffin
H = 2, O / A = 2, number of extraction stages = 6)
After removal, the oil was removed with activated carbon and used as the second-stage electrolyte. In the second-stage electrolytic cell, the electrolytic solution was continuously extracted from the anolyte and D2EHPA was added at 0.5 mol / min.
l, solvent extraction (pH = 2, pH = 2, tridecanol 2 vol% and the rest normal n-paraffin)
O / A = 1, the number of extraction stages = 1), after mainly removing Fe (Fe <0.01 mg / l), the oil was removed with activated carbon, and then the mixture was circulated through catholyte. The Ni concentration in the second-stage electrolytic cell was 0.64 mg / l on average, and the Fe concentration was 0.01 mg / l on average.
It was less than 1. The amount of Co electrodeposited was 8.7 kg. Table 1 shows the impurity content of electrodeposited cobalt in the second stage.
Shown in. Table 1 also shows the content of impurities after the electron beam melting of the electrodeposited cathode recovered from the second-stage electrolytic cell.
【0027】[0027]
【表1】 [Table 1]
【0028】(実施例2)段数が3段で、電解液流量9
0lとし、バッチ式で行った場合の例を示す。実施例1
と同じ純度の粗コバルト塊を第1段の電解槽においてア
ノードボックスに装入した。カソード種板としては厚さ
2mm×巾200mm×長さ300mmのコバルト板を
用いた。第1段電解槽のNi濃度は平均43mg/lで
あった。電解液中のCo濃度は約100g/lであっ
た。電解は、温度:約50℃、pH:2そしてカソード
電流密度:0.02A/cm2 として実施した。第1段
階電解槽で得られた電析カソードを第2段電解槽のアノ
ードとして使用し、同じくコバルト製種板を用いて第1
段と同じ電解条件で第2段電解槽で更に電解を行った。
第2段電解槽のNi濃度は平均5mg/lであった。こ
れによって得た電析コバルトカソードを隔膜でアノライ
トとカソライトに仕切った第3段の電解槽のアノライト
に装入した。カソライトのカソードとしては、第1段と
同じくカソード種板としての厚さ2mm×巾200mm
×長さ300mmのコバルト板を用いた。第3段の電解
槽での電解条件は第1段と同じとした。第3段電解槽の
Ni濃度は平均0.6mg/l、Fe濃度は平均0.0
1mg/l未満であった。第1段の電解槽からの電解後
液をD2EHPAを0.5mol/l、EHOを2mo
l/l、トリデカノールを2vol%そして残りをノル
マルパラフィンとした抽出液を用いて溶媒抽出(pH=
2、O/A=2、抽出段数=6段)により主にNi除去
後(Ni=0.1mg/l)、活性炭で油を除去した後
第3段の電解液として用いた。第3段の電解槽において
は、アノライトから電解液を連続的に抜き出し、D2E
HPAを0.5mol/l、トリデカノールを2vol
%そして残りをノルマルパラフィンとした抽出液を用い
て溶媒抽出(pH=2、O/A=1、抽出段数=1段)
により主にFeを除去後(Fe<0.01mg/l)、
活性炭で油を除去した後カソライトに循環させた。粗コ
バルト並びに第1、2及び3段で得られた電析コバルト
の不純物含有量を表2に示す。なお、電着したCo量は
23.4kgであった。第3段の電解槽から回収した電
析カソードをエレクトロンビーム溶解した後の不純物含
有量をも表2に示す。(Embodiment 2) The number of stages is 3 and the flow rate of the electrolyte is 9
An example of the case where the batch method is performed with 0 liter is shown. Example 1
A crude cobalt ingot of the same purity as was charged into the anode box in the first stage electrolyzer. As the cathode seed plate, a cobalt plate having a thickness of 2 mm, a width of 200 mm and a length of 300 mm was used. The Ni concentration in the first-stage electrolytic cell was 43 mg / l on average. The Co concentration in the electrolytic solution was about 100 g / l. The electrolysis was carried out at a temperature of about 50 ° C., a pH of 2 and a cathode current density of 0.02 A / cm 2 . The electrodeposited cathode obtained in the first-stage electrolyzer was used as the anode in the second-stage electrolyzer, and a cobalt seed plate was used to make the first electrode.
Further electrolysis was carried out in the second-stage electrolyzer under the same electrolysis conditions as the stage.
The Ni concentration in the second-stage electrolytic cell was 5 mg / l on average. The electrodeposited cobalt cathode thus obtained was charged into the anolyte of the third stage electrolytic cell which was partitioned into anolyte and catholyte by a diaphragm. As the cathode of catholyte, the thickness of the cathode seed plate is 2 mm and the width is 200 mm, as in the first stage.
B. A cobalt plate having a length of 300 mm was used. The electrolysis conditions in the third-stage electrolytic cell were the same as those in the first stage. The average Ni concentration in the third-stage electrolyzer was 0.6 mg / l, and the average Fe concentration was 0.0.
It was less than 1 mg / l. The post-electrolysis solution from the first-stage electrolyzer was 0.5 mol / l for D2EHPA and 2 mo for EHO.
1 / l, 2 vol% tridecanol and the rest normal n-paraffin solvent extraction (pH =
2, O / A = 2, the number of extraction stages = 6), after mainly removing Ni (Ni = 0.1 mg / l), the oil was removed by activated carbon, and the electrolyte was used as the third stage electrolyte. In the third-stage electrolyzer, the electrolyte solution was continuously extracted from the anolyte and the D2E
HPA 0.5 mol / l, tridecanol 2 vol
% And solvent extraction using normal paraffin for the rest (pH = 2, O / A = 1, number of extraction stages = 1 stage)
After mainly removing Fe (Fe <0.01 mg / l),
After removing the oil with activated carbon, it was circulated through catholyte. Table 2 shows the impurity contents of the crude cobalt and the electrodeposited cobalt obtained in the first, second and third stages. The amount of Co electrodeposited was 23.4 kg. Table 2 also shows the content of impurities after electron beam melting of the electrodeposited cathode recovered from the third-stage electrolytic cell.
【0029】[0029]
【表2】 [Table 2]
【0030】[0030]
【発明の効果】5N以上の、特にニッケル及び鉄を低減
した高純度コバルトが、電解精製により容易に得ること
ができ、得られた高純度コバルトは、半導体デバイス製
造用のターゲット用材料として好適である。電解液を再
循環しているために廃液の量が少なくてすみ、電流効率
が高く、処理量を大きくすることができ、段数による純
度に応じた製品を製造することができる。EFFECT OF THE INVENTION High-purity cobalt having a content of 5 N or more, particularly reduced nickel and iron, can be easily obtained by electrolytic refining, and the obtained high-purity cobalt is suitable as a target material for semiconductor device production. is there. Since the electrolyte is recirculated, the amount of waste liquid is small, the current efficiency is high, the throughput can be increased, and the product can be manufactured according to the purity depending on the number of stages.
【図1】3段の電解槽を使用する本発明方法の流れ図で
ある。FIG. 1 is a flow chart of the method of the present invention using a three-stage electrolytic cell.
【図2】電解液中の平均ニッケル不純物濃度と電析コバ
ルト中のニッケル含有量の関係を示すグラフである。FIG. 2 is a graph showing the relationship between the average nickel impurity concentration in an electrolytic solution and the nickel content in electrodeposited cobalt.
1、2、3 電解槽 4 溶媒抽出ステージ 5 隔膜 6 溶媒抽出ステージ A1、C1 第1段電解槽アノード、カソード A2、C2 第2段電解槽アノード、カソード A3、C3 第3段電解槽アノード、カソード 1, 2 and 3 Electrolyzer 4 Solvent extraction stage 5 Diaphragm 6 Solvent extraction stage A1, C1 1st stage electrolytic cell anode, cathode A2, C2 2nd stage electrolytic cell anode, cathode A3, C3 3rd stage electrolytic cell anode, cathode
Claims (3)
ードからカソード上に精製コバルト金属を電析させる電
解槽を第1段から最終段まで複数段用いてコバルトの段
階的精製による高純度コバルト製造方法であって、電解
液は最終段から第1段に向けて間欠的或いは連続的に流
し、第1段の電解槽からの電解液を溶媒抽出により主と
してニッケルを除去した後最終段に循環し、第1段のア
ノードは粗コバルト金属を使用しそして第2段以降の各
段のアノードはその前の段で得られたカソードを使用
し、そして最終段において間欠的に或いは連続的に電解
液を抜き出して溶媒抽出により主として鉄を除去し、そ
して最終段のカソードを回収することを特徴とする高純
度コバルトの製造方法。1. A method for producing high-purity cobalt by stepwise refining cobalt by using a plurality of electrolytic cells for electrodepositing purified cobalt metal from an anode to a cathode using an aqueous cobalt sulfate solution as an electrolytic solution from the first stage to the final stage. Therefore, the electrolytic solution intermittently or continuously flows from the final stage to the first stage, and the electrolytic solution from the electrolytic bath of the first stage is circulated to the final stage after removing nickel mainly by solvent extraction. The first stage anode uses crude cobalt metal and the second and subsequent stage anodes use the cathode obtained in the previous stage, and the electrolyte is withdrawn intermittently or continuously in the final stage. A method for producing high-purity cobalt, characterized in that mainly iron is removed by solvent extraction and the cathode in the final stage is recovered.
ードからカソード上に精製コバルト金属を電析させる電
解槽を第1段から最終段まで複数段用いてコバルトの段
階的精製による高純度コバルト製造方法であって、電解
液は最終段から第1段に向けて間欠的或いは連続的に流
し、第1段の電解槽からの電解液を溶媒抽出により主と
してニッケルを除去した後最終段に循環し、第1段のア
ノードは粗コバルト金属を使用しそして第2段以降の各
段のアノードはその前の段で得られたカソードを使用
し、そして最終段において間欠的に或いは連続的に電解
液を抜き出して溶媒抽出により主として鉄を除去し、最
終段のカソードを回収し、そして回収したカソードを真
空溶解することを特徴とする高純度コバルトの製造方
法。2. A method for producing high-purity cobalt by stepwise refining cobalt by using a plurality of electrolytic cells for electrodepositing purified cobalt metal from an anode to a cathode using an aqueous solution of cobalt sulfate as an electrolytic solution from a first stage to a final stage. Therefore, the electrolytic solution intermittently or continuously flows from the final stage to the first stage, and the electrolytic solution from the electrolytic bath of the first stage is circulated to the final stage after removing nickel mainly by solvent extraction. The first stage anode uses crude cobalt metal and the second and subsequent stage anodes use the cathode obtained in the previous stage, and the electrolyte is withdrawn intermittently or continuously in the final stage. A method for producing high-purity cobalt, characterized in that mainly iron is removed by solvent extraction, the cathode in the final stage is recovered, and the recovered cathode is vacuum-melted.
下、放射性元素含有率が0.1ppb以下そして重金属
含有率が10ppm以下であることを特徴とする高純度
コバルト。3. A high-purity cobalt having an alkali metal content of 0.1 ppm or less, a radioactive element content of 0.1 ppb or less, and a heavy metal content of 10 ppm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16739393A JPH073486A (en) | 1993-06-15 | 1993-06-15 | High-purity cobalt and production of thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16739393A JPH073486A (en) | 1993-06-15 | 1993-06-15 | High-purity cobalt and production of thereof |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10302338A Division JP3095730B2 (en) | 1998-10-23 | 1998-10-23 | Method for producing high purity cobalt |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH073486A true JPH073486A (en) | 1995-01-06 |
Family
ID=15848873
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16739393A Pending JPH073486A (en) | 1993-06-15 | 1993-06-15 | High-purity cobalt and production of thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH073486A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5667665A (en) * | 1995-03-14 | 1997-09-16 | Japan Energy Corporation | Process of producing high purity cobalt |
WO1998042009A1 (en) * | 1997-03-14 | 1998-09-24 | Hitachi, Ltd. | Process for producing semiconductor integrated circuit device |
WO2001090445A1 (en) * | 2000-05-22 | 2001-11-29 | Nikko Materials Company, Limited | Method of producing a higher-purity metal |
US6391172B2 (en) | 1997-08-26 | 2002-05-21 | The Alta Group, Inc. | High purity cobalt sputter target and process of manufacturing the same |
US6693001B2 (en) * | 1997-03-14 | 2004-02-17 | Renesas Technology Corporation | Process for producing semiconductor integrated circuit device |
US6858484B2 (en) | 2000-02-04 | 2005-02-22 | Hitachi, Ltd. | Method of fabricating semiconductor integrated circuit device |
JP2007043207A (en) * | 2006-11-13 | 2007-02-15 | Renesas Technology Corp | Semiconductor integrated circuit device manufacturing method |
JP2011159982A (en) * | 2011-02-24 | 2011-08-18 | Renesas Electronics Corp | Method of manufacturing semiconductor integrated circuit device |
-
1993
- 1993-06-15 JP JP16739393A patent/JPH073486A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5810983A (en) * | 1995-03-14 | 1998-09-22 | Japan Energy Corporation | High purity cobalt sputtering targets |
US5667665A (en) * | 1995-03-14 | 1997-09-16 | Japan Energy Corporation | Process of producing high purity cobalt |
US7214577B2 (en) | 1997-03-14 | 2007-05-08 | Renesas Technology Corp. | Method of fabricating semiconductor integrated circuit device |
WO1998042009A1 (en) * | 1997-03-14 | 1998-09-24 | Hitachi, Ltd. | Process for producing semiconductor integrated circuit device |
US8034715B2 (en) | 1997-03-14 | 2011-10-11 | Renesas Electronics Corporation | Method of fabricating semiconductor integrated circuit device |
US7553766B2 (en) | 1997-03-14 | 2009-06-30 | Renesas Technology Corp. | Method of fabricating semiconductor integrated circuit device |
US6693001B2 (en) * | 1997-03-14 | 2004-02-17 | Renesas Technology Corporation | Process for producing semiconductor integrated circuit device |
US7314830B2 (en) | 1997-03-14 | 2008-01-01 | Renesas Technology Corp. | Method of fabricating semiconductor integrated circuit device with 99.99 wt% cobalt |
US6391172B2 (en) | 1997-08-26 | 2002-05-21 | The Alta Group, Inc. | High purity cobalt sputter target and process of manufacturing the same |
US6585866B2 (en) | 1997-08-26 | 2003-07-01 | Honeywell International Inc. | High purity cobalt sputter target and process of manufacturing the same |
US6858484B2 (en) | 2000-02-04 | 2005-02-22 | Hitachi, Ltd. | Method of fabricating semiconductor integrated circuit device |
US6896788B2 (en) * | 2000-05-22 | 2005-05-24 | Nikko Materials Company, Limited | Method of producing a higher-purity metal |
WO2001090445A1 (en) * | 2000-05-22 | 2001-11-29 | Nikko Materials Company, Limited | Method of producing a higher-purity metal |
JP2007043207A (en) * | 2006-11-13 | 2007-02-15 | Renesas Technology Corp | Semiconductor integrated circuit device manufacturing method |
JP4724647B2 (en) * | 2006-11-13 | 2011-07-13 | ルネサスエレクトロニクス株式会社 | Manufacturing method of semiconductor integrated circuit device |
JP2011159982A (en) * | 2011-02-24 | 2011-08-18 | Renesas Electronics Corp | Method of manufacturing semiconductor integrated circuit device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3876253B2 (en) | Manufacturing method of high purity nickel | |
KR100512644B1 (en) | Method of producing a higher-purity metal | |
JP4519294B2 (en) | Indium recovery method | |
JPH073486A (en) | High-purity cobalt and production of thereof | |
JP2018016822A (en) | Production method of high purity indium | |
JP3825983B2 (en) | Metal purification method | |
TWI252875B (en) | Method and device for producing high-purity metal | |
JP3151194B2 (en) | Cobalt purification method | |
JP3065193B2 (en) | High purity cobalt sputtering target | |
JP3066886B2 (en) | High purity cobalt sputtering target | |
JP3095730B2 (en) | Method for producing high purity cobalt | |
CN113026056B (en) | Method for producing electrolytic cobalt by adopting secondary electrolysis of cobalt intermediate product | |
JP3878402B2 (en) | Metal purification method | |
JP2000219988A (en) | Production of high purity nickel material and high purity nickel material for forming thin film | |
JP2002201026A (en) | Method for recovering indium | |
JP3878407B2 (en) | Metal purification method | |
JP2003183871A (en) | Electrolytic refining method for producing high-purity tin, and apparatus therefor | |
JP5993097B2 (en) | Method for producing high purity cobalt chloride | |
JP3151195B2 (en) | Cobalt purification method | |
JP2005179778A (en) | High purity metal indium, and its production method and use | |
JPH08253888A (en) | Production of high purity cobalt | |
US3049478A (en) | Process for the production of pure indium | |
JPH08127890A (en) | Production of high purity cobalt | |
Adhia | Effect and control of impurities in electrolytic zinc production | |
JPH06136584A (en) | Production of high purity nickel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 19980922 |