JP3151182B2 - Copper electrolyte cleaning method - Google Patents

Copper electrolyte cleaning method

Info

Publication number
JP3151182B2
JP3151182B2 JP10186098A JP10186098A JP3151182B2 JP 3151182 B2 JP3151182 B2 JP 3151182B2 JP 10186098 A JP10186098 A JP 10186098A JP 10186098 A JP10186098 A JP 10186098A JP 3151182 B2 JP3151182 B2 JP 3151182B2
Authority
JP
Japan
Prior art keywords
copper
electrolyte
nickel
electrolytic solution
antimony
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10186098A
Other languages
Japanese (ja)
Other versions
JPH11286797A (en
Inventor
和彦 元場
弘 日合
敏文 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP10186098A priority Critical patent/JP3151182B2/en
Publication of JPH11286797A publication Critical patent/JPH11286797A/en
Application granted granted Critical
Publication of JP3151182B2 publication Critical patent/JP3151182B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、粗銅を電解精製し
て高純度電気銅を製造する際の循環銅電解液中に増加し
てくる銅、砒素、アンチモン、ビスマス、ニッケルなど
の金属を除去する銅電解液の浄液方法に関するものであ
り、特には現場で水硫化ソーダの添加により硫化水素ガ
スを必要量生成でき、取り扱い上非常に便利であり、し
かもニッケルを硫酸ニッケル及び硫化ニッケルとして、
砒素、アンチモン、およびビスマス等の不純物を硫化物
として分離・回収することを可能ならしめる銅電解液の
浄液方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention removes metals such as copper, arsenic, antimony, bismuth and nickel which increase in a circulating copper electrolytic solution when electrolytically refining crude copper to produce high-purity electrolytic copper. The present invention relates to a method for purifying a copper electrolyte solution, and in particular, a hydrogen sulfide gas can be generated in a required amount by adding sodium hydrogen sulfide on site, which is very convenient in handling, and nickel is used as nickel sulfate and nickel sulfide.
The present invention relates to a method for purifying a copper electrolyte which enables impurities such as arsenic, antimony, and bismuth to be separated and recovered as sulfide.

【0002】[0002]

【従来の技術】粗銅を電解精製して高純度電気銅を製造
する銅電解精製系においては、電解の進行につれて、銅
アノード中の銅、砒素、アンチモン、ビスマス、ニッケ
ル等が溶出して、循環銅電解液中に次第に蓄積される。
砒素、アンチモン、ビスマスといった不純物金属の濃度
の増大が電気銅の品位の劣化等を招くだけでなく、銅が
過剰に存在することにより電気銅の性状にも悪影響をも
たらす。従って、銅電解精製系においては、通常、電解
液の浄液が定期的に実施される。
2. Description of the Related Art In a copper electrolytic refining system for producing high-purity electrolytic copper by electrolytically refining crude copper, copper, arsenic, antimony, bismuth, nickel and the like in a copper anode elute and circulate as the electrolysis proceeds. Gradually accumulates in the copper electrolyte.
An increase in the concentration of an impurity metal such as arsenic, antimony, and bismuth not only deteriorates the quality of electrolytic copper, but also adversely affects the properties of electrolytic copper due to the excessive presence of copper. Therefore, in the copper electrolytic refining system, the cleaning of the electrolytic solution is usually performed periodically.

【0003】浄液方法としては、銅電解液を加熱濃縮し
て溶解度差を利用して銅を硫酸銅として分離除去し、次
いで、電解採取により液中に残存する銅、砒素、アンチ
モン、ビスマスを電着させ、最後に液を冷却して溶解度
差を利用してニッケルを硫酸ニッケルとして分離除去す
る方法が、広く実施されている。しかしながら、この浄
液方法は、砒素、アンチモン、及びビスマスの除去に電
解採取法を用いているため、電解中に猛毒のアルシンガ
ス(AsH3 )が発生するという欠点が伴う。更に、電
解採取時の電力消費量が極めて多いという欠点も有して
いる。
[0003] As a method of purifying a solution, a copper electrolyte solution is heated and concentrated to separate and remove copper as copper sulfate using a difference in solubility, and then copper, arsenic, antimony, and bismuth remaining in the solution by electrolytic sampling are removed. 2. Description of the Related Art A method of electrodepositing and finally cooling a liquid to separate and remove nickel as nickel sulfate by utilizing a difference in solubility has been widely practiced. However, since this liquid purification method uses an electrowinning method for removing arsenic, antimony, and bismuth, it has a drawback that highly toxic arsine gas (AsH 3 ) is generated during electrolysis. Furthermore, it has the disadvantage that the power consumption during electrowinning is extremely high.

【0004】これらの欠点を解消できる方法としては、
特開平9−78284号で提案されている方法がある。
この方法は、図2に概略的に示してあるが、電解液を2
つに分割し、第I液に水硫化ソーダを添加して銅、砒
素、アンチモン、及びビスマスを硫化物として第I液か
ら分離除去し、更に、過剰の水硫化ソーダを添加して液
中に残存する硫酸と反応させて硫化水素ガスを発生さ
せ、その発生したガスを第II液に接触させて、銅、砒
素、アンチモン、及びビスマスを硫化物として第II液か
ら分離除去することを特徴とするものであり、銅電解液
の浄液方法としては優れている。更に、中和設備におい
て、水硫化ソーダを添加した一方の分割電解液に、消石
灰あるいは炭酸カルシウム、苛性ソーダ等のアルカリ剤
を添加してpHを8〜12範囲として硫化物として十分
に除去できないニッケルや鉄等の不純物を中和沈殿とし
て分離除去するのが有益である。沈殿はろ滓として製錬
工程に送られ、ろ液は排水として放出される。
[0004] As a method of solving these drawbacks,
There is a method proposed in JP-A-9-78284.
This method is illustrated schematically in FIG.
Then, sodium, hydrogen sulfide is added to liquid I to separate and remove copper, arsenic, antimony, and bismuth from liquid I as sulfides. Hydrogen sulfide gas is generated by reacting with the remaining sulfuric acid, and the generated gas is brought into contact with liquid II to separate and remove copper, arsenic, antimony, and bismuth as sulfide from liquid II. This is an excellent method for purifying a copper electrolyte. Further, in the neutralization facility, an alkaline agent such as slaked lime or calcium carbonate or caustic soda is added to one of the divided electrolytes to which sodium hydrosulfide has been added to adjust the pH to 8 to 12 so that nickel or nickel which cannot be sufficiently removed as sulfide is added. It is beneficial to separate and remove impurities such as iron as a neutralized precipitate. The precipitate is sent to the smelting process as filter cake, and the filtrate is discharged as wastewater.

【0005】この提案方法(電解液2分割法と呼ぶ)
は、銅電解循環液の浄液方法として、有害なアルシンを
発生させる砒素等の電解採取に替わる工業的に実施可能
な有用な方式であり、使用される硫化水素ガスは、現場
で、水硫化ソーダ添加槽において安価な工業用水硫化ソ
ーダを液中に残存せる硫酸と反応させて生成され、必要
量だけ直接反応槽に通過せしめられるから、処理がやり
やすく、猛毒で高価な硫化水素ガスを大量に運搬・貯蔵
する必要がなくなり、安全な操業を行うことができる点
で非常に優れた方法ではある。
[0005] This proposed method (referred to as the electrolytic solution splitting method)
Is a useful method that can be used industrially as a method for purifying the copper electrolysis circulating fluid, instead of electrowinning arsenic or the like that generates harmful arsine. It is produced by reacting inexpensive industrial sodium hydrogen sulfide with sulfuric acid remaining in the liquid in a soda addition tank, and the required amount is passed directly to the reaction tank, so it is easy to process and a large amount of highly toxic and expensive hydrogen sulfide gas is used. This is a very excellent method in that it eliminates the need to transport and store it in a safe place and allows safe operation.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、この電
解液2分割法では、水硫化ソーダを添加した一方の分割
電解液からニッケルや鉄などの不純物を分離除去する際
に、液中の硫酸濃度が高く、また処理量も多いため多量
の中和剤を必要とする。それ故、本発明は、電解液2分
割法の利点をなるだけ生かしながら、粗銅を電解精製し
て高純度電気銅を製造する銅電解精製系における循環銅
電解液から、ニッケルを硫酸ニッケル及び硫化ニッケル
として回収し、砒素、アンチモン、およびビスマス等の
不純物を硫化物として分離・回収できる方法を提供する
ことを課題とする。
However, according to the electrolytic solution splitting method, when impurities such as nickel and iron are separated and removed from one of the split electrolytes to which sodium hydrosulfide is added, the sulfuric acid concentration in the solution is reduced. It is expensive and requires a large amount of neutralizing agent due to its large throughput. Therefore, the present invention provides nickel sulfate and sulfide from a circulating copper electrolytic solution in a copper electrolytic refining system for producing high-purity electrolytic copper by electrolytically refining crude copper while making the most of the advantage of the electrolytic solution splitting method. It is an object of the present invention to provide a method of recovering nickel and separating and recovering impurities such as arsenic, antimony, and bismuth as sulfide.

【0007】[0007]

【課題を解決するための手段】本発明者は、銅電解液に
硫化水素ガスを接触させて、銅電解液中の銅、砒素、ア
ンチモン及びビスマスを硫化物として分離除去し、銅等
の回収後、銅電解液を2分割し一方を銅電解精製系の循
環銅電解液に戻し、もう一方の銅電解液は、加熱濃縮
し、次いで冷却を行い、硫酸ニッケルの溶解度差を利用
して、ニッケル分の一部を硫酸ニッケルとして除去する
と共に、この銅電解液を再び2分割し、一方を銅電解精
製系の循環銅電解液に戻し、もう一方の銅電解液には、
水硫化ソーダを添加して硫化水素を発生させ、このガス
を次に処理すべき銅電解液に接触させて、その銅電解液
中の銅、砒素、アンチモン、ビスマスを硫化物として分
離除去するのに用いる方式が非常に実用的であることを
見いだした。
Means for Solving the Problems The present inventors contacted a hydrogen sulfide gas with a copper electrolyte to separate and remove copper, arsenic, antimony and bismuth in the copper electrolyte as sulfide, and to recover copper and the like. Thereafter, the copper electrolyte was divided into two parts, one of which was returned to the circulating copper electrolyte of the copper electrorefining system, and the other copper electrolyte was heated and concentrated, then cooled, and utilizing the difference in solubility of nickel sulfate, A part of nickel is removed as nickel sulfate, and this copper electrolyte is again divided into two parts, one of which is returned to the circulating copper electrolyte of the copper electrolytic refining system, and the other copper electrolyte is
Hydrogen sulfide is generated by adding sodium hydrogen sulfide, and this gas is brought into contact with the copper electrolyte to be processed next, and copper, arsenic, antimony and bismuth in the copper electrolyte are separated and removed as sulfide. Was found to be very practical.

【0008】硫化水素発生の際、副反応として銅電解液
中のニッケル分から硫化ニッケルが生ずるので、これを
硫化物として分離除去することができる。銅電解液に硫
化水素ガスを接触させて、銅電解液中の銅、砒素、アン
チモン及びビスマスを硫化物として分離除去する前に、
電解採取法又は電解液の加熱濃縮法により予め銅の一部
を分離回収しておけば、水硫化ソーダや硫化水素ガスの
必要量が少なくなると共に、銅等を含む硫化物の発生量
を減らせる利点を有する。
When hydrogen sulfide is generated, nickel sulfide is generated from nickel in the copper electrolyte as a side reaction, and can be separated and removed as sulfide. Before contacting the copper electrolyte with hydrogen sulfide gas and separating and removing copper, arsenic, antimony and bismuth in the copper electrolyte as sulfides,
If a part of copper is separated and recovered in advance by the electrowinning method or the heating and concentration method of the electrolytic solution, the required amount of sodium hydrosulfide and hydrogen sulfide gas is reduced, and the amount of sulfide containing copper etc. is reduced. Have the advantage.

【0009】こうした知見基づいて、本発明は、 (1)銅電解精製における循環電解液中の不純物の堆積
を防止するため電解液の一部を電解槽から抜き出して浄
液した後、該電解槽に循環する銅電解液の浄液方法にお
いて、抜き出した銅電解液に硫化水素ガスを接触させ
て、銅電解液中の銅、砒素、アンチモン及びビスマスを
硫化物として分離除去し、該硫化物を分離除去した銅電
解液濾液を2分割し、一方を循環銅電解液に戻し、もう
一方の銅電解液を加熱濃縮し、次いで冷却してニッケル
分の一部を硫酸ニッケルとして除去し、硫酸ニッケルを
除去した銅電解液濾液を再び2分割し、一方を循環銅電
解液に戻し、もう一方の銅電解液濾液に水硫化ソーダを
添加して硫化水素を発生させ、該発生した硫化水素を次
に処理すべき銅電解液に接触させるの使用することを
特徴とする銅電解液の浄液方法を提供する。本発明はま
た、 (2)抜き出した銅電解液に硫化水素ガスを接触させ
て、銅電解液中の銅、砒素、アンチモン及びビスマスを
硫化物として分離除去する前に、電解採取法又は電解液
の加熱濃縮法により予め銅の一部を分離回収することを
特徴とする前記(1)の銅電解液の浄液方法、及び (3)抜き出した銅電解液を電解採取方式により液中の
銅の大部分を回収する前に、該銅電解液をイオン交換樹
脂を通過させ、銅電解液中のアンチモン及び/又はビス
マスの一部をイオン交換樹脂に吸着除去する前記(2)
の銅電解液の浄液方法を提供する。
[0009] Based on these findings, the present invention is, after solution purification by extracting a part of the electrolyte from the electrolytic cell to prevent deposition of impurities in the circulating electrolyte in (1) copper electrorefining, electropolishing In the method for purifying a copper electrolyte circulating in a tank, a hydrogen sulfide gas is brought into contact with the extracted copper electrolyte to separate and remove copper, arsenic, antimony, and bismuth in the copper electrolyte as sulfides. The copper electrolyte filtrate from which is separated and removed is divided into two, one is returned to the circulating copper electrolyte, the other copper electrolyte is heated and concentrated, and then cooled to remove a part of nickel as nickel sulfate. The copper electrolyte filtrate from which nickel has been removed is again divided into two parts, one is returned to the circulating copper electrolyte, and sodium hydrosulfide is added to the other copper electrolyte filtrate to generate hydrogen sulfide. Next to the copper electrolyte to be treated Provided is a method for purifying a copper electrolyte, which is used for contacting. The present invention also provides (2) an electrolytic extraction method or an electrolytic solution before contacting hydrogen sulfide gas with the extracted copper electrolytic solution to separate and remove copper, arsenic, antimony, and bismuth in the copper electrolytic solution as sulfides. (1) a method for purifying a copper electrolyte solution according to the above (1), wherein a part of copper is separated and recovered in advance by a heat concentration method; Before recovering most of the above, the copper electrolyte is passed through an ion exchange resin, and a part of antimony and / or bismuth in the copper electrolyte is adsorbed and removed by the ion exchange resin (2).
And a method for purifying a copper electrolyte.

【0010】[0010]

【発明の実施の形態】銅電解精製においては、陰極に析
出する銅量に比べて陽極から溶出する銅量の方が一般に
多いので、電解液中の銅の濃度がしだいに増加する。所
定以上の銅濃度の増加は最適電解精製を妨げる。一
方、銅陽極に含まれている砒素、アンチモン、ビスマ
ス、ニッケル、鉄などが電解液中に溶出する。これら不
純物イオンがある程度以上になると陰極に析出して電気
銅の品位を低下させる。また、ニッケルは電解電圧を上
昇させ、アンチモンは加水分解によって浮遊化するとい
った有害な作用も呈する。そこで、電解槽から電解液を
抜き出して浄化後電解槽に戻す銅電解循環液の浄液が重
要となる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In copper electrolytic refining, the amount of copper eluted from an anode is generally larger than the amount of copper deposited on a cathode, so that the concentration of copper in an electrolytic solution gradually increases. Increase of a predetermined or more copper concentration interfere with optimal electrorefining. On the other hand, arsenic, antimony, bismuth, nickel, iron and the like contained in the copper anode elute in the electrolyte. When these impurity ions reach a certain degree or more, they deposit on the cathode and lower the quality of electrolytic copper. Nickel also has the detrimental effect of raising the electrolysis voltage and antimony being suspended by hydrolysis. Therefore, it is important to remove the electrolytic solution from the electrolytic cell and purify the circulating copper electrolytic solution after the purification and return to the electrolytic cell.

【0011】本発明の方法を利用した一つの実施の形態
である、銅電解液からの銅、砒素、アンチモン、ビスマ
ス、ニッケルなどの金属を除去し浄液を図る銅電解液の
処理方法を、図1にプロセスシートとして、以下に具体
的に詳述するが、本発明の範囲がこれに限定されるもの
ではないことを理解されたい。
One embodiment utilizing the method of the present invention is a method for treating a copper electrolyte by removing metals such as copper, arsenic, antimony, bismuth and nickel from the copper electrolyte to purify the solution. FIG. 1 is a process sheet specifically described below in detail, but it should be understood that the scope of the present invention is not limited thereto.

【0012】1.銅電解採取による銅の予備回収 銅電解液からの電解採取により銅の一部を予め分離回収
する。この方法によれば、純度が99%以上の電気銅が
得られる。銅電解液中には銅が金属分としては最も多く
含まれているため、液をそのまま硫化水素ガスと接触さ
せると、多量の硫化銅が他の硫化物と共に生成される。
この場合には、硫化水素ガスの消費が多くなり、硫化物
量も多くなるため、予め電解採取により銅を分離回収す
ればその必要はなくなるため有利である。なお、電解採
取する場合には、まず銅電解液をイオン交換樹脂で予備
処理すると、アンチモン、ビスマス等の不純物が混入せ
ず、電気銅の純度が高まり、一層有利である。上記処理
後、電解液中には、典型的には、銅が約5〜20g/
L、砒素が約1〜10g/L、アンチモンが約0.1〜
1g/L、ビスマスが約0.05〜1.0g/L、ニッ
ケルが約5〜20g/L、遊離硫酸が約150〜300
g/L含まれている。別法として、銅電解液を加熱濃縮
して硫酸銅を予め分離回収しても良い。
1. Preliminary recovery of copper by copper electrowinning Part of copper is separated and recovered in advance by electrowinning from copper electrolyte. According to this method, electrolytic copper having a purity of 99% or more can be obtained. Since the copper electrolyte contains the largest amount of copper as a metal component, a large amount of copper sulfide is generated together with other sulfides when the solution is brought into contact with hydrogen sulfide gas as it is.
In this case, the consumption of the hydrogen sulfide gas increases and the amount of the sulfide also increases. Therefore, if copper is separated and recovered by electrowinning in advance, the necessity is eliminated, which is advantageous. In the case of electrowinning, when the copper electrolytic solution is first pretreated with an ion exchange resin, impurities such as antimony and bismuth are not mixed, and the purity of electrolytic copper is increased, which is more advantageous. After the above treatment, the electrolyte typically contains about 5 to 20 g / copper / copper.
L, arsenic is about 1-10 g / L, antimony is about 0.1-
1 g / L, bismuth about 0.05-1.0 g / L, nickel about 5-20 g / L, free sulfuric acid about 150-300
g / L. Alternatively, copper sulfate may be heated and concentrated to separate and recover copper sulfate in advance.

【0013】2.銅、砒素、アンチモン及びビスマスの
除去 工程1で銅の一部が分離除去された電解後液に硫化水素
ガスを接触させて、銅電解液中の銅、砒素、アンチモン
及びビスマスと反応を起こさせ、それらを硫化物として
生成・沈殿させた後、液中から、慣用的な濾過方法によ
り、分離除去する。硫化水素ガスは、上述の砒素等の量
に応じて必要な量を決定する。通常、硫化物の生成に必
要な理論量を約5〜10%だけ上回る量使用する。分離
された硫化物のニッケルの含有量はゼロ又はそれに限り
なく近い。
2. Removal of copper, arsenic, antimony and bismuth In step 1, hydrogen sulfide gas is brought into contact with the electrolyzed solution from which a part of copper has been separated and removed to cause a reaction with copper, arsenic, antimony and bismuth in the copper electrolyte. After they are formed and precipitated as sulfides, they are separated and removed from the liquid by a conventional filtration method. The required amount of hydrogen sulfide gas is determined according to the amount of arsenic and the like described above. Usually, an amount of about 5 to 10% above the theoretical amount required for sulfide formation is used. The nickel content of the separated sulphides is zero or infinitely close.

【0014】3.銅電解液の分割(その1) 銅等を硫化物として分離した後に得られた濾液を第1液
(濾液1)と第2液(濾液2)に分割する。第1液(濾
液1)は、工程1、2を経て、銅、砒素、アンチモン等
の成分が除去され、銅の電解精製に適するように成分調
整されており、浄液として銅電解精製工程に回送する。
実際、得られた浄液中の銅、砒素、アンチモンの濃度
は、いずれも0.1g/L以下である。第2液(濾液
2)はニッケルの回収工程に供する。第1液(濾液1)
と第2液(濾液2)の割合は、詳しくは後述するが、第
1液(濾液1)はニッケルの回収に必要な量が実操業上
望まれることから、約2:1〜5:1にするのが好まし
い。
3. Separation of Copper Electrolyte (Part 1) The filtrate obtained after separating copper or the like as sulfide is divided into a first liquid (filtrate 1) and a second liquid (filtrate 2). The first liquid (filtrate 1) is subjected to steps 1 and 2 to remove components such as copper, arsenic, and antimony, and the components are adjusted so as to be suitable for electrolytic refining of copper. Forward.
Actually, the concentrations of copper, arsenic and antimony in the obtained purified solution are all 0.1 g / L or less. The second liquid (filtrate 2) is subjected to a nickel recovery step. First liquid (filtrate 1)
The ratio of the first liquid (filtrate 1) to the second liquid (filtrate 2) will be described later in detail, but the first liquid (filtrate 1) is about 2: 1 to 5: 1 since the amount required for nickel recovery is practically desired. It is preferred that

【0015】4.硫酸ニッケルの生成・回収 第2液(濾液2)を加熱濃縮して、次いで冷却を行い、
ニッケルを硫酸ニッケルとして結晶させた後、液中から
慣用的な濾過方法により、分離回収する。この工程で、
液中から約40〜70重量%のニッケルが回収される。
回収された硫酸ニッケルには不純物がほとんど含まれて
いないため、そのままで製品としての有用性を有する。
4. Generation and recovery of nickel sulfate The second liquid (filtrate 2) is heated and concentrated, and then cooled,
After crystallizing nickel as nickel sulfate, it is separated and recovered from the liquid by a conventional filtration method. In this process,
About 40 to 70% by weight of nickel is recovered from the liquid.
Since the recovered nickel sulfate contains almost no impurities, it has utility as a product as it is.

【0016】5.銅電解液の分割(その2) ニッケルを硫酸ニッケルとして分離した後に得られた濾
液を第3液(濾液3)と第4液(濾液4)に分割する。
第3液(濾液3)は工程4を経てニッケルの成分の一部
が除去され、銅の電解精製に適するように成分調整され
ており、浄液として銅電解精製工程に回送する。第4液
(濾液4)は硫化水素ガスの発生並びにニッケルの回収
工程に供する。第3液(濾液3)と第4液(濾液4)の
割合は、詳しくは後述するが、硫化水素ガスを必要な量
だけ生成させることが実操業上望まれることから、約
2:1〜4:1にするのが好ましい。
5. Division of Copper Electrolyte (Part 2) The filtrate obtained after separating nickel as nickel sulfate is divided into a third liquid (filtrate 3) and a fourth liquid (filtrate 4).
The third liquid (filtrate 3) has been subjected to step 4 to remove some of the nickel components, and the components have been adjusted so as to be suitable for the electrolytic refining of copper. The fourth liquid (filtrate 4) is used for generating hydrogen sulfide gas and recovering nickel. The ratio of the third liquid (filtrate 3) to the fourth liquid (filtrate 4) will be described later in detail, but since it is practically desired to generate a required amount of hydrogen sulfide gas, about 2: 1 to 1 Preferably it is 4: 1.

【0017】6.硫化水素ガスの発生・利用 第4液(濾液4)に水硫化ソーダを添加して、液中の硫
酸と反応させて硫化水素ガスを発生させる。このガスを
回収して工程2で用いれば、猛毒なガスを大量に現場生
成でき、取り扱い上非常に便利である。必要な硫化水素
ガスの量を予め決定して、第4液(濾液4)に水硫化ソ
ーダを、該ガスの発生に必要な量だけ添加する。第4液
(濾液4)は工程4の濃縮をへているため硫酸濃度が高
く(350g/l〜600g/l)、必要となる液量が
少なくてすみ、また反応槽を小さくできる。
6. Generation and utilization of hydrogen sulfide gas Sodium hydrosulfide is added to the fourth liquid (filtrate 4) and reacted with sulfuric acid in the liquid to generate hydrogen sulfide gas. If this gas is recovered and used in step 2, a large amount of highly toxic gas can be generated on site, which is very convenient in handling. The necessary amount of hydrogen sulfide gas is determined in advance, and sodium hydrosulfide is added to the fourth liquid (filtrate 4) in an amount necessary for generation of the gas. Since the fourth liquid (filtrate 4) is concentrated in step 4, the sulfuric acid concentration is high (350 g / l to 600 g / l), the required amount of liquid is small, and the size of the reaction tank can be reduced.

【0018】7.硫化ニッケルの生成・回収 工程6で硫化水素を発生させる際、液中に残存している
ニッケルが水硫化ソーダと反応して硫化ニッケルとして
生成・沈殿する。この硫化ニッケルを、液中から、慣用
的な濾過方法により、回収分離する。この工程で、液中
から約90重量%のニッケルが回収される。その後液
は、排水となる。
[7] Generation and Recovery of Nickel Sulfide When hydrogen sulfide is generated in step 6, nickel remaining in the liquid reacts with sodium bisulfide to form and precipitate as nickel sulfide. The nickel sulfide is recovered and separated from the liquid by a conventional filtration method. In this step, about 90% by weight of nickel is recovered from the liquid. Thereafter, the liquid is drained.

【0019】[0019]

【実施例】上記の発明の実施形態に基づいて、また図2
に示した特開平9−78284号で提案されている方法
に基づいて、銅電解液を処理した。 (実施例1) 1.銅電解採取による予備回収 銅45g/Lを含む銅電解液(30m3 )を公知の電解
採取法により処理し、純度99.9%の電気銅1を45
0kg、純度99%の電気銅2を606kg分離回収し
た。電解の終了した液には、銅が10g/L、砒素が5
g/L、アンチモンが0.5g/L、ビスマスが0.2
g/L、ニッケルが18g/L、遊離硫酸が244g/
L含まれていた。 2.銅、砒素、アンチモン及びビスマスの除去 電解後液に225m3 の硫化水素ガスを導入し、液とガ
スの間に接触反応を起こさせて、硫化物1を生成・沈殿
させた。これを、液中から、慣用的な濾過方法により、
分離除去した。硫化物1にはニッケルは実用上含まれて
いなかった。得られた濾液は、銅、砒素、アンチモン及
びビスマスをいずれも0.1g/L以下の濃度でしか含
まず、清浄であった。 3.銅電解液の分割(その1) 濾液から、20m3 を浄液(濾液1)として分けた。 4.硫酸ニッケルの生成・回収 残りの10m3 の濾液を、加熱濃縮して、次いで冷却を
行い、液中のニッケルを硫酸ニッケルとして生成・沈殿
させた。生成した硫酸ニッケルは、慣用的な方法で、濾
過・分離して回収した。硫酸ニッケルの量は594kg
であった。 5.銅電解液の分割(その2) 濾液から、3.3m3 を浄液(濾液3)として分けた。 6.硫化水素ガスの発生・利用 残りの1.5m3 の濾液に、NaSHを約25%含む工
業用水硫化ソーダを2540kgを毎分約10kgの速
度で添加して、液中の硫酸と反応させて、硫化水素ガス
を255m3 発生させた。 7.硫化ニッケルの生成・回収 硫化水素を発生させる際、液中に残存しているニッケル
が水硫化ソーダと反応して硫化ニッケルとして生成・沈
殿した。生成した、硫化ニッケルは、慣用的な方法で、
濾過・分離した。乾燥後の硫化ニッケル量は76kgで
あった。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG.
The copper electrolyte was treated according to the method proposed in JP-A-9-78284. (Example 1) 1. Preliminary recovery by copper electrowinning A copper electrolyte (30 m 3 ) containing 45 g / L of copper was treated by a known electrowinning method to obtain 45% of electrolytic copper 1 having a purity of 99.9%.
0 kg and 606 kg of electrolytic copper 2 having a purity of 99% were separated and recovered. The solution after electrolysis contains 10 g / L of copper and 5 g of arsenic.
g / L, antimony 0.5 g / L, bismuth 0.2
g / L, nickel 18 g / L, free sulfuric acid 244 g / L
L was included. 2. Removal of copper, arsenic, antimony, and bismuth 225 m 3 of hydrogen sulfide gas was introduced into the solution after the electrolysis, and a contact reaction was caused between the solution and the gas to generate and precipitate sulfide 1. From the liquid, by a conventional filtration method,
Separated and removed. Nickel was not practically contained in Sulfide 1. The obtained filtrate contained copper, arsenic, antimony, and bismuth only at a concentration of 0.1 g / L or less, and was clean. 3. Division of Copper Electrolyte (Part 1) From the filtrate, 20 m 3 was separated as a pure liquid (filtrate 1). 4. Production and Recovery of Nickel Sulfate The remaining 10 m 3 of the filtrate was concentrated by heating, and then cooled to produce and precipitate nickel in the solution as nickel sulfate. The produced nickel sulfate was collected by filtration and separation by a conventional method. The amount of nickel sulfate is 594kg
Met. 5. Separation of Copper Electrolyte (Part 2) From the filtrate, 3.3 m 3 was separated as a pure liquid (filtrate 3). 6. Generation and Use of Hydrogen Sulfide Gas To the remaining 1.5 m 3 of the filtrate, 2540 kg of industrial sodium hydrogen sulfide containing about 25% of NaSH is added at a rate of about 10 kg per minute, and reacted with sulfuric acid in the liquid. 255 m 3 of hydrogen sulfide gas was generated. 7. Generation and recovery of nickel sulfide When hydrogen sulfide was generated, nickel remaining in the liquid reacted with sodium bisulfide to form and precipitate as nickel sulfide. The produced nickel sulfide is produced in a conventional manner,
Filtered and separated. The amount of nickel sulfide after drying was 76 kg.

【0020】この方法での、処理液及び各工程での生成
物及び処理後液の物量は、表1に示す通りであった。
In this method, the amounts of the processing liquid, the products in each step and the amount of the liquid after the processing are as shown in Table 1.

【0021】[0021]

【表1】 [Table 1]

【0022】(比較例)図2に示されるように銅45g
/lを含有する電解液30m3 を公知の電解採取法(脱
銅電解)により処理し、銅純度99.99%の電気銅を
450Kgそして99.9%の電気銅を600Kg先に
分離回収した。電解の完了した液には、銅が10g/
l、砒素が5g/l、アンチモンが0.4g/l、ビス
マスが0.1g/l、ニッケルが15g/l及びフリー
の硫酸が244g/l含まれていた。この溶液の約1/
5である一方の分割電解液(第I液)6.7m3 にNa
SHを約25%含む工業用水硫化ソーダ500Kgを添
加して、銅、砒素、アンチモン及びビスマスを沈殿させ
た(硫化物I)。さらに、過剰の工業用水硫化ソーダ1
740Kgを毎分約10Kgの速度で添加して、溶液中
の硫酸と反応させ、硫化水素ガスを発生させた。この硫
化水素ガスを残りの分割電解液(第II液)23.3m
3 に導き、残りの分割電解液(第II液)と硫化水素ガ
スを接触反応させ、銅、砒素、アンチモン及びビスマス
を沈殿させた(硫化物II)。沈殿物をろ過分離し、得
られたろ過液は銅、砒素アンチモン、ビスマスの濃度が
いづれも0.1g/l以下と清浄なため、電解工程に循
環使用した。工業用水硫化ソーダを添加した溶液は、硫
酸、ニッケル、鉄等の物質を含むため、消石灰905K
gを添加して、溶液のpHを10として、重金属を中和
沈殿させたのち、ろ過を行ない、ろ滓は製錬工程に繰り
返し処理した。銅電解液の浄液方法としては優れている
が、この電解液2分割法では、水硫化ソーダを添加した
一方の分割電解液からニッケルや鉄などの不純物を分離
除去する際に、液中の硫酸濃度が高く、また処理量も多
いため多量の中和剤を必要とした。
(Comparative Example) As shown in FIG.
/ L electrolyte solution 30 m 3 containing treated by a known electrowinning method (decoppered electrolysis) was separated and recovered copper purity of 99.99% copper to 450Kg and 99.9% of the copper to 600Kg destination . In the solution after the electrolysis, copper was 10 g /
1, 5 g / l of arsenic, 0.4 g / l of antimony, 0.1 g / l of bismuth, 15 g / l of nickel and 244 g / l of free sulfuric acid. About 1 / of this solution
5 in 6.7 m 3 of one of the divided electrolytes (liquid I)
500 kg of industrial sodium hydrogen sulfide containing about 25% SH was added to precipitate copper, arsenic, antimony and bismuth (sulfide I). In addition, excess industrial sodium hydrosulfide 1
740 Kg was added at a rate of about 10 Kg per minute and reacted with sulfuric acid in the solution to generate hydrogen sulfide gas. This hydrogen sulfide gas was supplied to the remaining divided electrolyte (second solution) 23.3 m.
The reaction was led to 3 , and the remaining split electrolyte solution (second solution II) was brought into contact with hydrogen sulfide gas to precipitate copper, arsenic, antimony and bismuth (sulfide II). The precipitate was separated by filtration, and the obtained filtrate was clean and had a concentration of copper, arsenic antimony and bismuth of 0.1 g / l or less. Since the solution to which industrial sodium bisulfide is added contains substances such as sulfuric acid, nickel and iron, slaked lime 905K
g was added to adjust the pH of the solution to 10 to neutralize and precipitate heavy metals, followed by filtration, and the filter cake was repeatedly subjected to a smelting process. Although it is excellent as a method for purifying a copper electrolytic solution, in this electrolytic solution splitting method, when impurities such as nickel and iron are separated and removed from one of the split electrolytic solutions to which sodium hydrosulfide is added, the electrolytic solution in the liquid is separated. Since the sulfuric acid concentration was high and the amount of treatment was large, a large amount of neutralizing agent was required.

【0023】(実施例2)銅45g/l、砒素5g/
l、アンチモン0.4g/l、ビスマスが0.1g/
l、ニッケル15g/l及びフリーの硫酸160g/l
を含む電解液を抜き出し、イオン交換樹脂(ミヨシ樹脂
(株)製のEPOROUS MX−2)を通過させ、ア
ンチモン及びビスマスの一部を吸着させた。この樹脂を
通過した溶液は銅45g/l、砒素5g/l、アンチモ
ン0.1g/l、ビスマスが0.05g/l、ニッケル
15g/l及びフリーの硫酸160g/lを含んでい
た。この溶液を公知の方法にて、銅を電解採取法により
処理したが、液中のアンチモン及びビスマスが低いた
め、純度99.99%の電気銅が600Kgそして純度
99.9%の電気銅が450Kg得られた。電解の完了
した液は実施例1と同様にして処理した。
(Example 2) Copper 45 g / l, arsenic 5 g / l
l, antimony 0.4 g / l, bismuth 0.1 g /
1, nickel 15g / l and free sulfuric acid 160g / l
Was extracted and passed through an ion exchange resin (EPROUS MX-2 manufactured by Miyoshi Resin Co., Ltd.) to adsorb some of antimony and bismuth. The solution passed through the resin contained 45 g / l copper, 5 g / l arsenic, 0.1 g / l antimony, 0.05 g / l bismuth, 15 g / l nickel and 160 g / l free sulfuric acid. This solution was treated by a known method to remove copper by electrolytic sampling. However, since antimony and bismuth in the solution were low, 600 kg of 99.99% pure copper and 450 kg of 99.9% pure copper were used. Obtained. The solution after the electrolysis was treated in the same manner as in Example 1.

【0024】[0024]

【発明の効果】本発明の方法によれば、銅電解液から、
ニッケルを硫酸ニッケル及び硫化ニッケルとして回収
し、砒素、アンチモン、およびビスマスは硫化物として
回収できる。また、本発明の方法によって、第4液(濾
液4)に水硫化ソーダを添加して、液中の硫酸と反応さ
せて硫化水素ガスを発生させるので、このガスを回収し
て工程2で用いることにより、猛毒なガスを大量に現場
生成でき、取り扱い上非常に便利である。必要な硫化水
素ガスの量を予め決定して、第4液(濾液4)に水硫化
ソーダを、該ガスの発生に必要な量だけ添加して、銅電
解液の浄液ができる点で、電解液2分割法の長所を生か
すことができる。
According to the method of the present invention, from a copper electrolyte,
Nickel can be recovered as nickel sulfate and nickel sulfide, and arsenic, antimony, and bismuth can be recovered as sulfide. According to the method of the present invention, sodium bisulfide is added to the fourth liquid (filtrate 4) and reacted with sulfuric acid in the liquid to generate hydrogen sulfide gas. This gas is recovered and used in step 2. As a result, a large amount of highly toxic gas can be generated on site, which is very convenient in handling. The required amount of hydrogen sulfide gas is determined in advance, and sodium hydrosulfide is added to the fourth liquid (filtrate 4) in an amount required for generation of the gas, so that the copper electrolyte can be purified. The advantages of the electrolytic solution splitting method can be utilized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態の1つに従う銅電解液の浄液
方法のフローシートである。
FIG. 1 is a flow sheet of a method for purifying a copper electrolyte according to one embodiment of the present invention.

【図2】従来法の銅電解液の浄液方法のフローシートで
ある。
FIG. 2 is a flow sheet of a conventional method for purifying a copper electrolyte.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平9−78284(JP,A) 特開 平7−188963(JP,A) 特開 平6−116775(JP,A) 特開 平10−147823(JP,A) (58)調査した分野(Int.Cl.7,DB名) C25C 1/00 - 7/08 C22B 15/14 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-9-78284 (JP, A) JP-A-7-188963 (JP, A) JP-A-6-116775 (JP, A) JP-A-10-108 147823 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C25C 1/00-7/08 C22B 15/14

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 銅電解精製における循環電解液中の不純
物の蓄積を防止するため電解液の一部を電解槽から抜き
出して浄液した後、該電解槽に循環する銅電解液の浄液
方法において、抜き出した銅電解液に硫化水素ガスを接
触させて、銅電解液中の銅、砒素、アンチモン及びビス
マスを硫化物として分離除去し、該硫化物を分離除去し
た銅電解液濾液を2分割し、一方を循環銅電解液に戻
し、もう一方の銅電解液を加熱濃縮し、次いで冷却して
ニッケル分の一部を硫酸ニッケルとして除去し、硫酸ニ
ッケルを除去した銅電解液濾液を再び2分割し、一方を
循環銅電解液に戻し、もう一方の銅電解液濾液に水硫化
ソーダを添加して硫化水素を発生させ、該発生した硫化
水素を次に処理すべき銅電解液に接触させるの使用する
ことを特徴とする銅電解液の浄液方法。
1. A method for purifying a copper electrolytic solution circulating in an electrolytic cell after extracting a part of the electrolytic solution from the electrolytic cell to purify the electrolytic solution in order to prevent accumulation of impurities in the circulating electrolytic solution in copper electrolytic refining. , A hydrogen sulfide gas is brought into contact with the extracted copper electrolyte to separate and remove copper, arsenic, antimony and bismuth in the copper electrolyte as sulfides, and the copper electrolyte filtrate from which the sulfides are separated and removed is divided into two parts One was returned to the circulating copper electrolyte, the other was concentrated by heating, and then cooled to remove a part of nickel as nickel sulfate, and the copper electrolyte filtrate from which nickel sulfate had been removed was recycled again. Divide, return one to the circulating copper electrolyte, add sodium bisulfide to the other copper electrolyte filtrate to generate hydrogen sulfide, and contact the generated hydrogen sulfide with the copper electrolyte to be processed next Copper electricity characterized by using Liquid purification method of lysis.
【請求項2】 抜き出した銅電解液に硫化水素ガスを接
触させて、銅電解液中の銅、砒素、アンチモン及びビス
マスを硫化物として分離除去する前に、電解採取法又は
電解液の加熱濃縮法により予め銅の一部を分離回収する
ことを特徴とする請求項1の銅電解液の浄液方法。
2. A method in which a hydrogen sulfide gas is brought into contact with the extracted copper electrolytic solution to separate copper, arsenic, antimony, and bismuth in the copper electrolytic solution as sulfides. 2. The method for purifying a copper electrolyte according to claim 1, wherein a part of copper is separated and recovered in advance by a method.
【請求項3】 抜き出した銅電解液を電解採取方式によ
り液中の銅の大部分を回収する前に、該銅電解液をイオ
ン交換樹脂を通過させ、銅電解液中のアンチモン及び/
又はビスマスの一部をイオン交換樹脂に吸着除去する請
求項2の銅電解液の浄液方法。
3. Prior to recovering most of the copper in the extracted copper electrolytic solution by an electrowinning method, the copper electrolytic solution is passed through an ion exchange resin, and the antimony and / or
3. The method for purifying a copper electrolyte according to claim 2, wherein a part of bismuth is adsorbed and removed by the ion exchange resin.
JP10186098A 1998-03-31 1998-03-31 Copper electrolyte cleaning method Expired - Fee Related JP3151182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10186098A JP3151182B2 (en) 1998-03-31 1998-03-31 Copper electrolyte cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10186098A JP3151182B2 (en) 1998-03-31 1998-03-31 Copper electrolyte cleaning method

Publications (2)

Publication Number Publication Date
JPH11286797A JPH11286797A (en) 1999-10-19
JP3151182B2 true JP3151182B2 (en) 2001-04-03

Family

ID=14311773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10186098A Expired - Fee Related JP3151182B2 (en) 1998-03-31 1998-03-31 Copper electrolyte cleaning method

Country Status (1)

Country Link
JP (1) JP3151182B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4538801B2 (en) * 2005-03-25 2010-09-08 日鉱金属株式会社 Method for recovering Ni from deoxidation solution
JP4538802B2 (en) * 2005-03-31 2010-09-08 日鉱金属株式会社 Method for producing crude nickel sulfate
JP5412184B2 (en) * 2009-06-10 2014-02-12 三菱伸銅株式会社 Recycling method for nickel-plated copper or copper alloy scrap
CN106086935B (en) * 2016-08-29 2017-12-05 江西理工大学 A kind of method that arsenic, antimony, bismuth are removed from copper electrolyte
CN106757179B (en) * 2016-12-01 2018-09-25 沈阳有色金属研究院 A kind of process of cupric electrolysis tail washings purification decopper(ing) removal of impurities
CN106591880A (en) * 2016-12-13 2017-04-26 云南锡业股份有限公司铜业分公司 ISA electrolytic refining method for large-size complex copper anode plate
CN109957815A (en) * 2017-12-22 2019-07-02 中国瑞林工程技术有限公司 The purification method of copper electrolyte
CN110079826B (en) * 2019-05-07 2021-04-06 昆明理工大学 Method for recovering nickel sulfate from copper smelting high-impurity high-nickel anode copper plate
CN110283999A (en) * 2019-07-02 2019-09-27 株洲三特环保节能股份有限公司 A kind of processing method of waste solution of copper electrolysis
CN113564637A (en) * 2021-06-30 2021-10-29 河南豫光金铅股份有限公司 Method for electrolyzing high-arsenic anode plate at low current density
CN113529137A (en) * 2021-07-16 2021-10-22 兰溪自立环保科技有限公司 Copper-nickel-containing waste acid solution treatment and recycling process
CN114737222A (en) * 2022-04-27 2022-07-12 金川集团股份有限公司 Process for deeply removing copper, arsenic and lead in nickel electrolysis mixed acid system anolyte

Also Published As

Publication number Publication date
JPH11286797A (en) 1999-10-19

Similar Documents

Publication Publication Date Title
US5783057A (en) Method of purifying copper electrolytic solution
KR100207041B1 (en) Method of recovering antimony and bismuth from copper electrolyte
CN112981104B (en) Method for treating cadmium-containing waste residues and recycling metal cadmium
JP3151182B2 (en) Copper electrolyte cleaning method
JPH0382720A (en) Method for recovering indium
CN110923462A (en) Resourceful treatment method for white smoke
AU756317B2 (en) Separation and concentration method
CN104561558A (en) Method for treating selenium-containing mercury acid mud
NO139096B (en) PROCEDURE FOR THE PREPARATION OF HIGH-RIGHT ELECTROLYTE COPPER BY REDUCTION ELECTROLYSIS
JPH1072631A (en) Wet process metallurgical and electrochemical treatment of sulfur-antimony ore for forming electrolytic antimony and simple substance sulfur
CN109536992B (en) Method for purifying copper electrolyte by two-removing and two-accumulating
JP3226475B2 (en) A method for separating and recovering metals from a circulating copper electrolyte and purifying the same in a copper electrorefining system for producing electrolytic copper by electrolytically refining blister copper
CN113789547B (en) Purification method of copper electrolysis waste liquid
US3691037A (en) Mercury recovery from chlorine cells utilizing mercury cathodes
CN111099652B (en) Method for separating silver and copper in silver electrolysis waste liquid
JP2960876B2 (en) Copper electrolyte cleaning method
CN110923467A (en) Method for recycling lead from waste lead-acid battery
JPS589820B2 (en) Method for recovering gallium from alkaline aluminate solutions obtained from processing aluminum-containing ores
JP2004124115A (en) Method of recovering copper from copper electrolytic solution, and liquid purification method
CN114959306B (en) Method for recycling lithium from lithium precipitation mother liquor by closed cycle method
JPS6147212B2 (en)
JPS6154847B2 (en)
JPS59213622A (en) Process for recovering gallium
JPS5914094B2 (en) How to recover metallic tin from halogen bath tin plating
JPH1072629A (en) Treatment of formed sludge in tin electroplating

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001219

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees