JP3226475B2 - A method for separating and recovering metals from a circulating copper electrolyte and purifying the same in a copper electrorefining system for producing electrolytic copper by electrolytically refining blister copper - Google Patents
A method for separating and recovering metals from a circulating copper electrolyte and purifying the same in a copper electrorefining system for producing electrolytic copper by electrolytically refining blister copperInfo
- Publication number
- JP3226475B2 JP3226475B2 JP04452397A JP4452397A JP3226475B2 JP 3226475 B2 JP3226475 B2 JP 3226475B2 JP 04452397 A JP04452397 A JP 04452397A JP 4452397 A JP4452397 A JP 4452397A JP 3226475 B2 JP3226475 B2 JP 3226475B2
- Authority
- JP
- Japan
- Prior art keywords
- copper
- nickel
- liquid
- electrolytic
- electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Electrolytic Production Of Metals (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、粗銅を電解精製し
て高純度電気銅を製造する銅電解精製系において、循環
銅電解液中に次第に蓄積される金属、特に、ニッケルの
系外への分離回収方法に関する。[0001] The present invention relates to a copper electrorefining system for producing high-purity electrolytic copper by electrolytically refining crude copper, to remove metals, particularly nickel, gradually accumulated in a circulating copper electrolyte. It relates to a separation and recovery method.
【0002】[0002]
【従来の技術】粗銅を電解精製して高純度電気銅を製造
する銅電解精製系においては、電解の進行につれて、銅
アノード中の銅、ヒ素、アンチモン、ビスマス等が溶出
して、循環銅電解液中に次第に蓄積される。ヒ素、アン
チモン、ビスマスと言った不純物金属の濃度の増大が電
気銅の品位の劣化等を招くだけでなく、銅が過剰に存在
することにより電気銅の性状にも悪影響をもたらす。従
って、銅電解精製系においては、通常、電解液の浄液が
定期的に実施される。2. Description of the Related Art In a copper electrolytic refining system for producing high-purity electrolytic copper by electrolytically refining crude copper, as the electrolysis proceeds, copper, arsenic, antimony, bismuth, etc. in a copper anode are eluted and circulated copper electrolysis. Accumulates gradually in the liquid. An increase in the concentration of an impurity metal such as arsenic, antimony, and bismuth not only deteriorates the quality of electrolytic copper, but also adversely affects the properties of electrolytic copper due to the presence of excess copper. Therefore, in the copper electrolytic refining system, the cleaning of the electrolytic solution is usually performed periodically.
【0003】浄液方法としては、銅電解液を加熱濃縮し
て溶解度差を利用して銅を硫酸銅として分離除去し、次
いで、電解採取により液中に残存する銅、ヒ素、アンチ
モン、ビスマスを電着させ、最後に液を冷却して溶解度
差を利用してニッケルを硫酸ニッケルとして分離除去す
る方法が、広く実施されている。しかしながら、この浄
液方法は、ヒ素、アンチモン及びビスマスの除去に電解
採取法を用いているため、電解中に猛毒のアルシンガス
(As3H)が発生するという欠点を伴う。更に、電解
採取時の電力消費量が極めて多いという欠点も有してい
る。[0003] As a purification method, copper electrolyte is heated and concentrated to separate and remove copper as copper sulfate using a difference in solubility, and then copper, arsenic, antimony and bismuth remaining in the solution by electrolytic sampling are removed. 2. Description of the Related Art A method of electrodepositing and finally cooling a liquid to separate and remove nickel as nickel sulfate by utilizing a difference in solubility has been widely practiced. However, this liquid purification method has a drawback that highly toxic arsine gas (As 3 H) is generated during electrolysis because an electrowinning method is used to remove arsenic, antimony, and bismuth. Furthermore, it has the disadvantage that the power consumption during electrowinning is extremely high.
【0004】これらの欠点を解消できる浄液方法として
は、特願平7−263639号で提案されている方法が
ある。この方法は、図2に概略的に示しているが、電解
液を2つに分割し、第I液に水硫化ソーダを添加して
銅、ヒ素、アンヒモン及びビスマスを硫化物として第I
液から分離除去し、更に、過剰の水硫化ソーダを添加し
て液中に残存する硫酸と反応させて硫化水素ガスを発生
させ、その発生したガスを第II液に接触させて、銅、ヒ
素、アンヒモン及びビスマスを硫化物として第II液から
分離除去することを特徴とするものであり、銅電解液の
浄液方法としては優れている。[0004] As a liquid purification method capable of solving these disadvantages, there is a method proposed in Japanese Patent Application No. 7-263639. This method is schematically shown in FIG. 2, but the electrolyte solution is divided into two parts, and sodium hydroxide is added to solution I to form copper, arsenic, anmonium and bismuth as sulfides.
Separated and removed from the liquid, furthermore, excess sodium hydrosulfide is added and reacted with sulfuric acid remaining in the liquid to generate hydrogen sulfide gas, and the generated gas is brought into contact with liquid II to produce copper, arsenic , And an ammonium and bismuth are separated and removed from the solution II as sulfides, which is an excellent method for purifying a copper electrolyte.
【0005】しかしながら、この電解液2分割法では、
第I液に水硫化ソーダを添加して銅、ヒ素、アンヒモン
及びビスマスを硫化物として第I液から分離除去する際
に、ニッケルの一部も硫化ニッケルとして共に分離除去
されてしまう。ニッケルは、銅電解液の浄液という面か
らは不純物であるが、有価な金属であり、系から硫化ニ
ッケルとして高率で分離・回収できることが望ましい。However, in this electrolytic solution splitting method,
When sodium hydrogen sulfide is added to the liquid I to separate and remove copper, arsenic, ammonium and bismuth from the liquid I as sulfide, part of nickel is also separated and removed as nickel sulfide. Nickel is an impurity from the viewpoint of purifying the copper electrolyte, but is a valuable metal, and it is desirable that nickel can be separated and recovered from the system as nickel sulfide at a high rate.
【0006】[0006]
【発明が解決しようとする課題】それ故、本発明は、粗
銅を電解精製して高純度電気銅を製造する銅電解精製系
における循環銅電解液から、ニッケルを高率で分離・回
収できる方法を提供することを目的とする。SUMMARY OF THE INVENTION Therefore, the present invention provides a method for separating and recovering nickel from a circulating copper electrolyte in a copper electrolytic refining system for producing high purity electrolytic copper by electrolytically refining crude copper. The purpose is to provide.
【0007】また、本発明は、銅電解液を浄液できると
共にニッケルが高率で該液から分離回収できると言う、
複合効果を同時に達成できる銅電解液の浄液方法を提供
することを目的とする。[0007] The present invention also claims that the copper electrolyte can be purified and nickel can be separated and recovered from the solution at a high rate.
It is an object of the present invention to provide a method for purifying a copper electrolytic solution that can simultaneously achieve a combined effect.
【0008】[0008]
【課題を解決するための手段】本発明者は、鋭意研究の
結果、 銅電解液に硫化水素ガスを接触させると、銅電解液
中の銅、ヒ素、アンチモン及びビスマスが硫化物として
分離除去されるが、ニッケルは残存すること、 銅電解液中の銅、ヒ素、アンチモン及びビスマスが
硫化物として分離除去された後に、水硫化ソーダを添加
しても、硫化ニッケルとして分離回収できるニッケルの
割合は多いとは言えないが、イオウを除く不純物が殆ど
混入しないため、回収した硫化ニッケルは過剰のイオウ
を除けば製品としてそのまま市場に提供できる程度の品
位を有することを見出し、本発明の銅電解液からのニッ
ケルの回収方法を提案するに至った。Means for Solving the Problems As a result of intensive research, the present inventors have found that when hydrogen sulfide gas is brought into contact with a copper electrolyte, copper, arsenic, antimony and bismuth in the copper electrolyte are separated and removed as sulfide. However, after the copper, arsenic, antimony, and bismuth in the copper electrolyte are separated and removed as sulfide, the percentage of nickel that can be separated and recovered as nickel sulfide even if sodium bisulfide is added is Although it cannot be said that there is much, since impurities other than sulfur are scarcely mixed, it has been found that the recovered nickel sulfide has such a grade that it can be provided as it is to the market as a product except for excess sulfur, and the copper electrolyte of the present invention is found. Has proposed a method for recovering nickel from coal.
【0009】即ち、本発明の方法は、銅電解液に硫化水
素ガスを接触させて、銅電解液中の銅、ヒ素、アンチモ
ン及びビスマスを硫化物として分離除去し、銅等の回収
後、銅電解液に、水硫化ソーダを添加して、ニッケルを
硫化ニッケルとして分離回収することを特徴とする方法
である。なお、水硫化ソーダを添加して、ニッケルを硫
化ニッケルとして分離回収した後に、更に、銅電解液
に、消石灰又は炭酸カルシウムを添加し銅電解液中の硫
酸と反応させて石膏を生成しそれを分離除去し、次い
で、炭酸ナトリウム又は苛性ソーダを添加して、銅電解
液中に残存しているニッケルを炭酸ニッケル又は水酸化
ニッケルとして更に分離回収することもできる。That is, in the method of the present invention, a copper electrolyte is brought into contact with hydrogen sulfide gas to separate and remove copper, arsenic, antimony and bismuth in the copper electrolyte as sulfides. This method is characterized in that sodium bisulfide is added to an electrolytic solution, and nickel is separated and recovered as nickel sulfide. In addition, after adding sodium bisulfide and separating and recovering nickel as nickel sulfide, further, slaked lime or calcium carbonate is added to the copper electrolyte and reacted with sulfuric acid in the copper electrolyte to form gypsum. After separation and removal, sodium carbonate or caustic soda may be added to further separate and recover nickel remaining in the copper electrolyte as nickel carbonate or nickel hydroxide.
【0010】好ましくは、銅電解液に水硫化ソーダを過
剰に添加して硫化水素ガスを発生させ、このガスを次に
処理すべき銅電解液に接触させて、その銅電解液中の
銅、ヒ素、アンチモン及びビスマスを硫化物として分離
除去するのに用いる。硫化水素ガスは猛毒であり取扱い
が大変だからである。[0010] Preferably, sodium hydrogen sulfide is excessively added to the copper electrolyte to generate hydrogen sulfide gas, and this gas is brought into contact with a copper electrolyte to be treated next, and copper in the copper electrolyte is removed. Used to separate and remove arsenic, antimony and bismuth as sulfides. This is because hydrogen sulfide gas is very poisonous and difficult to handle.
【0011】上記の方法を利用して、銅電解液の浄液も
同時に実施できる。例えば、銅電解液に硫化水素ガスを
接触させて、銅電解液中の銅、ヒ素、アンチモン及びビ
スマスを硫化物として分離除去した後、液を分割し、第
1液は浄液として電解精製工程に回送し、第2液には水
硫化ソーダを過剰添加して、ニッケルを硫化ニッケルと
して分離回収すると共に、発生した硫化水素ガスを次に
処理すべき銅電解液に接触させるために用いる。By using the above-mentioned method, a copper electrolytic solution can be simultaneously purified. For example, a hydrogen sulfide gas is brought into contact with a copper electrolyte to separate and remove copper, arsenic, antimony, and bismuth in the copper electrolyte as sulfides, and then the liquid is divided. To the second liquid, sodium hydrogen sulfide is excessively added, and nickel is separated and recovered as nickel sulfide, and the generated hydrogen sulfide gas is used to contact the copper electrolyte to be processed next.
【0012】銅電解液に硫化水素ガスを接触させて、銅
電解液中の銅、ヒ素、アンチモン及びビスマスを硫化物
として分離除去する前に、電解採取法又は電解液の加熱
濃縮法により予め銅の一部を分離回収しておけば、水硫
化ソーダや硫化水素ガスの必要量が少なくなると共に、
銅等を含む硫化物の発生量を減らせる利点を有する。Before contacting a copper electrolyte with a hydrogen sulfide gas to separate and remove copper, arsenic, antimony and bismuth as sulfides in the copper electrolyte, the copper is previously removed by electrowinning or heating and concentrating the electrolyte. If a part of is separated and collected, the required amount of sodium hydrogen sulfide and hydrogen sulfide gas will be reduced,
This has the advantage of reducing the amount of sulfide containing copper and the like.
【0013】[0013]
【発明の実施の形態】本発明の方法を利用した一つの実
施の形態である、銅電解液からのニッケルの回収と共に
該液の浄液を図る銅電解液の処理方法を、図1にプロセ
スシートとして示すと共に、以下に具体的に詳述する
が、本発明の範囲がこれに限定されるものではないこと
は理解されたい。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a method for treating a copper electrolytic solution, which is an embodiment utilizing the method of the present invention and which purifies the copper electrolytic solution while recovering nickel from the electrolytic solution. Although shown as a sheet and specifically described below, it should be understood that the scope of the present invention is not limited thereto.
【0014】 銅の電解採取による予備回収 銅電解液から電解採取により銅の一部を予め分離回収す
る。この方法によれば、純度が99%以上の電気銅が得
られる。銅電解液中には銅が金属分としては最も多く含
まれているため、液をそのまま硫化水素ガスと接触させ
ると、多量の硫化銅が他の硫化物と共に生成される。こ
の場合には、硫化水素ガスの消費が多くなり、硫化物量
も多くなるため、予め電解採取により銅を分離回収すれ
ばその必要はなくなるため有利である。なお、電解採取
する場合には、先ず銅電解液をイオン交換樹脂で予備処
理すると、アンチモン、ビスマス等の不純物が混入せ
ず、電気銅の純度が高まり、一層有利である。Preliminary Recovery of Copper by Electrowinning Part of copper is previously separated and recovered from the copper electrolyte by electrowinning. According to this method, electrolytic copper having a purity of 99% or more can be obtained. Since the copper electrolyte contains the largest amount of copper as a metal component, a large amount of copper sulfide is generated together with other sulfides when the solution is brought into contact with hydrogen sulfide gas as it is. In this case, the consumption of the hydrogen sulfide gas increases and the amount of the sulfide also increases. Therefore, if copper is separated and recovered by electrowinning in advance, the necessity is eliminated, which is advantageous. In the case of electrowinning, when the copper electrolyte is first pretreated with an ion exchange resin, impurities such as antimony and bismuth are not mixed, and the purity of electrolytic copper is increased, which is more advantageous.
【0015】上記処理後、電解液中には、典型的には、
銅が約5〜20g/L、ヒ素が約1〜10g/L、アン
チモンが約0.1〜1g/L、ビスマスが約0.05〜
1.0g/L、ニッケルが約5〜20g/L、遊離硫酸
が約150〜300g/L含まれている。After the above treatment, the electrolyte typically contains
Copper is about 5-20 g / L, arsenic is about 1-10 g / L, antimony is about 0.1-1 g / L, bismuth is about 0.05-
It contains 1.0 g / L, about 5 to 20 g / L of nickel, and about 150 to 300 g / L of free sulfuric acid.
【0016】別法として、銅電解液を加熱濃縮して硫酸
銅として予め分離回収してもよい。As another method, the copper electrolyte may be heated and concentrated to be separated and recovered in advance as copper sulfate.
【0017】 銅、ヒ素、アンチモン及びビスマスの
除去 工程で銅の一部が分離除去された電解後液に硫化水素
ガスを接触させて、銅電解液中の銅、ヒ素、アンチモン
及びビスマスと反応を起こさせ、それらを硫化物として
生成・沈殿させた後、液中から、慣用的な濾過方法によ
り、分離除去する。硫化水素ガスは、上述のヒ素等の量
に応じて必要な量を決定する。通常、硫化物の生成に必
要な理論量を約0.1〜5%だけ上回る量使用する。分
離された硫化物中のニッケルの含有量はゼロ又はそれに
限りなく近い。[0017] The removal of copper, arsenic, antimony and bismuth in the step of removing copper by contacting hydrogen sulfide gas with the post-electrolysis solution from which a portion of the copper has been separated to remove copper, arsenic, antimony and bismuth in the copper electrolyte. Then, they are formed and precipitated as sulfides, and then separated and removed from the liquid by a conventional filtration method. The necessary amount of hydrogen sulfide gas is determined according to the amount of arsenic and the like described above. Usually, an amount of about 0.1 to 5% above the theoretical amount required for sulfide formation is used. The content of nickel in the separated sulfide is zero or infinitely close.
【0018】 銅電解液の分割 銅等を硫化物として分離除去した後に得られた濾液を第
1液(濾液1)と第2液(濾液2)に分割する。第1液
(濾液1)は、工程、を経て、銅、ヒ素、アンチモ
ン等の成分が除去され、銅の電解精製に適するように成
分調整されており、浄液として銅電解精製工程に回送す
る。実際、得られた浄液中の銅、ヒ素、アンチモンの濃
度は、いずれも0.1g/L以下である。Division of Copper Electrolyte The filtrate obtained after separating and removing copper and the like as sulfides is divided into a first liquid (filtrate 1) and a second liquid (filtrate 2). The first liquid (filtrate 1) is subjected to a process to remove components such as copper, arsenic, and antimony, and the components are adjusted so as to be suitable for electrolytic refining of copper. . Actually, the concentrations of copper, arsenic and antimony in the obtained purified solution are all 0.1 g / L or less.
【0019】第2液(濾液2)はニッケルの回収工程に
供する。第1液(濾液1)と第2液(濾液2)の割合
は、詳しくは後述するが、硫化水素ガスを必要な量だけ
生成させることが実操業上望まれることから、約2:1
〜5:1にするのが好ましい。The second liquid (filtrate 2) is subjected to a nickel recovery step. The ratio between the first liquid (filtrate 1) and the second liquid (filtrate 2) will be described later in detail, but since it is practically desired to generate a required amount of hydrogen sulfide gas, about 2: 1.
55: 1 is preferred.
【0020】 硫化水素ガスの発生・利用と硫化ニッ
ケルの生成・回収 第2液(濾液2)に、水硫化ソーダを添加して、残存し
ている硫酸と反応させて硫化水素ガスを発生させる。こ
のガスを回収して工程で用いれば、猛毒なガスを大量
に現場生成でき、取扱い上非常に便利である。必要な硫
化水素ガスの量を予め決定して、第2液(濾液2)に水
硫化ソーダを、該ガスの発生に必要な分だけ過剰に添加
する。Generation / Utilization of Hydrogen Sulfide Gas and Generation / Recovery of Nickel Sulfide Sodium hydrosulfide is added to the second liquid (filtrate 2) and reacted with the remaining sulfuric acid to generate hydrogen sulfide gas. If this gas is collected and used in the process, a large amount of highly toxic gas can be generated on site, which is very convenient for handling. The required amount of hydrogen sulfide gas is determined in advance, and sodium bisulfide is added to the second liquid (filtrate 2) in excess of the amount required to generate the gas.
【0021】この水硫化ソーダの添加による硫化水素ガ
スの発生時にニッケルの約25〜30重量%が硫化ニッ
ケルとして回収される。硫化ニッケルはSを除いて不純
物がほとんど含まれていないため、そのままでニッケル
原料として有用性を有する。When hydrogen sulfide gas is generated by the addition of sodium bisulfide, about 25 to 30% by weight of nickel is recovered as nickel sulfide. Nickel sulfide has almost no impurities except for S, and therefore has utility as it is as a nickel raw material.
【0022】 炭酸ニッケル又は水酸化ニッケルの生
成・回収 工程を経てニッケルが硫化ニッケルとして分離回収さ
れた後の第2液(濾液3)に、先ず、消石灰又は炭酸カ
ルシウムを添加し、pH=約1.5〜2.5に調整して
液中に残存している遊離硫酸と反応させて石膏を生成・
沈降させる。沈降した石膏は慣用的な方法で分離除去す
る。First, slaked lime or calcium carbonate is added to the second liquid (filtrate 3) after the nickel is separated and recovered as nickel sulfide through the step of generating and recovering nickel carbonate or nickel hydroxide, and the pH is adjusted to about 1 Adjusted to 0.5 to 2.5 to react with free sulfuric acid remaining in the solution to produce gypsum.
Let it settle. The settled gypsum is separated and removed by a conventional method.
【0023】石膏を除去した後に得られた液(濾液4)
に、炭酸ナトリウム又は苛性ソーダを添加し、pH=約
8〜10に調整して液中に残存しているニッケルを炭酸
ニッケル又は水酸化ニッケルとして生成・沈殿させる。
その後、生成した炭酸ニッケル又は水酸化ニッケルは慣
用的な方法で分離・回収する。ニッケルの純度は、約3
5〜45%である。その後液は、排水となる。Liquid obtained after removing gypsum (filtrate 4)
Then, sodium carbonate or caustic soda is added to adjust the pH to about 8 to 10, and nickel remaining in the solution is generated and precipitated as nickel carbonate or nickel hydroxide.
Thereafter, the generated nickel carbonate or nickel hydroxide is separated and recovered by a conventional method. Nickel purity is about 3
5 to 45%. Thereafter, the liquid is drained.
【0024】[0024]
【実施例】本発明の方法 上記の発明の実施の形態に基づいて、銅電解液を処理し
た。EXAMPLES The method of the present invention A copper electrolyte was treated according to the above embodiment of the present invention .
【0025】実施例1 銅の電解採取による予備回収 銅45g/Lを含む銅電解液(30m3)を公知の電解
採取法により処理し、純度99.9%の電気銅1を45
0kg、純度99%の電気銅2を606kg分離回収し
た。電解の終了した液には、銅が10g/L、ヒ素が5
g/L、アンチモンが0.4g/L、ビスマスが0.1
g/L、ニッケルが15g/L、遊離硫酸が244g/
L含まれていた。Example 1 Preliminary recovery of copper by electrowinning A copper electrolytic solution (30 m 3 ) containing 45 g / L of copper was treated by a known electrowinning method to obtain electrolytic copper 1 having a purity of 99.9%.
0 kg and 606 kg of electrolytic copper 2 having a purity of 99% were separated and recovered. After the electrolysis, the solution contained 10 g / L of copper and 5 g of arsenic.
g / L, antimony 0.4 g / L, bismuth 0.1
g / L, nickel 15 g / L, free sulfuric acid 244 g / L
L was included.
【0026】 銅、ヒ素、アンチモン及びビスマスの
除去 電解後液に、225m3の硫化水素ガスを導入し、液と
ガスとの間に接触反応を起こさせて、硫化物1を生成・
沈殿させた。これを、液中から、慣用的な濾過方法によ
り、分離除去した。硫化物1にはニッケルは実質上含ま
れていなかった。得られた濾液は、銅、ヒ素、アンチモ
ン及びビスマスをいずれも0.1g/L以下の濃度でし
か含まず、清浄であった。Removal of Copper, Arsenic, Antimony and Bismuth 225 m 3 of hydrogen sulfide gas is introduced into the solution after electrolysis, and a contact reaction is caused between the solution and the gas to produce sulfide 1.
Settled. This was separated and removed from the liquid by a conventional filtration method. Sulfide 1 contained substantially no nickel. The obtained filtrate contained copper, arsenic, antimony, and bismuth only at a concentration of 0.1 g / L or less and was clean.
【0027】 銅電解液の分割 濾液から、23.3m3を浄液(濾液1)として分け
た。Separation of Copper Electrolyte Solution From the filtrate, 23.3 m 3 was separated as a pure solution (filtrate 1).
【0028】 硫化ニッケルの生成・回収 残りの6.7m3の濾液に、NaSHを約25%含む工
業用水硫化ソーダ2470kgを毎分約10kgの速度
で添加して、液中に残存している遊離硫酸と反応させ
て、225m3の硫化水素ガスを発生させ、これを工
程に導いて銅、ひ素、アンチモン、ビスマスの沈殿に利
用した。この水硫化ソーダの添加により、液中のニッケ
ルの一部が硫化ニッケルとして生成沈殿したので、液中
に残存した微量の硫化水素ガスを除去したのち、慣用的
な方法で分離、回収した。乾燥後の硫化ニッケルは80
kgであった。Production and Recovery of Nickel Sulfide To the remaining 6.7 m 3 of the filtrate, 2470 kg of industrial sodium bisulfide containing about 25% of NaSH is added at a rate of about 10 kg per minute, and the remaining free liquid in the liquid is added. It was reacted with sulfuric acid to generate 225 m 3 of hydrogen sulfide gas, which was led to the process and used for the precipitation of copper, arsenic, antimony and bismuth. Since a part of nickel in the liquid was formed and precipitated as nickel sulfide by the addition of the sodium hydrogen sulfide, a trace amount of hydrogen sulfide gas remaining in the liquid was removed, and then separated and recovered by a conventional method. Nickel sulfide after drying is 80
kg.
【0029】 炭酸ニッケル又は水酸化ニッケルの生
成・回収 硫化水素ガスが発生し回収された後の液(濾液4)に、
先ず、1270kgの炭酸カルシウムを添加して、pH
=2に中和調整し、液中に残存している遊離硫酸と反応
させて石膏を生成・沈降させた。沈降した石膏は慣用的
な方法で分離除去した。乾燥したところ、石膏の量は2
180kgであった。石膏を除去した後、液に炭酸ナト
リウムを161kg添加し、pH=9に中和調整して、
液中に残存しているニッケルを炭酸ニッケルとして生成
・沈殿させた。その後、生成した炭酸ニッケルを慣用的
な方法で濾過・分離して回収した。乾燥後の炭酸ニッケ
ルの量は200kgであり、ニッケルの純度は40%で
あった。Generation and Recovery of Nickel Carbonate or Nickel Hydroxide The liquid (filtrate 4) after hydrogen sulfide gas has been generated and recovered,
First, 1270 kg of calcium carbonate was added,
= 2, and reacted with free sulfuric acid remaining in the solution to form and settle gypsum. The settled gypsum was separated and removed by a conventional method. After drying, the amount of gypsum is 2
It was 180 kg. After removing the gypsum, 161 kg of sodium carbonate was added to the liquid, and the mixture was neutralized and adjusted to pH = 9.
Nickel remaining in the solution was generated and precipitated as nickel carbonate. Thereafter, the produced nickel carbonate was collected by filtration and separation by a conventional method. The amount of nickel carbonate after drying was 200 kg, and the purity of nickel was 40%.
【0030】この処理方法での、処理液及び各工程での
生成物及び処理後液の物量は、表1に示す通りであっ
た。In this treatment method, the amounts of the treatment liquid, the products in each step and the amount of the liquid after treatment are as shown in Table 1.
【0031】[0031]
【表1】 [Table 1]
【0032】比較例(特願平7−263639号に記載
の方法) 銅45g/Lを含む銅電解液(30m3)を公知の電解
採取法により処理し、純度99.9%の電気銅Iを45
0kg、純度99%の電気銅IIを606kg分離回収し
た。電解の終了した液には、銅が10g/L、ヒ素が5
g/L、アンチモンが0.4g/L、ビスマスが0.1
g/L、ニッケルが15g/L、遊離硫酸が244g/
L含まれていた。Comparative Example (Method described in Japanese Patent Application No. 7-263639) A copper electrolytic solution (30 m 3 ) containing 45 g / L of copper was treated by a known electrowinning method, and electrolytic copper I having a purity of 99.9% was obtained. 45
0 kg and 606 kg of electrolytic copper II having a purity of 99% were separated and recovered. After the electrolysis, the solution contained 10 g / L of copper and 5 g of arsenic.
g / L, antimony 0.4 g / L, bismuth 0.1
g / L, nickel 15 g / L, free sulfuric acid 244 g / L
L was included.
【0033】電解液を第I液(6.7m3)と第II液(2
3.3m3)に分けた。第I液に、NaSHを約25%含
む工業用水硫化ソーダ500kgを添加して、硫化物I
を生成・沈殿させた。これを慣用的な方法で濾過・分離
して回収し、更に乾燥した。次いで、工業用水硫化ソー
ダ1740kgを毎分約10kgの速度で添加して、液
中の硫酸と反応させ、硫化水素ガスを発生させた。この
硫化水素ガスを第II液に導き、該液と接触反応を起こさ
せ、硫化物IIを生成・沈殿させた。これを慣用的な方法
で濾過・分離して回収し、更に乾燥した。残った濾液
(即ち、電解戻り液)は、銅、ヒ素、アンチモン及びビ
スマスをいずれも0.1g/L以下の濃度でしか含まな
かった、即ち清浄であった。The electrolytic solution was divided into solution I (6.7 m 3 ) and solution II (2
3.3 m 3 ). To the liquid I, 500 kg of industrial sodium hydrogen sulfide containing about 25% of NaSH was added, and the sulfide I was added.
Was generated and precipitated. This was collected by filtration and separation by a conventional method, and further dried. Next, 1740 kg of industrial sodium hydrogen sulfide was added at a rate of about 10 kg per minute, and reacted with sulfuric acid in the liquid to generate hydrogen sulfide gas. This hydrogen sulfide gas was led to the second liquid, and caused a contact reaction with the liquid to generate and precipitate sulfide II. This was collected by filtration and separation by a conventional method, and further dried. The remaining filtrate (that is, the electrolytic return liquid) contained only copper, arsenic, antimony, and bismuth at a concentration of 0.1 g / L or less, that is, was clean.
【0034】硫化水素ガス発生後の第I液には、先ず、
1280kgの炭酸カルシウムを添加して、pH=2に
中和調整し、液中に残存している遊離硫酸と反応させて
石膏を生成・沈降させた。沈降した石膏は慣用的な方法
で分離除去した。乾燥したところ、石膏の量は2210
kgであった。石膏を除去した後、濾液に炭酸ナトリウ
ムを125kg添加し、pH=9に中和調整して、液中
に残存しているニッケルを炭酸ニッケルとして生成・沈
殿させた。その後、生成した炭酸ニッケルを慣用的な方
法で濾過・分離して回収し、更に乾燥した。First, in the liquid I after the generation of the hydrogen sulfide gas,
1280 kg of calcium carbonate was added to neutralize and adjust to pH = 2, and reacted with free sulfuric acid remaining in the solution to form and settle gypsum. The settled gypsum was separated and removed by a conventional method. After drying, the amount of gypsum was 2210
kg. After removing the gypsum, 125 kg of sodium carbonate was added to the filtrate, neutralized and adjusted to pH = 9, and nickel remaining in the solution was generated and precipitated as nickel carbonate. Thereafter, the produced nickel carbonate was collected by filtration and separation by a conventional method, and further dried.
【0035】この処理方法での、処理液及び各工程での
生成物及び処理後液の物量は、表2に示す通りであっ
た。In this treatment method, the amounts of the treatment liquid, the products in each step and the amount of the liquid after treatment are as shown in Table 2.
【0036】[0036]
【表2】 [Table 2]
【0037】表1と表2を比較すると、比較例の方法で
は、ニッケルが硫化物としてアンチモン等と共に沈殿し
てしまい、炭酸ニッケルとしてのニッケルの回収量が少
ないが、一方、本発明の方法では、ニッケルが硫化ニッ
ケルとして高純度で回収できる。Comparison between Tables 1 and 2 shows that, in the method of the comparative example, nickel precipitates as antimony and the like as sulfide, and the amount of nickel recovered as nickel carbonate is small. On the other hand, in the method of the present invention, And nickel can be recovered in high purity as nickel sulfide.
【0038】実施例2(イオン交換樹脂を用いた予備処
理) 銅45g/L、ヒ素5g/L、アンチモン0.4g/
L、ビスマス0.1g/L、ニッケル15g/L、及
び、遊離硫酸190g/Lを含む銅電解液を抜き出し、
イオン交換樹脂(ミヨシ樹脂(株)製のEPOROUS
MX−2)を通過させ、アンチモン及びビスマスの一
部を吸着させた。この樹脂を通過した液には、銅45g
/L、ヒ素5g/L、アンチモン0.1g/L、ビスマ
ス0.05g/L、ニッケル15g/L及び遊離硫酸1
90g/Lが含まれていた。この溶液を、処理方法1の
工程と同様に電解採取処理したところ、液中のアンチ
モン及びビスマスの濃度が低いため、純度99.9%の
電気銅が600kg、99%の電気銅が450kg得ら
れた。Example 2 (Pretreatment using ion exchange resin) Copper 45 g / L, arsenic 5 g / L, antimony 0.4 g / L
L, bismuth 0.1 g / L, nickel 15 g / L, and a copper electrolytic solution containing 190 g / L of free sulfuric acid are withdrawn,
Ion exchange resin (EPROUS manufactured by Miyoshi Resin Co., Ltd.)
MX-2), and some of antimony and bismuth were adsorbed. The liquid that passed through this resin contained 45 g of copper.
/ L, arsenic 5g / L, antimony 0.1g / L, bismuth 0.05g / L, nickel 15g / L and free sulfuric acid 1
90 g / L was contained. When this solution was subjected to electrowinning treatment in the same manner as in the treatment method 1, 600 kg of 99.9% pure copper and 450 kg of 99% pure copper were obtained because the concentrations of antimony and bismuth in the solution were low. Was.
【0039】[0039]
【発明の効果】本発明によれば、銅電解液から、ニッケ
ルを硫化ニッケルとして効率で回収できる。また、本発
明の方法は、銅電解液の浄液方法として利用できる。更
に、本発明のd)工程においては、価格的に安い水硫化
ソーダを使用することによってニッケルの分離回収を経
済的に行うことができるだけでなく、これを過剰に添加
することによって、d)工程を水硫化ソーダより高価な
硫化水素の製造工程としても機能させることができるの
で、工程間で生ずる生成物を無駄なく有効に回収利用し
ながら目的とするニッケル分を得ることができるとい
う、従来技術には存在しない顕著な効果を生ずる。According to the present invention, nickel can be efficiently recovered as nickel sulfide from a copper electrolyte. Further, the method of the present invention can be used as a method for purifying a copper electrolyte. Further, in the step d) of the present invention, not only can the separation and recovery of nickel be economically performed by using inexpensive sodium hydrogen sulfide, but also by excessive addition of nickel, Can be used as a production process of hydrogen sulfide, which is more expensive than sodium hydrogen sulfide, so that the target nickel component can be obtained while effectively collecting and utilizing the products generated between the processes without waste. Produces significant effects that are not present in
【図1】本発明の実施の形態の一つである銅電解液の浄
液方法のフローシートである。FIG. 1 is a flow sheet of a method for purifying a copper electrolytic solution according to an embodiment of the present invention.
【図2】従来方法の銅電解液の浄液方法のフローシート
である。FIG. 2 is a flow sheet of a conventional method for purifying a copper electrolyte.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭57−5884(JP,A) 特開 平6−81050(JP,A) 特開 昭59−229490(JP,A) 特開 昭62−284025(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22B 1/00 - 61/00 C25C 7/06 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-57-5844 (JP, A) JP-A-6-81050 (JP, A) JP-A-59-229490 (JP, A) JP-A 62-88 284025 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22B 1/00-61/00 C25C 7/06
Claims (2)
解精製系における循環銅電解液から金属を分離回収する
とともにその浄液を行う方法において、 a) 前記電解液に硫化水素ガスを接触させて、電解液
中の銅、ヒ素、アンチモン及びビスマスを硫化物として
濾過除去し、 b) 前記銅等の濾過除去後、濾液を分割し、 c) 分割された第1液は電解精製工程に回送し、 d) 分割された第2液には、水硫化ソーダを過剰添加
して液中のニッケルを硫化ニッケルとして濾過分離回収
し、その際に生成した硫化水素ガスを前記a)工程の電
解液中からの銅、ヒ素、アンチモン及びビスマスの硫化
物としての分離除去に循環使用することを特徴とする方
法。1. A method for separating and recovering a metal from a circulating copper electrolytic solution and purifying the same in a copper electrolytic refining system for producing electrolytic copper by electrolytically refining crude copper, comprising the steps of: Contacting and filtering and removing copper, arsenic, antimony and bismuth in the electrolytic solution as sulfide; b) dividing the filtrate by filtration after removing the copper and the like; c) dividing the first liquid into an electrolytic purification step D) To the divided second liquid, sodium bisulfide is excessively added, and nickel in the liquid is separated and recovered as nickel sulfide by filtration. The hydrogen sulfide gas generated at that time is used in the step a). A method for circulating copper, arsenic, antimony, and bismuth from an electrolyte solution as a sulfide.
て、銅電解液中の銅、ヒ素、アンチモン及びビスマスを
硫化物として分離除去する前に、電解採取法又は電解液
の加熱濃縮法により予め銅の一部を分離回収しておくこ
とを特徴とする請求項1に記載の方法。2. A method in which a hydrogen sulfide gas is brought into contact with the electrolytic solution to separate and remove copper, arsenic, antimony and bismuth in the copper electrolytic solution as sulfide by an electrolytic sampling method or a heat concentration method of the electrolytic solution. The method according to claim 1, wherein a part of copper is separated and recovered in advance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04452397A JP3226475B2 (en) | 1996-09-19 | 1997-02-28 | A method for separating and recovering metals from a circulating copper electrolyte and purifying the same in a copper electrorefining system for producing electrolytic copper by electrolytically refining blister copper |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8-247958 | 1996-09-19 | ||
JP24795896 | 1996-09-19 | ||
JP04452397A JP3226475B2 (en) | 1996-09-19 | 1997-02-28 | A method for separating and recovering metals from a circulating copper electrolyte and purifying the same in a copper electrorefining system for producing electrolytic copper by electrolytically refining blister copper |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10147823A JPH10147823A (en) | 1998-06-02 |
JP3226475B2 true JP3226475B2 (en) | 2001-11-05 |
Family
ID=26384453
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04452397A Expired - Fee Related JP3226475B2 (en) | 1996-09-19 | 1997-02-28 | A method for separating and recovering metals from a circulating copper electrolyte and purifying the same in a copper electrorefining system for producing electrolytic copper by electrolytically refining blister copper |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3226475B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6371643B2 (en) | 1999-06-02 | 2002-04-16 | S. C. Johnson Home Storage, Inc. | Multi-Layered freezer storage bag |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4538802B2 (en) * | 2005-03-31 | 2010-09-08 | 日鉱金属株式会社 | Method for producing crude nickel sulfate |
JP5757425B2 (en) * | 2011-11-25 | 2015-07-29 | 住友金属鉱山株式会社 | Method for producing high-purity nickel sulfate and method for removing impurity element from solution containing nickel |
CN113789547B (en) * | 2021-09-07 | 2023-06-09 | 广西南国铜业有限责任公司 | Purification method of copper electrolysis waste liquid |
-
1997
- 1997-02-28 JP JP04452397A patent/JP3226475B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6371643B2 (en) | 1999-06-02 | 2002-04-16 | S. C. Johnson Home Storage, Inc. | Multi-Layered freezer storage bag |
Also Published As
Publication number | Publication date |
---|---|
JPH10147823A (en) | 1998-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2199788C (en) | Method of purifying copper electrolytic solution | |
JP3151182B2 (en) | Copper electrolyte cleaning method | |
CN110923462A (en) | Resourceful treatment method for white smoke | |
AU756317B2 (en) | Separation and concentration method | |
JP3226475B2 (en) | A method for separating and recovering metals from a circulating copper electrolyte and purifying the same in a copper electrorefining system for producing electrolytic copper by electrolytically refining blister copper | |
KR20110102461A (en) | Hydrometallurgical method for the reuse of secondary zinc oxides rich in fluoride and chloride | |
CN111099652B (en) | Method for separating silver and copper in silver electrolysis waste liquid | |
JP2960876B2 (en) | Copper electrolyte cleaning method | |
CN109055775B (en) | Regeneration method of complexing precipitator for purifying copper electrolyte | |
JPS589820B2 (en) | Method for recovering gallium from alkaline aluminate solutions obtained from processing aluminum-containing ores | |
US2676096A (en) | Process for the recovery of cadmium from cadmium containing residues | |
US4255399A (en) | Process for the recovery of magnesium oxide of high purity | |
NO131895B (en) | ||
CN1125775A (en) | Procedure to obtain mercury metal from products containing mercuric chloride | |
CN1110991A (en) | Prepn. of pure tungstate by extracting tungsten from alkali leaching liquor of tungten ore | |
JPS6147212B2 (en) | ||
US6200454B1 (en) | Process for producing sodium persulfate | |
JPS61246332A (en) | Extracting method for metallic gallium | |
JPH0213016B2 (en) | ||
JPS6219495B2 (en) | ||
JPH07267616A (en) | Method for treating aged electroless nickel plating liquid | |
JPS59213622A (en) | Process for recovering gallium | |
UA54618C2 (en) | a method for the removal of sulfur in THE leaching cycle of nickel process | |
JPS63118025A (en) | Method for removing or recovering silver | |
JPS6247813B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |