JP2960876B2 - Copper electrolyte cleaning method - Google Patents

Copper electrolyte cleaning method

Info

Publication number
JP2960876B2
JP2960876B2 JP7263639A JP26363995A JP2960876B2 JP 2960876 B2 JP2960876 B2 JP 2960876B2 JP 7263639 A JP7263639 A JP 7263639A JP 26363995 A JP26363995 A JP 26363995A JP 2960876 B2 JP2960876 B2 JP 2960876B2
Authority
JP
Japan
Prior art keywords
copper
electrolytic solution
solution
purifying
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7263639A
Other languages
Japanese (ja)
Other versions
JPH0978284A (en
Inventor
昌利 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NITSUKO KINZOKU KK
Original Assignee
NITSUKO KINZOKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NITSUKO KINZOKU KK filed Critical NITSUKO KINZOKU KK
Priority to JP7263639A priority Critical patent/JP2960876B2/en
Publication of JPH0978284A publication Critical patent/JPH0978284A/en
Application granted granted Critical
Publication of JP2960876B2 publication Critical patent/JP2960876B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、粗銅を電解精製し
て高純度電気銅を製造する際の循環銅電解液中に増加し
てくる銅、砒素、アンチモン、ビスマスなどの金属を除
去する浄液方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a purification method for removing metals such as copper, arsenic, antimony and bismuth which are increased in a circulating copper electrolytic solution when electrolytically refining crude copper to produce high-purity electrolytic copper. It relates to the liquid method.

【0002】[0002]

【従来の技術】一般に、銅電解精製における銅電解液の
浄液方法としては図2に示す方法が広く行なわれてい
る。粗銅の電解精製が進行するにつれ、電解液中には
銅、砒素、アンチモン、ビスマス、ニッケルなどの金属
が増加してくることから、電解液を加熱濃縮して、硫酸
銅の溶解度の差を利用して、銅分を硫酸銅として除去
し、次いで、脱銅後液を電解採取(脱砒電解と称す)法
により、残存する銅、砒素、アンチモン、ビスマスを電
着させ、最後に脱砒後液を冷却して、溶解度差を利用し
てニッケルを硫酸塩として分離し、冷凍結晶後液を電解
工場に戻すことにより、電解液成分を適正に保持する方
式が行なわれている。
2. Description of the Related Art Generally, a method shown in FIG. 2 is widely used as a method for purifying a copper electrolytic solution in copper electrolytic refining. As the electrolytic refining of blister copper progresses, metals such as copper, arsenic, antimony, bismuth and nickel increase in the electrolytic solution, so the electrolytic solution is heated and concentrated to utilize the difference in solubility of copper sulfate. Then, the copper content is removed as copper sulfate, and then the remaining copper, arsenic, antimony, and bismuth are electrodeposited by electrolytic extraction (referred to as "de-assertion electrolysis") of the decoppered solution. There is a method in which the solution is cooled, nickel is separated as a sulfate using the difference in solubility, and the solution after the frozen crystallization is returned to an electrolytic plant, so that the components of the electrolytic solution are properly maintained.

【0003】[0003]

【発明が解決しようとする課題】この従来法では、砒
素、アンチモン、ビスマスの除去に電解採取法を用いる
ため、電解中に猛毒のアルシンガス(AsH3 )の発生
の危険を有する。さらには電解採取時の電力消費量がき
わめて多いという欠点を有している。電解槽から抜き出
した電解液或いは脱銅後液に亜流酸ガスの吹込むといっ
た方法で電解液中の砒素を3価の砒素イオンとした後に
銅と砒素とを化合物として同時に析出させることにより
アルシンガス発生を抑制する方法が特開昭56−201
85号(特公昭57−40231号)に示されている
が、この方法でも必ずしも完全にはアルシンガス発生を
防止できない。
In this conventional method, since the electrowinning method is used to remove arsenic, antimony, and bismuth, there is a danger of generating highly toxic arsine gas (AsH 3 ) during electrolysis. Furthermore, it has the disadvantage that the power consumption during electrowinning is extremely high. Arsenic gas is generated by converting arsenic in the electrolytic solution into trivalent arsenic ions by injecting arsenic acid gas into the electrolytic solution taken out of the electrolytic cell or into the solution after decopperization, and then depositing copper and arsenic simultaneously as compounds. JP-A-56-201 discloses a method for suppressing
No. 85 (Japanese Patent Publication No. 57-40231), this method cannot always completely prevent the generation of arsine gas.

【0004】特開昭57−5884号は、銅電解精製に
供した電解液を脱銅処理し、この脱銅電解液を40℃以
上の温度に加温して所定の電位まで硫化水素を吹き込ん
で液中の金属分を硫化物として沈殿させ、これをろ別し
て沈殿物は銅製錬用原料、ろ液は銅電解液として再循環
させる銅電解液の処理法を記載している。しかしなが
ら、この方法に示されているような猛毒の硫化水素ガス
を多量ガス状態で取扱うことは問題が多く、工業的には
実施不可能な方法である。硫化水素ガスを電解液に吹き
込む方式のもう一つの欠点は、特開昭57−5884号
には何らの記載もないが、電解液中に堆積してくるニッ
ケルや鉄等の不純物が十分に除去できないことである。
Japanese Patent Application Laid-Open No. 57-5884 discloses a method for removing copper from an electrolytic solution subjected to electrolytic copper refining, heating the electrolytic solution to 40 ° C. or more, and blowing hydrogen sulfide to a predetermined potential. Describes a method for treating a copper electrolytic solution in which a metal component in the liquid is precipitated as a sulfide, which is filtered off, the precipitate is a raw material for copper smelting, and the filtrate is recycled as a copper electrolytic solution. However, handling highly toxic hydrogen sulfide gas in a large gas state as described in this method has many problems, and is a method that cannot be carried out industrially. Another disadvantage of the system in which hydrogen sulfide gas is blown into the electrolytic solution is that although there is no description in JP-A-57-5884, impurities such as nickel and iron deposited in the electrolytic solution are sufficiently removed. That is not possible.

【0005】硫化水素の吹き込みと関連して、特開平7
−188963号は、銅電解廃液から高純度の銅を回収
する方法として、銅電解廃液を硫化水素で処理して液中
の銅及び砒素、アンチモンなどの不純物を硫化銅を主成
分とする硫化物として回収し、隔膜で仕切られた陽極室
を有する電解槽を用いて陽極室にて硫酸水溶液を電解液
として用いて陽極電解処理することにより99.9%以
上の高純度の銅を陰極に析出せしめ、硫化物を回収した
後の脱銅液を硫酸ニッケル工程を経由した後粗硫酸ニッ
ケルと硫酸とを回収するフローを提唱している。ここで
も、銅電解廃液の硫化水素処理は、工業的に実用性がな
い。
In connection with the injection of hydrogen sulfide, Japanese Unexamined Patent Publication No.
No. 188,963 discloses a method for recovering high-purity copper from a copper electrolytic waste liquid by treating the copper electrolytic waste liquid with hydrogen sulfide to remove impurities such as copper, arsenic, and antimony in the liquid from a sulfide mainly composed of copper sulfide. And a high purity copper of 99.9% or more is deposited on the cathode by anodic electrolysis using an aqueous solution of sulfuric acid as an electrolytic solution in the anode chamber using an electrolytic cell having an anode chamber partitioned by a diaphragm. At first, a flow of recovering crude nickel sulfate and sulfuric acid after passing the copper removal solution after recovering the sulfide through the nickel sulfate step is proposed. Here, too, the hydrogen sulfide treatment of the copper electrolysis waste liquid is not industrially practical.

【0006】本発明の課題は、銅電解循環液の浄液方法
として、有害なアルシンを発生させる砒素、アンチモ
ン、ビスマスの電解採取による分離法に替わる工業的に
実施可能な有用な方式を確立することである。
[0006] An object of the present invention is to establish a useful industrially feasible method as a method for purifying a circulating copper electrolysis solution, which is an alternative to the separation method by electrowinning arsenic, antimony, and bismuth which generates harmful arsine. That is.

【0007】[0007]

【課題を解決するための手段】本発明者は鋭意研究の結
果、有害なアルシンを発生させる砒素、アンチモン、ビ
スマスの電解採取による分離法に替わり、これらの金属
を硫化物として、沈殿分離する方式の有用性に着目し
た。しかしながら、硫化水素ガスを電解液に吹き込ん
で、これらの金属を硫化物として沈殿除去することは、
前述した通り、猛毒の硫化水素ガスを多量ガス状態で運
搬し、取扱うことを要し、工業的には不可能である。本
発明者は、これらの欠点を除いた工業的に効果の大きい
硫化物沈殿による分離法として、先ず、不純物を除去す
べき電解液を2分割し、一方の電解液に工業用水硫化ソ
ーダを添加して、当該液中の銅、砒素、アンチモン、ビ
スマスを硫化物として沈殿分離し、さらに過剰の水硫化
ソーダを添加して、当該液中に残存せる硫酸と反応させ
て硫化水素ガスを発生させ、このガスをもう一方の電解
液に通過させて、銅、砒素、アンチモン、ビスマスを硫
化物として沈殿分離させる方式を想到し、その有用性を
確認した。
Means for Solving the Problems As a result of intensive studies, the present inventor has replaced the separation method by electrowinning arsenic, antimony, and bismuth, which generate harmful arsine, with a method in which these metals are separated as sulfides by precipitation and separation. We focused on the usefulness of However, injecting hydrogen sulfide gas into the electrolyte to precipitate and remove these metals as sulfides,
As described above, highly toxic hydrogen sulfide gas must be transported and handled in a gaseous state, which is industrially impossible. As a method of industrially effective separation by sulfide precipitation that eliminates these disadvantages, the present inventor first divides the electrolytic solution from which impurities are to be removed into two, and adds industrial sodium bisulfide to one of the electrolytic solutions. Then, copper, arsenic, antimony, and bismuth in the liquid are precipitated and separated as sulfides, and an excess amount of sodium hydrogen sulfide is added to react with sulfuric acid remaining in the liquid to generate hydrogen sulfide gas. Then, a method of passing this gas through the other electrolyte to precipitate and separate copper, arsenic, antimony, and bismuth as sulfides has been conceived, and its usefulness has been confirmed.

【0008】こうした背景の下で、本発明は、銅電解精
製における循環電解液中の不純物の堆積を防止するため
電解液の一部を抜き出して浄液した後、再循環する銅電
解液の浄液方法において、抜き出した銅電解液を分割
し、一方の分割電解液に工業用水硫化ソーダを添加し、
一方の分割電解液中の銅、砒素、アンチモン、ビスマス
等の金属を硫化物として沈殿分離させ、さらに一方の分
割電解液に過剰の工業用水硫化ソーダを添加して一方の
分割電解液中に残存せる硫酸と反応させて硫化水素ガス
を発生させ、発生した硫化水素ガスを他方の分割電解液
に通過させ、他方の分割電解液中の銅、砒素アンチモ
ン、ビスマスなどの金属を硫化物として沈殿分離し、分
離したろ液を再循環することを特徴とする銅電解循環液
の浄液方法を提供する。さらには、水硫化ソーダを添加
した一方の分割電解液に、硫化物の沈殿分離後、アルカ
リ剤を添加して硫化物として十分に除去できない重金属
不純物を中和沈殿として分離除去することが有益であ
る。
Against this background, the present invention aims to prevent the accumulation of impurities in a circulating electrolytic solution in copper electrolytic refining by extracting a portion of the electrolytic solution, purifying the electrolytic solution, and then purifying the recirculated copper electrolytic solution. In the liquid method, the extracted copper electrolytic solution is divided, and industrial sodium bisulfide is added to one of the divided electrolytic solutions,
Metals such as copper, arsenic, antimony, and bismuth in one of the split electrolytes are precipitated and separated as sulfides, and excess industrial sodium hydrosulfide is added to one of the split electrolytes to remain in one of the split electrolytes Reacts with sulfuric acid to generate hydrogen sulfide gas, passes the generated hydrogen sulfide gas through the other split electrolyte, and precipitates and separates metals such as copper, arsenic antimony and bismuth as sulfide in the other split electrolyte And a method for purifying a circulating copper electrolytic solution, characterized by recirculating the separated filtrate. Furthermore, it is advantageous to add an alkali agent to one of the divided electrolytes to which sodium hydrogen sulfide is added and then separate and remove heavy metal impurities that cannot be sufficiently removed as sulfides by neutralizing precipitation. is there.

【0009】抜き出した銅電解液から電解採取方式によ
り液中の銅の大部分を回収したのち銅電解液を分割する
ことが好ましい。その場合、抜き出した銅電解液を電解
採取方式により液中の銅の大部分を回収する前に、該銅
電解液をイオン交換樹脂を通過させ、銅電解液中のアン
チモン及び/又はビスマスの一部を樹脂に吸着除去する
のが良い。電解液を加熱、水分を蒸発させ、銅を硫酸銅
として析出分離させることもできる。
It is preferable that most of the copper in the copper electrolyte is recovered from the extracted copper electrolyte by an electrowinning method, and then the copper electrolyte is divided. In this case, before recovering most of the copper in the extracted copper electrolytic solution by the electrowinning method, the copper electrolytic solution is passed through an ion-exchange resin to remove antimony and / or bismuth from the copper electrolytic solution. It is advisable to adsorb and remove the part on the resin. The electrolytic solution can be heated to evaporate water, and copper can be precipitated and separated as copper sulfate.

【0010】[0010]

【発明の実施の形態】銅電解精製においては、陰極に析
出する銅量に比べて陽極から溶出する銅量の方が一般に
多いので、電解液中の銅の濃度がしだいに増加する。所
定以上の銅濃度の増加は最適に電解精製を妨げる。一
方、銅陽極に含まれている砒素、アンチモン、ビスマ
ス、ニッケル、鉄などが電解液中に溶出する。これら不
純物イオンがある程度以上になると陰極に析出して電気
銅の品位を低下させる。また、ニッケルは電解電圧を上
昇させ、アンチモンは加水分解によって浮遊化するとい
った有害な作用も呈する。そこで、電解槽から電解液を
抜き出して浄化後電解槽に戻す銅電解循環液の浄液が重
要となる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In copper electrolytic refining, the amount of copper eluted from an anode is generally larger than the amount of copper deposited on a cathode, so that the concentration of copper in an electrolytic solution gradually increases. An increase in the copper concentration above a certain level optimally prevents electrolytic refining. On the other hand, arsenic, antimony, bismuth, nickel, iron and the like contained in the copper anode elute in the electrolyte. When these impurity ions reach a certain degree or more, they deposit on the cathode and lower the quality of electrolytic copper. Nickel also has the detrimental effect of raising the electrolysis voltage and antimony being suspended by hydrolysis. Therefore, it is important to remove the electrolytic solution from the electrolytic cell and purify the circulating copper electrolytic solution after the purification and return to the electrolytic cell.

【0011】図1は、本発明に従う銅電解循環液の浄液
プロセスのフローシートを示す。電解工場からの不純物
を除去すべき電解液は(ここでは脱銅電解により銅を回
収した後の脱銅後液として示すが、この工程は省略する
ことができる。)、2つの部分に分割される。一方の分
割電解液は水硫化ソーダ添加槽にそして他方の分割電解
液は反応層に導入される。水硫化ソーダ添加槽において
は、一方の分割電解液に工業用水硫化ソーダを添加し、
分割電解液中の銅、砒素、アンチモン、ビスマス等の金
属を硫化物として沈殿分離させ、さらに該分割電解液に
過剰の工業用水硫化ソーダを添加して、当該液中に残存
せる硫酸と反応させて硫化水素ガスを発生させ、該硫化
水素ガスを反応槽の他方の分割電解液に通過させ、他方
の分割電解液中の銅、砒素アンチモン、ビスマスなどの
金属を硫化物として沈殿分離し、分離したろ液を再循環
する。更に、中和設備において、水硫化ソーダを添加し
た一方の分割電解液に、消石灰あるいは炭酸カルシウ
ム、苛性ソーダ等のアルカリ剤を添加してpHを8〜1
2範囲として硫化物として十分に除去できないニッケル
や鉄等の不純物を中和沈殿として分離除去するのが有益
である。沈殿はろ滓として製錬工程に送られ、ろ液は排
水として放出される。
FIG. 1 shows a flow sheet of a process for purifying a copper electrolysis circulating solution according to the present invention. The electrolytic solution from which the impurities from the electrolytic plant should be removed is divided into two parts (this step is shown as a post-decoppering liquid after copper is recovered by decopperizing electrolysis, but this step can be omitted). You. One split electrolyte is introduced into the sodium bisulfide addition tank and the other split electrolyte is introduced into the reaction layer. In the sodium hydrogen sulfide addition tank, industrial sodium hydrogen sulfide is added to one of the divided electrolytes,
Metals such as copper, arsenic, antimony, and bismuth in the split electrolyte are precipitated and separated as sulfides, and excess industrial sodium hydrosulfide is added to the split electrolyte to react with sulfuric acid remaining in the solution. To generate hydrogen sulfide gas, pass the hydrogen sulfide gas through the other split electrolyte in the reaction tank, and precipitate and separate metals such as copper, arsenic antimony, and bismuth in the other split electrolyte as sulfides. Recycle the filtrate. Further, in a neutralization facility, an alkaline agent such as slaked lime or calcium carbonate or caustic soda is added to one of the divided electrolyte solutions to which sodium bisulfide is added to adjust the pH to 8 to 1.
It is beneficial to separate and remove impurities such as nickel and iron which cannot be sufficiently removed as sulfides as neutralized precipitates in the two ranges. The precipitate is sent to the smelting process as filter cake, and the filtrate is discharged as wastewater.

【0012】一方の分割電解液対循環電解液を生成する
他方の分割電解液の分割容積比は、1:2〜1:10の
範囲とすることができる。他方の分割電解液が少な過ぎ
ると循環電解液の量が少なくなる。他方の分割電解液が
多過ぎると、必要量の硫化水素ガスを発生させることが
できなくなる。脱銅後の電解液中には、銅が5〜20g
/l、砒素が1〜10g/l、アンチモンが0.1〜
1.0g/l、ビスマスが0.05〜1.0g/l、ニ
ッケルが5〜20g/l及びフリーの硫酸が100〜3
00g/l含まれている。こうした不純物量に応じて、
必要な硫化水素ガス量を決定し、分割比を決定すること
ができる。
The divided volume ratio of one divided electrolyte to the other divided electrolyte for producing a circulating electrolyte can be in the range of 1: 2 to 1:10. If the other divided electrolyte is too small, the amount of the circulating electrolyte will be small. If the other divided electrolyte is too large, it is not possible to generate a required amount of hydrogen sulfide gas. In the electrolytic solution after copper removal, copper is 5 to 20 g.
/ L, arsenic is 1-10 g / l, antimony is 0.1-
1.0 g / l, bismuth 0.05-1.0 g / l, nickel 5-20 g / l and free sulfuric acid 100-3
00g / l. Depending on the amount of these impurities,
The required hydrogen sulfide gas amount can be determined, and the split ratio can be determined.

【0013】硫化水素ガスは、水硫化ソーダ添加槽にお
いて安価な工業用水硫化ソーダを液中に残存せる硫酸と
反応させて生成され、必要量だけ直接反応槽に通過せし
められるから、高価な硫化水素ガスを大量に運搬・貯蔵
する必要がなくなり、安全な操業を実施することができ
る。水硫化ソーダ添加槽と反応槽とは併設することが好
ましい。
The hydrogen sulfide gas is produced by reacting inexpensive industrial sodium hydrogen sulfide with sulfuric acid remaining in the liquid in a sodium hydrogen sulfide addition tank, and the required amount of hydrogen sulfide gas is directly passed through the reaction tank. There is no need to transport and store a large amount of gas, and safe operation can be performed. It is preferable that the sodium hydrogen sulfide addition tank and the reaction tank are provided side by side.

【0014】なお、電解液中の金属分としては、銅が最
も多く、この液を直接処理すると、多量の硫化銅が発生
し、これが溶練系統への繰り返し物となることから、本
発明においては、硫化沈殿の前に銅分を除去することが
好ましい。銅の除去法としては、純度99%以上の純度
の電気銅の得られる電解採取法或いは加熱濃縮による硫
酸銅としての分離の方法が適している。また、電解採取
する場合には、電気銅の純度を高めるため、先ず、電解
液をイオン交換樹脂で処理して、アンチモン及び/又は
ビスマスを除去したのち、銅を電解採取法にて回収する
方式が適していることが判明した。
As the metal component in the electrolytic solution, copper is the largest, and when this solution is directly treated, a large amount of copper sulfide is generated, which becomes a repetitive material to the smelting system. It is preferable that copper is removed before sulfide precipitation. As a method for removing copper, an electrowinning method for obtaining electrolytic copper having a purity of 99% or more or a method for separating copper sulfate by heat concentration are suitable. In the case of electrowinning, in order to increase the purity of electrolytic copper, first, an electrolytic solution is treated with an ion exchange resin to remove antimony and / or bismuth, and then copper is recovered by electrowinning. Turned out to be suitable.

【0015】[0015]

【実施例】【Example】

(実施例1)図1に示されるように銅45g/lを含有
する電解液30m3 を公知の電解採取法(脱銅電解)に
より処理し、銅純度99.99%の電気銅を450Kg
そして99.9%の電気銅を600Kg先に分離回収し
た。電解の完了した液には、銅が10g/l、砒素が5
g/l、アンチモンが0.4g/l、ビスマスが0.1
g/l、ニッケルが15g/l及びフリーの硫酸が21
4g/l含まれていた。この溶液の約1/5である一方
の分割電解液6.7m3 にNaSHを約25%含む工業
用水硫化ソーダ500Kgを添加して、銅、砒素、アン
チモン及びビスマスを沈殿させた。さらに、過剰の工業
用水硫化ソーダ1740Kgを毎分約10Kgの速度で
添加して、溶液中の硫酸と反応させ、硫化水素ガスを発
生させた。この硫化水素ガスを残りの分割電解液23.
3m3 に導き、残りの分割電解液と硫化水素ガスを接触
反応させ、銅、砒素、アンチモン及びビスマスを沈殿さ
せた。沈殿物をろ過分離し、得られたろ過液は銅、砒素
アンチモン、ビスマスの濃度がいづれも0.1g/l以
下と清浄なため、電解工程に循環使用した。工業用水硫
化ソーダを添加した溶液は、硫酸、ニッケル、鉄等の物
質を含むため、消石灰905Kgを添加して、溶液のp
Hを10として、重金属を中和沈殿させたのち、ろ過を
行ない、ろ滓は製錬工程に繰り返し処理した。なお、中
和には、消石灰のほか、炭酸カルシウム、苛性ソーダ等
のアルカリ剤の使用も可能であった。
Example 1 As shown in FIG. 1, 30 m 3 of an electrolytic solution containing 45 g / l of copper was treated by a known electrowinning method (copper removal electrolysis), and 450 kg of electrolytic copper having a copper purity of 99.99% was obtained.
Then, 99.9% of electrolytic copper was separated and collected at a point of 600 kg. After the electrolysis, the solution contained 10 g / l of copper and 5 g of arsenic.
g / l, antimony 0.4 g / l, bismuth 0.1
g / l, nickel 15 g / l and free sulfuric acid 21
4 g / l was contained. 500 kg of industrial sodium bisulfide containing about 25% of NaSH was added to 6.7 m 3 of one of the divided electrolyte solutions, which was about 1/5 of this solution, to precipitate copper, arsenic, antimony and bismuth. Further, 1740 Kg of excess sodium hydrogen sulfide for industrial use was added at a rate of about 10 Kg per minute, and reacted with sulfuric acid in the solution to generate hydrogen sulfide gas. This hydrogen sulfide gas is used for the remaining divided electrolyte solution 23.
The solution was led to 3 m 3 , and the remaining split electrolyte and a hydrogen sulfide gas were contacted and reacted to precipitate copper, arsenic, antimony and bismuth. The precipitate was separated by filtration, and the obtained filtrate was clean and had a concentration of copper, arsenic antimony and bismuth of 0.1 g / l or less. Since the solution to which industrial sodium bisulfide is added contains substances such as sulfuric acid, nickel, and iron, 905 kg of slaked lime is added, and p of the solution is added.
After H was set to 10, the heavy metal was neutralized and precipitated, followed by filtration, and the filter cake was repeatedly treated in the smelting process. For neutralization, an alkali agent such as calcium carbonate and caustic soda could be used in addition to slaked lime.

【0016】(実施例2)銅45g/l、砒素5g/
l、アンチモン0.4g/l、ビスマスが0.1g/
l、ニッケル15g/l及びフリーの硫酸160g/l
を含む電解液を抜き出し、イオン交換樹脂(ミヨシ樹脂
(株)製のEPOROUS MX−2)を通過させ、ア
ンチモン及びビスマスの一部を吸着させた。この樹脂を
通過した溶液は銅45g/l、砒素5g/l、アンチモ
ン0.1g/l、ビスマスが0.05g/l、ニッケル
15g/l及びフリーの硫酸160g/lを含んでい
た。この溶液を公知の方法にて、銅を電解採取法により
処理したが、液中のアンチモン及びビスマスが低いた
め、純度99.99%の電気銅が600Kgそして純度
99.9%の電気銅が450Kg得られた。電解の完了
した液は実施例1と同様にして処理した。
(Example 2) Copper 45 g / l, arsenic 5 g /
l, antimony 0.4 g / l, bismuth 0.1 g /
1, nickel 15g / l and free sulfuric acid 160g / l
Was extracted and passed through an ion exchange resin (EPROUS MX-2 manufactured by Miyoshi Resin Co., Ltd.) to adsorb some of antimony and bismuth. The solution passed through the resin contained 45 g / l copper, 5 g / l arsenic, 0.1 g / l antimony, 0.05 g / l bismuth, 15 g / l nickel and 160 g / l free sulfuric acid. This solution was treated by a known method to remove copper by electrolytic sampling. However, since antimony and bismuth in the solution were low, 600 kg of 99.99% pure copper and 450 kg of 99.9% pure copper were used. Obtained. The solution after the electrolysis was treated in the same manner as in Example 1.

【0017】[0017]

【発明の効果】銅電解循環液の浄液方法として、有害な
アルシンを発生させる砒素等の電解採取に替わる工業的
に実施可能な有用な方式を確立することに成功した。使
用される硫化水素ガスは、現場で、水硫化ソーダ添加槽
において安価な工業用水硫化ソーダを液中に残存せる硫
酸と反応させて生成され、必要量だけ直接反応槽に通過
せしめられるから、処理がやりやすく、猛毒で高価な硫
化水素ガスを大量に運搬・貯蔵する必要がなくなり、安
全な操業を行うことができる。
As a method for purifying the circulating liquid for copper electrolysis, a useful industrially feasible method has been successfully established in place of electrowinning of arsenic or the like which generates harmful arsine. The hydrogen sulfide gas used is generated by reacting inexpensive industrial sodium hydrogen sulfide with sulfuric acid remaining in the liquid in the sodium hydrogen sulfide addition tank at the site, and the required amount is directly passed through the reaction tank. It is not necessary to transport and store a large amount of highly toxic and expensive hydrogen sulfide gas, and safe operation can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に従う銅電解液の浄液プロセス段階を示
すフローシートである。
FIG. 1 is a flow sheet showing a process step of purifying a copper electrolyte according to the present invention.

【図2】従来方法による銅電解液の浄液プロセス段階を
示すフローシートである。
FIG. 2 is a flow sheet showing a process for purifying a copper electrolytic solution according to a conventional method.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 銅電解精製における循環電解液中の不純
物の堆積を防止するため電解液の一部を抜き出して浄液
した後、再循環する銅電解液の浄液方法において、抜き
出した銅電解液を分割し、一方の分割電解液に工業用水
硫化ソーダを添加し、一方の分割電解液中の銅、砒素、
アンチモン、ビスマス等の金属を硫化物として沈殿分離
させ、さらに一方の分割電解液に過剰の工業用水硫化ソ
ーダを添加して一方の分割電解液中に残存せる硫酸と反
応させて硫化水素ガスを発生させ、発生した硫化水素ガ
スを他方の分割電解液に通過させ、他方の分割電解液中
の銅、砒素アンチモン、ビスマスなどの金属を硫化物と
して沈殿分離し、分離したろ液を再循環することを特徴
とする銅電解循環液の浄液方法。
In a method of purifying a copper electrolyte solution, a part of the electrolyte solution is extracted and purified in order to prevent the accumulation of impurities in a circulating electrolyte solution in copper electrolytic refining. The liquid is divided, and industrial sodium bisulfide is added to one of the divided electrolytes, and copper, arsenic,
Precipitate and separate metals such as antimony and bismuth as sulfides.Additionally, excess industrial sodium hydrosulfide is added to one of the divided electrolytes and reacted with sulfuric acid remaining in one of the divided electrolytes to generate hydrogen sulfide gas. To cause the generated hydrogen sulfide gas to pass through the other split electrolyte, precipitate and separate metals such as copper, arsenic antimony, and bismuth in the other split electrolyte as sulfides, and recycle the separated filtrate. A method for purifying a copper electrolysis circulating solution, characterized by the following.
【請求項2】 水硫化ソーダを添加した一方の分割電解
液に、硫化物の沈殿分離後、アルカリ剤を添加して硫化
物として十分に除去できない重金属不純物を中和沈殿と
して分離除去する請求項1の銅電解循環液の浄液方法。
2. A method according to claim 1, wherein after the separation of sulfide by precipitation into one of the divided electrolytes to which sodium bisulfide is added, an alkali agent is added to separate and remove heavy metal impurities which cannot be sufficiently removed as sulfide as neutralized precipitate. 1. A method for purifying a copper electrolysis circulating solution.
【請求項3】 抜き出した銅電解液から電解採取方式に
より液中の銅の大部分を回収した後銅電解液を分割する
請求項1乃至2の銅電解循環液の浄液方法。
3. The method for purifying a circulating copper electrolytic solution according to claim 1, wherein the copper electrolytic solution is divided after recovering most of the copper in the electrolytic solution from the extracted copper electrolytic solution by an electrowinning method.
【請求項4】 抜き出した銅電解液を電解採取方式によ
り液中の銅の大部分を回収する前に、該銅電解液をイオ
ン交換樹脂を通過させ、銅電解液中のアンチモン及び/
又はビスマスの一部をイオン交換樹脂に吸着除去する請
求項3の銅電解循環液の浄液方法。
4. Prior to recovering most of the copper in the extracted copper electrolytic solution by an electrowinning method, the copper electrolytic solution is passed through an ion exchange resin, and the antimony and / or
4. The method for purifying a circulating copper electrolytic solution according to claim 3, wherein a part of bismuth is adsorbed and removed by the ion exchange resin.
【請求項5】 抜き出した銅電解液を加熱し、水分を蒸
発させ、銅を硫酸銅として析出分離させた後銅電解液を
分割する請求項1乃至2の銅電解循環液の浄液方法。
5. The method for purifying a copper electrolytic circulating solution according to claim 1, wherein the extracted copper electrolytic solution is heated to evaporate water, and the copper electrolytic solution is separated as copper sulfate.
JP7263639A 1995-09-19 1995-09-19 Copper electrolyte cleaning method Expired - Fee Related JP2960876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7263639A JP2960876B2 (en) 1995-09-19 1995-09-19 Copper electrolyte cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7263639A JP2960876B2 (en) 1995-09-19 1995-09-19 Copper electrolyte cleaning method

Publications (2)

Publication Number Publication Date
JPH0978284A JPH0978284A (en) 1997-03-25
JP2960876B2 true JP2960876B2 (en) 1999-10-12

Family

ID=17392293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7263639A Expired - Fee Related JP2960876B2 (en) 1995-09-19 1995-09-19 Copper electrolyte cleaning method

Country Status (1)

Country Link
JP (1) JP2960876B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106086935B (en) * 2016-08-29 2017-12-05 江西理工大学 A kind of method that arsenic, antimony, bismuth are removed from copper electrolyte
WO2019107287A1 (en) * 2017-11-29 2019-06-06 パンパシフィック・カッパー株式会社 Method for producing electrolytic copper

Also Published As

Publication number Publication date
JPH0978284A (en) 1997-03-25

Similar Documents

Publication Publication Date Title
JP3671148B2 (en) Method for purifying lithium carbonate
KR100264625B1 (en) Method of purifying copper electrolytic solution
RU2233898C2 (en) Method of preparation of magnesium chloride solution
CN112981104B (en) Method for treating cadmium-containing waste residues and recycling metal cadmium
JP3151182B2 (en) Copper electrolyte cleaning method
CN111170499A (en) Method for recovering nickel sulfate from nickel electroplating waste liquid
AU756317B2 (en) Separation and concentration method
RO126480B1 (en) Process for obtaining gold and silver
JPH1072631A (en) Wet process metallurgical and electrochemical treatment of sulfur-antimony ore for forming electrolytic antimony and simple substance sulfur
JP5062111B2 (en) Method for producing high-purity arsenous acid aqueous solution from copper-free slime
JP2960876B2 (en) Copper electrolyte cleaning method
MXPA96004583A (en) Process for the recovery of the salon bathroom components of the detem workshops
US3691037A (en) Mercury recovery from chlorine cells utilizing mercury cathodes
CN114956126A (en) Method for recycling mother solution in sodium method iron phosphate production process
JP3226475B2 (en) A method for separating and recovering metals from a circulating copper electrolyte and purifying the same in a copper electrorefining system for producing electrolytic copper by electrolytically refining blister copper
US4255399A (en) Process for the recovery of magnesium oxide of high purity
JPS589820B2 (en) Method for recovering gallium from alkaline aluminate solutions obtained from processing aluminum-containing ores
SE451854B (en) SET FOR PREPARATION OF ALKALIMETAL CHLORATE
CN114959306B (en) Method for recycling lithium from lithium precipitation mother liquor by closed cycle method
US5356610A (en) Method for removing impurities from an alkali metal chlorate process
US6200454B1 (en) Process for producing sodium persulfate
JPS59170286A (en) Treatment of copper electrolyte
JPH0397880A (en) Method for preparation of aqeous sodium hydroxide solution of high cencentration
WO2000036185A2 (en) Electrolytic production of silver salts
WO2024000013A1 (en) A process for treating impurity containing streams

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990713

LAPS Cancellation because of no payment of annual fees