JPH08253888A - Production of high purity cobalt - Google Patents

Production of high purity cobalt

Info

Publication number
JPH08253888A
JPH08253888A JP8083195A JP8083195A JPH08253888A JP H08253888 A JPH08253888 A JP H08253888A JP 8083195 A JP8083195 A JP 8083195A JP 8083195 A JP8083195 A JP 8083195A JP H08253888 A JPH08253888 A JP H08253888A
Authority
JP
Japan
Prior art keywords
cobalt
hydrochloric acid
purity
anion exchange
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8083195A
Other languages
Japanese (ja)
Inventor
Yuichiro Shindo
裕一朗 新藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP8083195A priority Critical patent/JPH08253888A/en
Priority to DE19609439A priority patent/DE19609439A1/en
Priority to US08/615,005 priority patent/US5667665A/en
Publication of JPH08253888A publication Critical patent/JPH08253888A/en
Priority to US08/790,033 priority patent/US5810983A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3488Constructional details of particle beam apparatus not otherwise provided for, e.g. arrangement, mounting, housing, environment; special provisions for cleaning or maintenance of the apparatus
    • H01J37/3491Manufacturing of targets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/06Electrolytic production, recovery or refining of metals by electrolysis of solutions or iron group metals, refractory metals or manganese
    • C25C1/08Electrolytic production, recovery or refining of metals by electrolysis of solutions or iron group metals, refractory metals or manganese of nickel or cobalt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

PURPOSE: To develop a method for stably and easily producing a high purity cobalt suitable for applications such as a target material and containing impurities such as Ni, Fe at a minimum. CONSTITUTION: An electrolytically deposited cobalt is formed by allowing a cobalt chloride aq. solution containing at least Fe and/or Ni as the impurities and 7-12N in hydrochloric acid concn. to contact with an anion exchange resin to adsorb cobalt, eluting cobalt with 1-6N hydrochloric acid, evaporating to dry or concentrating the resulting eluted solution to make a high purity cobalt chloride aq. solution having pH 0-6 and electrolytically purifying the aq. solution as an electrolyte and if necessary, the electrolytically deposited cobalt is dissolved in vacuum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高純度コバルトの製造
方法に関するものである。本発明により作製された高純
度コバルトは、VLSIの電極及び配線形成用のタ−ゲ
ット材等として好適に用いることができる。
FIELD OF THE INVENTION The present invention relates to a method for producing high-purity cobalt. The high-purity cobalt produced by the present invention can be preferably used as a target material for forming electrodes and wirings of VLSI.

【0002】[0002]

【従来の技術】従来、半導体デバイスにおける電極材料
としてポリシリコンが主に用いられてきたが、LSIの
高集積化に伴い、モリブテン、タングステン等のシリサ
イドにかわり、さらにはチタン、コバルトシリサイドの
活用に関心が集まっている。また、従来から用いられて
きたAl、Al合金にかえてコバルトを配線材として用
いる試みも進んでいる。こうした電極や配線は代表的
に、コバルト製タ−ゲットをアルゴン中でスパッタする
ことにより形成される。
2. Description of the Related Art Conventionally, polysilicon has been mainly used as an electrode material in semiconductor devices, but with the high integration of LSIs, it has replaced silicides such as molybdenum and tungsten, as well as titanium and cobalt silicide. Interest is gathering. Further, attempts are being made to use cobalt as a wiring material in place of Al and Al alloys that have been conventionally used. Such electrodes and wirings are typically formed by sputtering a cobalt target in argon.

【0003】スパッタリング後に形成される半導体部材
は、信頼性のある半導体動作性能を保証するためには、
半導体デバイスに有害な金属不純物が最小限しか含まれ
ていないことが重要である。つまり、 (1)Na、K等のアルカリ金属 (2)U、Th等の放射性元素 (3)Fe、Ni等の重金属 である。Na,K等のアルカリ金属は、ゲ−ト絶縁膜中
を容易に移動し、MOS−LSI界面特性の劣化の原因
となる。そして、U、Th等の放射性元素は該元素より
放出するα線によって素子のソフトエラ−の原因とな
る。一方、Fe、Ni等の重金属もまた界面接合部のト
ラブルの原因となる。
The semiconductor member formed after sputtering is required to ensure reliable semiconductor operation performance.
It is important that semiconductor devices contain minimal harmful metal impurities. That is, (1) alkali metals such as Na and K, (2) radioactive elements such as U and Th, and (3) heavy metals such as Fe and Ni. Alkali metals such as Na and K easily move in the gate insulating film and cause deterioration of the MOS-LSI interface characteristics. Then, radioactive elements such as U and Th cause the soft error of the device due to the α rays emitted from the elements. On the other hand, heavy metals such as Fe and Ni also cause troubles at the interface joint.

【0004】一般的に入手されるコバルト、いわゆる粗
コバルト塊は数十ppmのFeそして数百ppmのNi
を不純物として含有している。これからの高純度コバル
トの製造方法としては、まず電解精製法が考えられる。
しかしながら、電解精製では不純物であるNi及びFe
とコバルトとの標準電極電位が非常に近いため、単なる
電解精製法による高純度化は難しい。
Commonly available cobalt, so-called crude cobalt agglomerates, contains tens of ppm Fe and hundreds of ppm Ni.
Contains as an impurity. As a method for producing high-purity cobalt in the future, first, an electrolytic refining method can be considered.
However, in electrolytic refining, impurities Ni and Fe
Since the standard electrode potentials of cobalt and cobalt are very close to each other, it is difficult to achieve high purification by a simple electrolytic refining method.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記の課題
を解決したもので、本発明の目的は、タ−ゲット等の用
途に適したNi、Fe等の不純物を最小限しか含まない
5N(99.999%、以下単に5Nと記す)レベル以
上の高純度コバルトを安定してかつ容易に製造できる方
法を開発することにある。
DISCLOSURE OF THE INVENTION The present invention has solved the above-mentioned problems, and an object of the present invention is 5N containing a minimum amount of impurities such as Ni and Fe, which are suitable for applications such as targets. It is to develop a method capable of stably and easily producing high-purity cobalt having a level of (99.999%, hereinafter simply referred to as 5N) or higher.

【0006】[0006]

【課題を解決するための手段】本発明者等は、高純度コ
バルトが安定して製造できるように鋭意検討した結果、
陰イオン交換法−電解精製法、そして必要に応じて真空
溶解法を組み合わせることにより、高純度コバルトを安
定してかつ容易に、しかも低コストで大量生産が可能で
あることが判明した。これに基づき、本発明は、 (1)少なくともFe及び/又はNiを不純物として含
有し、塩酸濃度が7〜12Nの塩化コバルト水溶液を、
陰イオン交換樹脂と接触させコバルトを吸着させた後、
1〜6Nの塩酸を用いてコバルトを溶離し、得られた溶
離液を蒸発乾固又は濃縮した後、pH=0〜6の高純度
塩化コバルト水溶液とし、該水溶液を電解液として電解
精製により電析コバルトを得ることを特徴とする高純度
コバルトの製造方法。 (2)電解精製において、アノ−ドとカソ−ドを隔膜あ
るいは陰イオン交換膜で仕切り、かつ、高純度塩化コバ
ルト水溶液を少なくとも間欠的にカソ−ド側に入れると
共にアノライトを少なくとも間欠的に抜き出すことを特
徴とする前記(1)記載の高純度コバルトの製造方法。 (3)抜き出したアノライトの塩酸濃度を7〜12Nと
した後、陰イオン交換樹脂に接触させることを特徴とす
る前記(2)記載の高純度コバルトの製造方法。 (4)電析コバルトを更に真空溶解することを特徴とす
る前記(1)乃至前記(3)記載の高純度コバルトの製
造方法。を提供する。
Means for Solving the Problems As a result of diligent investigations by the present inventors to stably produce high-purity cobalt,
It was found that high purity cobalt can be stably and easily mass-produced at low cost by combining the anion exchange method-electrolytic refining method and, if necessary, the vacuum dissolution method. Based on this, the present invention provides (1) an aqueous cobalt chloride solution containing at least Fe and / or Ni as impurities and having a hydrochloric acid concentration of 7 to 12N,
After contacting with an anion exchange resin to adsorb cobalt,
Cobalt was eluted with 1 to 6 N hydrochloric acid, the obtained eluent was evaporated to dryness or concentrated, and a high-purity cobalt chloride aqueous solution having a pH of 0 to 6 was prepared. A method for producing high-purity cobalt, characterized in that precipitated cobalt is obtained. (2) In electrolytic refining, the anode and cathode are separated by a diaphragm or anion exchange membrane, and a high-purity cobalt chloride aqueous solution is at least intermittently added to the cathode side, and at the same time, anolyte is extracted at least intermittently. The method for producing high-purity cobalt according to (1) above, wherein (3) The method for producing high-purity cobalt as described in (2) above, wherein the extracted anolyte has a hydrochloric acid concentration of 7 to 12 N and then brought into contact with an anion exchange resin. (4) The method for producing high-purity cobalt as described in (1) to (3) above, wherein the electrodeposited cobalt is further melted in vacuum. I will provide a.

【0007】[0007]

【発明の具体的説明】本発明で用いる塩化コバルト水溶
液は、特に限定されるものではないが、通常市販されて
いる、いわゆる数十ppmのFeそして数百ppmのN
iを不純物として含有している粗コバルトを塩酸で溶解
したものが用いられる。
DETAILED DESCRIPTION OF THE INVENTION The aqueous cobalt chloride solution used in the present invention is not particularly limited, but it is usually commercially available, so-called several tens of ppm Fe and several hundreds ppm N.
Crude cobalt containing i as an impurity dissolved in hydrochloric acid is used.

【0008】一方、粗コバルトの溶解に使用する塩酸
は、特に限定されるものではないが、工業用の純度の悪
い塩酸でもかまわない。この理由は、塩酸中に含まれる
不純物も本発明を実施することにより、除去することが
できるからである。
On the other hand, the hydrochloric acid used for dissolving the crude cobalt is not particularly limited, but industrially low purity hydrochloric acid may be used. The reason for this is that impurities contained in hydrochloric acid can also be removed by carrying out the present invention.

【0009】コバルトを溶解する際の装置は、塩酸の有
効利用の為冷却筒や塩化水素ガスの回収装置を設けたも
のが望ましい。材質は、石英、グラファイト、テフロ
ン、ポリ容器等が好ましい。
The apparatus for dissolving cobalt is preferably equipped with a cooling cylinder and a hydrogen chloride gas recovery apparatus in order to effectively use hydrochloric acid. The material is preferably quartz, graphite, Teflon, a poly container or the like.

【0010】溶解する温度は、50〜100℃、好まし
くは80〜95℃である。50℃未満では、溶解する速
度が遅く、また、100℃を超えると、蒸発が激しく水
溶液のロスが大きい。
The melting temperature is 50 to 100 ° C, preferably 80 to 95 ° C. If it is less than 50 ° C, the dissolution rate is slow, and if it exceeds 100 ° C, the evaporation is severe and the loss of the aqueous solution is large.

【0011】塩化コバルト水溶液中の塩酸濃度は、最終
的には、7〜12Nとすることが好ましい。7N未満又
は12Nを超えると、イオン交換する際、コバルトがあ
まり吸着しない。コバルト濃度は、10〜70g/Lが
好ましい。コバルト濃度が10g/L未満であると、大
量の塩酸が必要であり、コスト増を招く。一方、70g
/Lを超えると、塩酸濃度の高い溶液では、室温即ち約
20℃で塩化コバルトが析出してしまうため好ましくな
い。
Finally, the concentration of hydrochloric acid in the aqueous cobalt chloride solution is preferably 7 to 12N. If it is less than 7 N or more than 12 N, cobalt is not adsorbed so much during ion exchange. The cobalt concentration is preferably 10 to 70 g / L. When the cobalt concentration is less than 10 g / L, a large amount of hydrochloric acid is required, which causes an increase in cost. On the other hand, 70g
If it exceeds / L, cobalt chloride will be precipitated at room temperature, that is, at about 20 ° C. in a solution having a high hydrochloric acid concentration, which is not preferable.

【0012】陰イオン交換においては、上記塩化コバル
ト水溶液を用いコバルトの吸着を行う。本発明におい
て、用いる樹脂は、陰イオン交換樹脂であれば特に限定
されないが、DOWEX(ダウエックス)1×8、DO
WEX2×8(室町化学(株)製)、ダイヤイオンSA
10A等が例示される。コバルトは、高濃度の塩酸中で
は塩化物錯体を形成し、陰イオンとして存在するため樹
脂に吸着する。Fe及びUもコバルトと同様な挙動を示
し陰イオン交換樹脂に吸着するが、主要不純物であるN
iそしてNa、K等のアルカリ金属及びThは、塩化物
錯体を形成しないため、吸着せずカラムより流出する。
[0012] In the anion exchange, cobalt is adsorbed by using the above cobalt chloride aqueous solution. In the present invention, the resin used is not particularly limited as long as it is an anion exchange resin, but DOWEX 1 × 8, DO
WEX2 × 8 (Muromachi Chemical Co., Ltd.), Diaion SA
10A etc. are illustrated. Cobalt forms a chloride complex in high-concentration hydrochloric acid, and since it exists as an anion, it is adsorbed on the resin. Fe and U also behave similarly to cobalt and are adsorbed on the anion exchange resin, but N, which is a major impurity,
Since i and alkali metals such as Na and K and Th do not form a chloride complex, they do not adsorb and flow out from the column.

【0013】さらに、カラム内に残留した不純物を取り
除くために、7〜12Nの塩酸で洗浄する。この範囲外
では、コバルトと陰イオン交換樹脂との結び付きが弱い
ため、コバルトが溶離されるため好ましくない。
Further, in order to remove impurities remaining in the column, the column is washed with 7 to 12N hydrochloric acid. Outside this range, the bond between cobalt and the anion exchange resin is weak, and cobalt is eluted, which is not preferable.

【0014】次に、陰イオン交換樹脂に吸着したコバル
トを溶離するために1〜6N、好ましくは3N〜4Nの
塩酸を使用する。1N未満では、不純物として吸着した
Fe及びUも溶離してしまうため好ましくない。6Nを
超えると、コバルトが樹脂からなかなか溶離せず使用す
る塩酸量が多くなり好ましくない。なお、コバルト溶離
後の陰イオン交換樹脂に吸着しているFe及びUについ
ては、1N未満の塩酸を用いることにより容易に溶離す
ることができる。従って、陰イオン交換樹脂の吸着容量
等を考慮に入れ、適当な時期にFe及びUの溶離をする
ことにより、陰イオン交換樹脂を再生することができ
る。以上の操作により、不純物であるNi、Fe等の重
金属、Na、Ka等のアルカリ金属及びU、Th等の放
射性元素とコバルトを分離することができる。
Next, 1 to 6N, preferably 3N to 4N hydrochloric acid is used to elute the cobalt adsorbed on the anion exchange resin. When it is less than 1N, Fe and U adsorbed as impurities are also eluted, which is not preferable. When it exceeds 6 N, cobalt is not easily eluted from the resin and the amount of hydrochloric acid used becomes large, which is not preferable. The Fe and U adsorbed on the anion exchange resin after cobalt elution can be easily eluted by using hydrochloric acid of less than 1N. Therefore, the anion-exchange resin can be regenerated by taking into consideration the adsorption capacity of the anion-exchange resin and the like and eluting Fe and U at an appropriate time. By the above operation, cobalt can be separated from heavy metals such as Ni and Fe which are impurities, alkali metals such as Na and Ka, and radioactive elements such as U and Th.

【0015】溶離した塩化コバルト水溶液は、塩酸濃度
が高いためそのままでは電解精製に用いることができな
い。そこで、本発明においては、溶離した塩化コバルト
水溶液を蒸発乾固又は濃縮した後、水を加えることによ
り、pH=0〜6の高純度コバルト水溶液とし、該水溶
液を電解液として用いる。蒸発乾固又は濃縮する方法
は、ロ−タリ−エバポレ−ション装置等を使用して行う
と良い。蒸発乾固又は濃縮する温度は、80℃以上、好
ましくは100℃以上である。80℃未満では、蒸発乾
固又は濃縮するのに時間がかかってしまう。また、その
際アスピレ−タ−等で弱減圧下にしながら行うと蒸発乾
固又は濃縮がスム−ズに行える。蒸発乾固又は濃縮する
ときの装置材質は、石英、グラファイト、テフロン等が
好ましい。この際発生する塩酸ガスは、冷却・凝縮させ
コバルト溶解、又は陰イオン交換の際に用いる塩酸等に
再利用することができる。
Since the eluted cobalt chloride aqueous solution has a high hydrochloric acid concentration, it cannot be used as it is for electrolytic refining. Therefore, in the present invention, the eluted cobalt chloride aqueous solution is evaporated to dryness or concentrated, and then water is added to form a high-purity cobalt aqueous solution having a pH of 0 to 6, and the aqueous solution is used as an electrolytic solution. The method of evaporating to dryness or concentration may be carried out by using a rotary evaporation device or the like. The temperature for evaporation to dryness or concentration is 80 ° C or higher, preferably 100 ° C or higher. If it is less than 80 ° C, it takes time to evaporate to dryness or concentrate. Further, at that time, if it is carried out under a slight reduced pressure with an aspirator or the like, evaporation to dryness or concentration can be smoothly carried out. Quartz, graphite, Teflon, or the like is preferable as a material for the apparatus for evaporation to dryness or concentration. The hydrochloric acid gas generated at this time can be cooled and condensed for reuse in hydrochloric acid or the like used for cobalt dissolution or anion exchange.

【0016】この様にして作製された高純度コバルト水
溶液からなる電解液のpHは、0〜6、好ましくは1〜
4である。pH0未満では、水素の発生量が多くなり電
流効率が非常に低下するため好ましくない。pH6を超
えると、コバルトが水酸化コバルトとなり沈殿するので
好ましくない。
The pH of the electrolytic solution made of the high-purity cobalt aqueous solution thus produced is 0 to 6, preferably 1 to
It is 4. If the pH is less than 0, the amount of hydrogen generated is large and the current efficiency is significantly reduced, which is not preferable. If the pH exceeds 6, cobalt becomes cobalt hydroxide and precipitates, which is not preferable.

【0017】電解精製における電解液中のコバルト濃度
は、10〜160g/L、好ましくは30〜130g/
Lである。10g/L未満では、水素の発生量が多くな
るため電流効率が非常に悪くなり、また電析コバルト中
の不純物濃度も上がるため好ましくない。160g/L
を超えると、塩化コバルトが析出して電析状態に悪影響
を及ぼすため好ましくない。
The cobalt concentration in the electrolytic solution in electrolytic refining is 10 to 160 g / L, preferably 30 to 130 g / L.
It is L. If it is less than 10 g / L, the amount of hydrogen generated is large, so that the current efficiency is very poor, and the impurity concentration in the electrodeposited cobalt is also increased, which is not preferable. 160 g / L
If it exceeds, cobalt chloride precipitates and adversely affects the electrodeposition state, which is not preferable.

【0018】電流密度の範囲は、0.001〜0.1A
/cm2である。0.001A/cm2未満では、生産性が低
下し効率的でない。0.1A/cm2を超えると、不純物
濃度が上がり更に電流効率も低くなり好ましくない。
The range of current density is 0.001 to 0.1 A
/ Cm 2 . If it is less than 0.001 A / cm 2 , productivity is lowered and it is not efficient. If it exceeds 0.1 A / cm 2 , the impurity concentration increases and the current efficiency also decreases, which is not preferable.

【0019】電解温度は、10〜90℃、好ましくは3
5〜55℃である。10℃未満では、電流効率が低下
し、90℃を超えると、電解液の蒸発が多くなり好まし
くない。
The electrolysis temperature is 10 to 90 ° C., preferably 3
5 to 55 ° C. If the temperature is lower than 10 ° C, the current efficiency decreases, and if it exceeds 90 ° C, the amount of evaporation of the electrolytic solution increases, which is not preferable.

【0020】カソ−ドとしては、コバルト、チタン板等
を用いる。電解槽の材質は、塩ビ、ポリプロピレン、ポ
リエチレン等が好ましい。なお、電解精製では、カソ−
ドとアノ−ドを隔膜あるいは陰イオン交換膜で仕切り、
アノ−ドから溶出した不純物がカソ−ド側に進入しない
ように、カソ−ド側に陰イオン交換により精製した高純
度塩化コバルト水溶液(カソライトとなる)を少なくと
も間欠的に入れると共にアノ−ド側から不純物濃度の高
いアノライトを少なくとも間欠的に抜き出すことが好ま
しい。この時添加するカソライト量は、少なくとも抜き
出すアノライト量と同等以上であることが好ましい。本
発明において、使用できる隔膜あるいは陰イオン交換膜
は特に限定されないが、隔膜としては、濾布PP−20
20、PP−100(安積濾紙(株)製)、テビロン1
010、陰イオン交換膜膜としては、アイオナックMA
−3475(室町化学(株)製)等が例示される。そし
て、抜き出したアノライトは、塩酸濃度を7〜12Nと
した後、陰イオン交換樹脂に接触させることにより、循
環再利用することができ、これによって電解精製を連続
して行なうことができる。なお、本発明において、少な
くとも間欠的とは、連続又は間欠的ということを意味す
る。電解精製により、電解液中に残存する微量のU、T
h等の放射性元素とコバルトを分離することができる。
As the cathode, a cobalt plate, a titanium plate or the like is used. The material of the electrolytic cell is preferably vinyl chloride, polypropylene, polyethylene or the like. In electrolytic refining,
Partition the anode and anode with a diaphragm or anion exchange membrane,
In order to prevent impurities eluted from the anode from entering the cathode side, at least intermittently insert a high-purity cobalt chloride aqueous solution (which becomes catholyte) purified by anion exchange into the cathode side and at the anode side. It is preferable to extract at least intermittently anolyte having a high impurity concentration. The amount of catholyte added at this time is preferably at least equal to or more than the amount of anolyte to be extracted. In the present invention, the diaphragm or anion exchange membrane that can be used is not particularly limited, but as the diaphragm, a filter cloth PP-20 is used.
20, PP-100 (manufactured by Azumi Filter Paper Co., Ltd.), Teviron 1
010, as an anion exchange membrane, Ionac MA
-3475 (manufactured by Muromachi Chemical Co., Ltd.) and the like are exemplified. Then, the extracted anolyte can be recycled and circulated by bringing it into contact with an anion exchange resin after adjusting the hydrochloric acid concentration to 7 to 12 N, whereby electrolytic purification can be continuously performed. In the present invention, at least intermittent means continuous or intermittent. Due to electrolytic refining, trace amounts of U and T remaining in the electrolytic solution
It is possible to separate cobalt from radioactive elements such as h.

【0021】回収した電析コバルトは、必要に応じて、
エレクトロンビ−ム溶解等の真空溶解方法で溶解し、そ
こに含まれる微量のNa、K等の揮発性元素を取り除く
ことができる。エレクトロンビ−ム溶解は、電極(ここ
では電析コバルト)をまず作製し、それを再溶解して高
純度のインゴットを得る方法である。電極の高温・高真
空下での溶解中に、揮発成分が蒸発する。例えば、次の
条件で、エレクトロンビ−ム溶解が実施される。 [溶解量5kgの場合]電流:0.7A、電圧:20K
V、真空度:10-5mmHg、時間:2hr 以上の操作により製造した高純度コバルト中には、不純
物含有量が少なく、半導体製造用のタ−ゲット材料等と
して好ましい。
The recovered electrodeposited cobalt is, if necessary,
It can be dissolved by a vacuum melting method such as electron beam melting to remove a trace amount of volatile elements such as Na and K contained therein. Electron beam melting is a method in which an electrode (here, electrodeposited cobalt) is first prepared and then remelted to obtain a high-purity ingot. Volatile components evaporate during melting of the electrode under high temperature and high vacuum. For example, electron beam melting is performed under the following conditions. [In case of dissolution amount 5kg] Current: 0.7A, voltage: 20K
V, degree of vacuum: 10 -5 mmHg, time: 2 hr High-purity cobalt produced by the above operation has a small amount of impurities and is preferable as a target material for semiconductor production.

【0022】[0022]

【実施例】以下に、本発明の実施例を呈示するが、これ
によって、本発明は、何ら制限されるものではない。
EXAMPLES Examples of the present invention will be presented below, but the present invention is not limited thereto.

【0023】表1に示すような純度の粗コバルト塊60
0gを、約12.5Lの11.6Nの塩酸水溶液の容器
に装入した。そして、温度を95℃にあげ7時間後に塩
酸濃度9N、コバルト濃度50g/Lの塩化コバルト水
溶液を得た。この液12Lを、陰イオン交換樹脂(室町
化学:DOWEX、2×8)12Lを充填したポリプロ
ピレン製のカラム(150mmφ×1200mmL)に
通液し、コバルトを吸着させた後、9Nの塩酸12Lで
洗浄した。
Crude ingot 60 of purity as shown in Table 1
0 g was charged to a container of about 12.5 L of 11.6 N hydrochloric acid aqueous solution. Then, the temperature was raised to 95 ° C., and after 7 hours, an aqueous cobalt chloride solution having a hydrochloric acid concentration of 9 N and a cobalt concentration of 50 g / L was obtained. 12 L of this liquid was passed through a polypropylene column (150 mmφ × 1200 mmL) filled with 12 L of anion exchange resin (Muromachi chemistry: DOWEX, 2 × 8) to adsorb cobalt, and then washed with 12 L of 9N hydrochloric acid. did.

【0024】次にコバルトを溶離するために4Nの塩酸
18Lを通液した。得られた精製塩化コバルト水溶液
を、ロ−タリ−エバポレ−ション装置を用いて温度14
0℃で蒸発乾固させた。蒸発乾固物は、CoCl2・2
2Oであり1600gを得た。これを純水に溶かして
10Lとした。この時のコバルト濃度は、60g/Lで
あった。そして、PHを1に調整した後、この高純度コ
バルト溶液を電解槽に5L入れ、残りの5Lはカソライ
トの供給液として使用した。
Next, 18 L of 4N hydrochloric acid was passed in to elute cobalt. The obtained purified cobalt chloride aqueous solution was heated at a temperature of 14 using a rotary evaporation device.
Evaporated to dryness at 0 ° C. Evaporated dry matter is CoCl 2 · 2
It was H 2 O and 1600 g was obtained. This was dissolved in pure water to make 10 L. The cobalt concentration at this time was 60 g / L. Then, after adjusting the pH to 1, 5 L of this high-purity cobalt solution was placed in the electrolytic cell, and the remaining 5 L was used as a supply liquid for catholyte.

【0025】次に、電流密度0.02A/cm2、温度5
0℃とし、粗コバルト板をカソ−ドとして電解精製をお
こなった。この時、アノ−ド側とカソ−ド側は隔膜(安
積濾紙(株)製,PP2020)で区切った。カソ−ド
側には、高純度塩化コバルト水溶液を供給速度120m
L/hrで供給し、アノ−ド側から同じ速度で抜き出し
た。40hr後、得られた電析物は、83gであり、収
率は95%であった。この電析コバルトをEB溶解して
79gの高純度コバルトを得た。この時の収率も95%
であった。以上の操作により得られたコバルトの純度
を、表1に示す。
Next, a current density of 0.02 A / cm 2 and a temperature of 5
The temperature was set to 0 ° C. and electrolytic refining was performed using a crude cobalt plate as a cathode. At this time, the anode side and the cathode side were separated by a diaphragm (PP2020, manufactured by Azumi Filter Paper Co., Ltd.). A high-purity cobalt chloride aqueous solution is supplied to the cathode side at a feeding speed of 120 m.
It was supplied at L / hr and extracted at the same rate from the anode side. After 40 hours, the obtained electrodeposit was 83 g, and the yield was 95%. This electrodeposited cobalt was dissolved in EB to obtain 79 g of high-purity cobalt. The yield at this time is also 95%
Met. Table 1 shows the purity of cobalt obtained by the above operation.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【発明の効果】【The invention's effect】

(1)5N以上の高純度コバルトが、陰イオン交換法−
電解精製法、そして必要に応じて真空溶解法を組み合わ
せることにより、品質が安定してかつ操作が容易に、し
かも低コストで得ることができる。 (2)得られた高純度コバルトは、半導体デバイス製造
用のタ−ゲット材料等として好適に用いられる。
(1) High-purity cobalt of 5N or more is anion exchange-
By combining the electrolytic refining method and, if necessary, the vacuum melting method, it is possible to obtain stable quality, easy operation, and low cost. (2) The obtained high-purity cobalt is suitably used as a target material for manufacturing semiconductor devices.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 少なくともFe及び/又はNiを不純物
として含有し、塩酸濃度が7〜12Nの塩化コバルト水
溶液を、陰イオン交換樹脂と接触させコバルトを吸着さ
せた後、1〜6Nの塩酸を用いてコバルトを溶離し、得
られた溶離液を蒸発乾固又は濃縮した後、pH=0〜6
の高純度塩化コバルト水溶液とし、該水溶液を電解液と
して電解精製により電析コバルトを得ることを特徴とす
る高純度コバルトの製造方法。
1. A cobalt chloride aqueous solution containing at least Fe and / or Ni as impurities and having a hydrochloric acid concentration of 7 to 12 N is contacted with an anion exchange resin to adsorb cobalt, and then 1 to 6 N hydrochloric acid is used. To elute cobalt and evaporate the resulting eluent to dryness or concentration, and then pH = 0 to 6
1. A method for producing high-purity cobalt, characterized in that the high-purity cobalt chloride aqueous solution is obtained, and electrolytically refined to obtain electrodeposited cobalt using the aqueous solution as an electrolytic solution.
【請求項2】 電解精製において、アノ−ドとカソ−ド
を隔膜あるいは陰イオン交換膜で仕切り、かつ、高純度
塩化コバルト水溶液を少なくとも間欠的にカソ−ド側に
入れると共にアノライトを少なくとも間欠的に抜き出す
ことを特徴とする請求項1記載の高純度コバルトの製造
方法。
2. In electrolytic refining, an anode and a cathode are separated by a diaphragm or an anion exchange membrane, and a high-purity cobalt chloride aqueous solution is at least intermittently added to the cathode side, and at least intermittent anolyte is added. The method for producing high-purity cobalt according to claim 1, wherein the high-purity cobalt is extracted.
【請求項3】 抜き出したアノライトの塩酸濃度を7〜
12Nとした後、陰イオン交換樹脂に接触させることを
特徴とする請求項2記載の高純度コバルトの製造方法。
3. The hydrochloric acid concentration of the extracted anolyte is 7 to 7.
The method for producing high-purity cobalt according to claim 2, wherein the method is brought into contact with an anion exchange resin after adjusting to 12N.
【請求項4】 電析コバルトを更に真空溶解することを
特徴とする請求項1乃至請求項3記載の高純度コバルト
の製造方法。
4. The method for producing high-purity cobalt according to claim 1, wherein the electrodeposited cobalt is further melted in vacuum.
JP8083195A 1995-03-14 1995-03-14 Production of high purity cobalt Withdrawn JPH08253888A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP8083195A JPH08253888A (en) 1995-03-14 1995-03-14 Production of high purity cobalt
DE19609439A DE19609439A1 (en) 1995-03-14 1996-03-11 Prodn. of pure cobalt@ for sputtering targets for electronics use
US08/615,005 US5667665A (en) 1995-03-14 1996-03-12 Process of producing high purity cobalt
US08/790,033 US5810983A (en) 1995-03-14 1997-01-28 High purity cobalt sputtering targets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8083195A JPH08253888A (en) 1995-03-14 1995-03-14 Production of high purity cobalt

Publications (1)

Publication Number Publication Date
JPH08253888A true JPH08253888A (en) 1996-10-01

Family

ID=13729357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8083195A Withdrawn JPH08253888A (en) 1995-03-14 1995-03-14 Production of high purity cobalt

Country Status (1)

Country Link
JP (1) JPH08253888A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6391172B2 (en) 1997-08-26 2002-05-21 The Alta Group, Inc. High purity cobalt sputter target and process of manufacturing the same
JP2003512525A (en) * 1999-10-15 2003-04-02 ビーエイチピー ミネラルズ インターナショナル インコーポレイテッド Resin-in-pulp method for nickel and cobalt recovery from oxide ore leaching slurries
KR100813816B1 (en) * 2000-09-29 2008-03-17 소니 가부시끼 가이샤 High Purity Iron, Method Of Manufacturing Thereof, And High Purity Iron Targets
KR100817003B1 (en) * 2000-09-29 2008-03-27 소니 가부시끼 가이샤 High purity cobalt, method of manufacturing thereof, and high purity cobalt targets
US20140178790A1 (en) * 2011-08-08 2014-06-26 Showa Denko K.K. Process for producing oxygen reducing catalyst and uses thereof
JP2020169358A (en) * 2019-04-03 2020-10-15 Jfeエンジニアリング株式会社 Zirconium purification method and zirconium purification apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6391172B2 (en) 1997-08-26 2002-05-21 The Alta Group, Inc. High purity cobalt sputter target and process of manufacturing the same
US6585866B2 (en) 1997-08-26 2003-07-01 Honeywell International Inc. High purity cobalt sputter target and process of manufacturing the same
JP2003512525A (en) * 1999-10-15 2003-04-02 ビーエイチピー ミネラルズ インターナショナル インコーポレイテッド Resin-in-pulp method for nickel and cobalt recovery from oxide ore leaching slurries
KR100813816B1 (en) * 2000-09-29 2008-03-17 소니 가부시끼 가이샤 High Purity Iron, Method Of Manufacturing Thereof, And High Purity Iron Targets
KR100817003B1 (en) * 2000-09-29 2008-03-27 소니 가부시끼 가이샤 High purity cobalt, method of manufacturing thereof, and high purity cobalt targets
US20140178790A1 (en) * 2011-08-08 2014-06-26 Showa Denko K.K. Process for producing oxygen reducing catalyst and uses thereof
US9780385B2 (en) * 2011-08-08 2017-10-03 Showa Denko K.K. Process for producing oxygen reducing catalyst and uses thereof
JP2020169358A (en) * 2019-04-03 2020-10-15 Jfeエンジニアリング株式会社 Zirconium purification method and zirconium purification apparatus

Similar Documents

Publication Publication Date Title
US5810983A (en) High purity cobalt sputtering targets
US6267827B1 (en) Ni-Fe alloy sputtering target for forming magnetic thin films, magnetic thin film, and method of manufacturing the Ni-Fe alloy sputtering target
KR100207041B1 (en) Method of recovering antimony and bismuth from copper electrolyte
JP3203587B2 (en) How to recover indium
KR20040019079A (en) Method for producing high purity nickel, high purity nickel, sputtering target comprising the high purity nickel, and thin film formed by using said sputtering target
US10882757B2 (en) Anhydrous nickel chloride and method for producing the same
JPH0382720A (en) Method for recovering indium
JP4519294B2 (en) Indium recovery method
KR20030023640A (en) Method and apparatus for processing metals, and the metals so produced
JPH11152592A (en) Production of high purity nickel and high purity nickel material for forming thin film
JPH08253888A (en) Production of high purity cobalt
JP2000219988A (en) Production of high purity nickel material and high purity nickel material for forming thin film
JP3065242B2 (en) Method for producing high-purity cobalt and high-purity cobalt sputtering target
US3406108A (en) Regeneration of spent ammonium persulfate etching solutions
JPH08127890A (en) Production of high purity cobalt
JPH073486A (en) High-purity cobalt and production of thereof
TWI252875B (en) Method and device for producing high-purity metal
RU2144572C1 (en) Method of producing tungsten and/or molybdenum-containing solution from solution of alkali-open corresponding raw material
JP2000144305A (en) High purity iron material for forming thin film and its production
JP3066886B2 (en) High purity cobalt sputtering target
JP3943351B2 (en) High purity Co-Fe alloy sputtering target, magnetic thin film formed using the sputtering target, and method for producing high purity Co-Fe alloy sputtering target
JPH11229172A (en) Method and apparatus for producing high-purity copper
JP2002201025A (en) Method for recovering indium hydroxide or indium
JPH06192879A (en) Refining method for cobalt
JP3151195B2 (en) Cobalt purification method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020604