JPS6247813B2 - - Google Patents

Info

Publication number
JPS6247813B2
JPS6247813B2 JP169983A JP169983A JPS6247813B2 JP S6247813 B2 JPS6247813 B2 JP S6247813B2 JP 169983 A JP169983 A JP 169983A JP 169983 A JP169983 A JP 169983A JP S6247813 B2 JPS6247813 B2 JP S6247813B2
Authority
JP
Japan
Prior art keywords
arsenic
copper
sulfide
solution
produced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP169983A
Other languages
Japanese (ja)
Other versions
JPS59128216A (en
Inventor
Shuichi Oodo
Juji Nishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP169983A priority Critical patent/JPS59128216A/en
Publication of JPS59128216A publication Critical patent/JPS59128216A/en
Publication of JPS6247813B2 publication Critical patent/JPS6247813B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 本発明は硫化砒素含有殿物と、硫酸銅含有水溶
液から亜砒酸を製造する方法に関する。 亜砒酸の製造法としては、古くから焙焼法があ
るが、これは乾式法であるため、建設費が高く、
又環境管理上の難点がある。 湿式法については、各種水溶液中の砒素は硫化
剤添加により、硫化砒素として比較的単純に沈殿
分離される。 しかし硫化砒素は市場性がない。従つて硫化砒
素から市場性のある亜砒酸を湿式製造する方法を
確立することが望まれていた。 本発明に係る亜砒酸製造法の原料として用いら
れる硫化砒素含有殿物は、非鉄製錬工場工程液例
えば非鉄製錬排煙硫酸製造工場から生じる廃硫酸
或いは湿式製錬工程の工程液に硫化剤を添加する
ことによつて生成させた沈殿物であるため、多少
の不純物を含有する。又、硫酸銅含有水溶液も、
銅製錬工程において回収される粗硫酸銅を溶解し
た水溶液あるいはその他の中間工程液であるた
め、不純物を含有する。 これらの原料を相互反応させることによつて産
出する亜砒酸は、銅、硫黄、それらの化合物或い
はその他の不純物を含有しやすく、高純度の製品
を得ることが困難である。 従来法においては、硫酸銅含有水溶液と硫化砒
素含有殿物の相互反応時の硫化砒素含有殿物のス
ラリー濃度を低濃度に制限し、且つ相互反応時の
CuSC4とAsの比率を厳密にコントロールし、
又、亜砒酸晶出前液の硫酸濃度を低く抑えておく
ことによつて、はじめて高純度亜砒酸を得ること
ができた。 以上のような諸条件を充たすことは、実際の工
場生産管理においては容易に達成し得ることでは
なく、又工程能力の著しい低下を招来することで
ある。 本発明者等は上記従来法の欠点に着目し、硫化
砒素含有殿物と、硫酸銅含有水溶液からより能率
的に高純度亜砒酸を製造する方法を鋭意探究した
結果、反応を2段に分け第1段の砒素溶出反応に
おいては、反応系の砒素および銅の比率を反応式
As2S2+3CuSO4+4H2O=3CuS+2HASO2
3H2SO4の当量に対し、銅過剰、砒素不足の状態
を保ちながら反応させ、次いで第2段の脱銅反応
においては反応系を砒素過剰、銅不足の状態に保
ちつつ反応を行わせることにより、前記のような
煩瑣な諸操業条件を充たさなくとも、高純度亜砒
酸を高収率で産出し得ることを見出した。 すなわち、本発明は、特許請求の範囲に記載さ
れるように、硫酸銅含有水溶液と、硫化砒素含有
殿物を反応させることによつて硫化銅および亜砒
酸を湿式製造する方法において、砒素溶出工程に
よつて硫酸銅含有水溶液と該砒素溶出工程に後続
する脱銅工程で産出する含砒硫化銅とを反応さ
せ、生成したスラリーを固液分離することによつ
て硫化銅と砒素溶出後液を生成させ、次に脱銅工
程によつて該砒素溶出後液と硫化砒素含有殿物を
反応させた後、固液分離することにより、含砒硫
化銅と脱銅後液を生成させ、該含砒硫化銅を前記
砒素溶出工程にくり返し処理するようにし、さら
に該脱銅後液を還元、濃縮および冷却して亜砒酸
を晶析させ、固液分離することによつて亜砒酸を
産出することを特徴とする亜砒酸製造法を提供す
るものである。 次に本発明の内容について詳述する。 硫酸銅含有水溶液としては、粗硫酸銅あるいは
精製硫酸銅を溶解した水溶液、あるいは湿式製錬
工程液例えば銅電解廃液からの硫酸銅製造工程液
でも良いが、粗硫酸銅晶出後液を脱銅電解した場
合に生ずる電解析出物である電解沈殿銅を溶解し
た水溶液を本発明に適用する場合には、該水溶液
中の銅と砒素も同時に分離されることになるの
で、一石二鳥的効果が得られる。 硫化砒素含有殿物については、前述したので再
記することを避ける。 砒素溶出工程の反応においては、銅量が砒素量
に対して十分過剰にあることが必要である。すな
わち、砒素1原子当りの銅量が1.5原子以下では
不足であり、望ましくは、砒素1原子当り2.5原
子以上の銅が存在することが好ましい。銅量の上
限は、次の脱銅工程に差支えない程度であれば良
く、特に数字で限定する必要はない。この工程で
は、固形物は次の脱銅工程から産出する含砒硫化
銅であるが、そのスラリー濃度も特に限定する必
要はない。しかし限られた設備で処理能力を発揮
させるには、できるだけ高いスラリー濃度で行う
ことが望ましく、実施例の第1図および第1表に
見られるように10%以上のスラリー濃度とするこ
とが現実的である。この工程の反応の温度と時間
は、それぞれ70ないし90℃および90ないし150分
程度でよく、機械撹拌しながら反応させることが
望ましい。砒素溶出反応後の固液分離により砒素
含有量の低い硫化銅と、銅と砒素を多量に含有す
る砒素溶出後液を生成する。硫化銅は乾式銅製錬
工程で処理すればよい。砒素溶出後液は次の脱銅
工程で処理される。 脱銅工程では、砒素溶出後液に前記硫化砒素含
有殿物を添加し、反応させることによつて溶液中
の銅をできるだけ低下させる。液中の銅量の低下
分に対応して硫化砒素含有殿物中の砒素が溶解す
るので反応終了後の固液分離により、砒素含量が
高くて銅含量のきわめて低い脱銅後液と最初の硫
化砒素含有殿物に対し砒素の一部と銅が置換され
た含砒硫化銅を産出する。脱銅工程の反応系にお
いては、銅に対し砒素が過剰であることが必要で
ある。すなわち、砒素1原子当りの銅量は1.5原
子以下としなければならない。スラリー濃度は特
に限定されるものではないが、設備のコンパクト
化を考慮すると10%以上が現実的である。温度は
70ないし90℃、時間は90ないし150分でよく、機
械撹拌させながら反応させることが望ましい。こ
の工程で産出する含砒硫化銅は、前記の砒素溶出
工程で処理される。 脱銅後液は、含銅量のきわめて低い砒素含有液
であるので、この液から高純度亜砒酸を製造する
ことができる。まず、脱銅後液に還元剤を添加し
て、液中に存在する5価の砒素を3価に還元す
る。この場合の還元剤は、比較的弱い還元剤でよ
く、非鉄製錬工場ではSO2含有ガスが用いられ
る。勿論、液体亜硫酸でも、亜硫酸水でもよい。
これらの還元剤を使用した場合は反応に伴つて副
生するのは硫酸だけであるということが好都合だ
からである。アルカリイオンが系に混入しても差
支えない場合には、亜硫酸アルカリあるいは酸性
亜硫酸アルカリ例えば亜硫酸ソーダあるいは酸性
亜硫酸ソーダの水溶液を用いても良い。還元され
た砒素含有溶液を加熱あるいは減圧加熱蒸発濃縮
したのち冷却して、亜砒酸を晶析させ固液分離す
ることによつて高純度亜砒酸を回収する。亜砒酸
晶析前の濃縮液については、原料硫酸銅溶液に由
来する硫酸に還元のために吹き込まれたSO2に由
来する硫酸が加算されるので硫酸濃度は高くな
る。第2図に示されるように、硫酸濃度が高い方
が3価の砒素の溶解度が低くなり、従つて亜砒酸
の晶析率が大きくなり好ましい。それゆえ第1表
に示すように、硫酸濃度300g/程度が好適で
ある。亜砒酸晶析前の硫酸濃度が250g/以下
では、前述の如く、晶析率も低くなり、又晶析工
程前後の取扱液量増大および亜砒酸直接回収率の
低下を来たし能率的でない。本発明の方法に従え
ば晶析前液の硫酸濃度が250g/を越えても十
分に高純度の亜砒酸を製造できるのである。もち
ろん高濃度の硫酸を含有し、不純物としてCu、
Fe、Niなどを数十g/も含有する溶液を加熱
濃縮すれば前記不純物の硫酸塩などが沈殿するこ
とになるので、避けるように配慮すべきである。 亜砒酸の晶析後液は、砒素を若干含有する薄硫
酸であるので、本工程系内へ一部くり返しても良
いが、そうすると系内の硫酸が累増するので、ダ
ストなど中間品を溶解する工程あるいはガス洗浄
工程など、薄硫酸を必要とする工程に添加するこ
とが、無理のない用い方である。 以下に実施例を示す。 実施例 銅製錬排煙硫酸工場から排出される含砒廃酸を
硫化することによつて生成した硫化砒素殿物と、
硫醸銅水溶液を原料として本発明の方法で高純度
亜砒酸を製造試験した実施例について、そのフロ
ーを第1図に、各工程産物の量および組成を第1
表に示す。 効 果 第1図および第1表から分るように、硫化砒素
含有殿物と硫酸銅含有水溶液を原料として、品位
99.5%以上の亜砒酸を湿式法に基くコンパクトな
設備を用い、90%以上の高収率で製造することが
できる。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing arsenous acid from an arsenic sulfide-containing precipitate and a copper sulfate-containing aqueous solution. The roasting method has been used for a long time to produce arsenous acid, but since this is a dry method, construction costs are high.
There are also difficulties in environmental management. In the wet method, arsenic in various aqueous solutions is relatively simply precipitated and separated as arsenic sulfide by adding a sulfurizing agent. However, arsenic sulfide is not marketable. Therefore, it has been desired to establish a wet process for producing marketable arsenic acid from arsenic sulfide. The arsenic sulfide-containing precipitate used as a raw material in the arsenous acid manufacturing method according to the present invention is obtained by adding a sulfiding agent to the process liquid of a non-ferrous smelting factory, such as waste sulfuric acid generated from a non-ferrous smelting flue gas sulfuric acid manufacturing factory or the process liquid of a hydrometallurgical smelting process. Since it is a precipitate produced by adding it, it contains some impurities. In addition, an aqueous solution containing copper sulfate,
Since it is an aqueous solution in which crude copper sulfate recovered in the copper smelting process is dissolved or other intermediate process liquid, it contains impurities. Arsenous acid produced by mutually reacting these raw materials tends to contain copper, sulfur, compounds thereof, or other impurities, making it difficult to obtain a highly pure product. In the conventional method, the slurry concentration of the arsenic sulfide-containing precipitate during the mutual reaction between the copper sulfate-containing aqueous solution and the arsenic sulfide-containing precipitate is limited to a low concentration, and the
By strictly controlling the ratio of CuSC 4 and As,
Moreover, by keeping the sulfuric acid concentration of the solution before arsenous crystallization low, it was possible to obtain high purity arsenous acid for the first time. Satisfying the above-mentioned conditions is not easily achieved in actual factory production management, and also results in a significant decline in process capability. The present inventors focused on the shortcomings of the above-mentioned conventional methods, and as a result of intensive research into a method for more efficiently producing high-purity arsenous acid from arsenic sulfide-containing precipitates and copper sulfate-containing aqueous solutions, they divided the reaction into two stages. In the first-stage arsenic elution reaction, the ratio of arsenic and copper in the reaction system is determined by the reaction equation.
As 2 S 2 +3CuSO 4 +4H 2 O=3CuS+2HASO 2 +
3H 2 SO 4 is reacted while maintaining a state of excess copper and lack of arsenic, and then in the second step copper removal reaction, the reaction is carried out while maintaining a state of excess arsenic and lack of copper. As a result, it was discovered that high-purity arsenous acid could be produced at a high yield without satisfying the complicated operating conditions described above. That is, as described in the claims, the present invention provides a method for wet producing copper sulfide and arsenous acid by reacting an aqueous solution containing copper sulfate with a precipitate containing arsenic sulfide. Therefore, by reacting the copper sulfate-containing aqueous solution with the arsenic-containing copper sulfide produced in the copper removal step that follows the arsenic elution step, and separating the resulting slurry into solid and liquid, copper sulfide and the arsenic eluted solution are generated. Then, in a copper removal step, the arsenic elution solution and the arsenic sulfide-containing precipitate are reacted, and solid-liquid separation is performed to generate arsenic-containing copper sulfide and the copper removal solution, and the arsenic-containing Copper sulfide is repeatedly subjected to the arsenic elution step, and the copper-removed liquid is further reduced, concentrated and cooled to crystallize arsenous acid, and arsenous acid is produced by solid-liquid separation. The present invention provides a method for producing arsenous acid. Next, the content of the present invention will be explained in detail. The copper sulfate-containing aqueous solution may be an aqueous solution in which crude copper sulfate or purified copper sulfate is dissolved, or a hydrometallurgical process liquid, such as a copper sulfate manufacturing process liquid from copper electrolytic waste liquid. When applying to the present invention an aqueous solution in which electrolytically precipitated copper, which is an electrolytic deposit produced during electrolysis, is dissolved, the copper and arsenic in the aqueous solution are also separated at the same time, so the effect of killing two birds with one stone can be obtained. It will be done. As the arsenic sulfide-containing precipitate has been described above, it will not be described again. In the reaction of the arsenic elution step, it is necessary that the amount of copper be in sufficient excess with respect to the amount of arsenic. That is, if the amount of copper per atom of arsenic is less than 1.5 atoms, it is insufficient, and it is desirable that the amount of copper be present in an amount of 2.5 atoms or more per atom of arsenic. The upper limit of the amount of copper may be as long as it does not interfere with the next copper removal step, and there is no need to limit it numerically. In this step, the solid material is arsenic-containing copper sulfide produced from the next copper removal step, but there is no need to particularly limit the slurry concentration. However, in order to maximize the processing capacity with limited equipment, it is desirable to use a slurry concentration as high as possible, and as shown in Figure 1 and Table 1 of Examples, it is realistic to use a slurry concentration of 10% or more. It is true. The temperature and time of the reaction in this step may be about 70 to 90°C and about 90 to 150 minutes, respectively, and it is preferable to carry out the reaction with mechanical stirring. Solid-liquid separation after the arsenic elution reaction produces copper sulfide with a low arsenic content and an arsenic elution solution containing a large amount of copper and arsenic. Copper sulfide may be treated in a dry copper smelting process. The solution after arsenic elution is processed in the next copper removal step. In the copper removal step, the arsenic sulfide-containing precipitate is added to the solution after arsenic elution and caused to react, thereby reducing the amount of copper in the solution as much as possible. As the amount of copper in the solution decreases, the arsenic in the arsenic sulfide-containing precipitate dissolves, and solid-liquid separation after the reaction completes the separation of the decoppered solution, which has a high arsenic content and an extremely low copper content, from the initial copper-free solution. Copper sulfide containing arsenic is produced in which part of the arsenic and copper are substituted for the arsenic sulfide-containing precipitate. In the reaction system of the copper removal process, it is necessary that arsenic be in excess of copper. That is, the amount of copper per atom of arsenic must be 1.5 atoms or less. Although the slurry concentration is not particularly limited, 10% or more is realistic when considering downsizing of equipment. The temperature is
The reaction may be carried out at 70 to 90°C for 90 to 150 minutes, preferably with mechanical stirring. The arsenic copper sulfide produced in this step is treated in the arsenic elution step described above. Since the copper-removed solution is an arsenic-containing solution with an extremely low copper content, high-purity arsenous acid can be produced from this solution. First, a reducing agent is added to the solution after copper removal to reduce pentavalent arsenic present in the solution to trivalent arsenic. The reducing agent in this case may be a relatively weak reducing agent, and SO 2 -containing gas is used in non-ferrous smelting plants. Of course, liquid sulfurous acid or sulfurous acid water may be used.
This is because when these reducing agents are used, it is advantageous that only sulfuric acid is produced as a by-product during the reaction. If there is no problem even if alkali ions are mixed into the system, an aqueous solution of alkali sulfite or acidic alkali sulfite, such as sodium sulfite or acidic sodium sulfite, may be used. The reduced arsenic-containing solution is heated or evaporated under reduced pressure and then cooled to crystallize arsenic acid and undergo solid-liquid separation to recover high-purity arsenic acid. In the concentrated liquid before arsenous acid crystallization, the sulfuric acid concentration increases because sulfuric acid derived from SO 2 blown for reduction is added to sulfuric acid derived from the raw material copper sulfate solution. As shown in FIG. 2, the higher the sulfuric acid concentration, the lower the solubility of trivalent arsenic and therefore the higher the crystallization rate of arsenous acid, which is preferable. Therefore, as shown in Table 1, a sulfuric acid concentration of about 300 g/m is suitable. If the sulfuric acid concentration before arsenous acid crystallization is less than 250 g/min, as described above, the crystallization rate will be low, and the amount of liquid handled before and after the crystallization process will increase, and the direct recovery rate of arsenous acid will decrease, which is not efficient. According to the method of the present invention, arsenous acid of sufficiently high purity can be produced even if the sulfuric acid concentration of the pre-crystallization solution exceeds 250 g/ml. Of course, it contains a high concentration of sulfuric acid, and contains Cu and impurities.
If a solution containing tens of grams of Fe, Ni, etc. is heated and concentrated, the impurities such as sulfates will precipitate, so care should be taken to avoid this. The liquid after crystallization of arsenous acid is dilute sulfuric acid that contains some arsenic, so it may be partially repeated into the system of this process, but since doing so will accumulate sulfuric acid in the system, the process of dissolving intermediate products such as dust is necessary. Alternatively, it is reasonable to add it to a process that requires dilute sulfuric acid, such as a gas cleaning process. Examples are shown below. Example: Arsenic sulfide precipitate produced by sulfiding arsenic waste acid discharged from a copper smelting flue gas sulfuric acid factory,
Regarding an example in which high-purity arsenous acid was manufactured and tested by the method of the present invention using a sulfur-brewed copper aqueous solution as a raw material, the flow is shown in Figure 1, and the amount and composition of each process product are shown in Figure 1.
Shown in the table. Effects As can be seen from Figure 1 and Table 1, using arsenic sulfide-containing precipitates and copper sulfate-containing aqueous solutions as raw materials, the quality
Arsenous acid of 99.5% or more can be produced with a high yield of 90% or more using compact equipment based on a wet process. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例におけるフローシー
ト、第2図は3価の砒素の硫酸溶液中の溶解度に
ついて、温度あるいは遊離硫酸濃度に対する関係
を示すグラフである。
FIG. 1 is a flow sheet in an example of the present invention, and FIG. 2 is a graph showing the relationship between the solubility of trivalent arsenic in a sulfuric acid solution and the temperature or free sulfuric acid concentration.

Claims (1)

【特許請求の範囲】[Claims] 1 硫酸銅含有水溶液と、硫化砒素含有殿物を反
応させることによつて硫化銅および亜砒酸を湿式
製造する方法において、砒素溶出工程によつて硫
酸銅含有水溶液と該砒素溶出工程に後続する脱銅
工程で産出する含砒硫化銅とを反応させ、生成し
たスラリーを固液分離することによつて硫化銅と
砒素溶出後液を生成させ、次に脱銅工程によつて
該砒素溶出後液と硫化砒素含有殿物を反応させた
後、固液分離することにより、含砒硫化銅と脱銅
後液を生成させ、該含砒硫化銅を前記砒素溶出工
程にくり返し処理するようにし、さらに該脱銅後
液を還元、濃縮および冷却して亜砒酸を晶析さ
せ、固液分離することによつて亜砒酸を産出する
ことを特徴とする亜砒酸製造法。
1. In a method for wet production of copper sulfide and arsenous acid by reacting an aqueous solution containing copper sulfate with a precipitate containing arsenic sulfide, an aqueous solution containing copper sulfate and a copper-removal process subsequent to the arsenic elution step are used in an arsenic elution step. Copper sulfide and arsenic eluted solution are produced by reacting with arsenic-containing copper sulfide produced in the process and separating the resulting slurry into solid and liquid. After reacting the arsenic sulfide-containing precipitate, solid-liquid separation is performed to generate arsenic-containing copper sulfide and a post-copper removal solution, and the arsenic-containing copper sulfide is repeatedly subjected to the arsenic elution step, and further A method for producing arsenous acid, characterized in that arsenous acid is produced by reducing, concentrating and cooling a copper-removed solution to crystallize arsenous acid, and performing solid-liquid separation.
JP169983A 1983-01-11 1983-01-11 Manufacture of arsenious acid Granted JPS59128216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP169983A JPS59128216A (en) 1983-01-11 1983-01-11 Manufacture of arsenious acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP169983A JPS59128216A (en) 1983-01-11 1983-01-11 Manufacture of arsenious acid

Publications (2)

Publication Number Publication Date
JPS59128216A JPS59128216A (en) 1984-07-24
JPS6247813B2 true JPS6247813B2 (en) 1987-10-09

Family

ID=11508780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP169983A Granted JPS59128216A (en) 1983-01-11 1983-01-11 Manufacture of arsenious acid

Country Status (1)

Country Link
JP (1) JPS59128216A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536206U (en) * 1991-10-21 1993-05-18 東京瓦斯株式会社 Floor heating panel device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102115166B (en) * 2010-12-31 2012-07-25 马艳荣 Method for preparing arsenic trioxide from arsenic sulfide waste

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0536206U (en) * 1991-10-21 1993-05-18 東京瓦斯株式会社 Floor heating panel device

Also Published As

Publication number Publication date
JPS59128216A (en) 1984-07-24

Similar Documents

Publication Publication Date Title
CA1113253A (en) Process for the treatment of raw materials containing arsenic and metal
JPS5952218B2 (en) Method for recovering gold from copper electrolytic slime
JPS6153103A (en) Recovery of high-purity tellurium from crude tellurium dioxide
US2876065A (en) Process for producing pure ammonium perrhenate and other rhenium compounds
US3951649A (en) Process for the recovery of copper
EP0155250A1 (en) A method for recovering the metal values from materials containing iron
US4071422A (en) Process for concentrating and recovering gallium
US4544460A (en) Removal of potassium chloride as a complex salt in the hydrometallurgical production of copper
CN1067269A (en) With delafossite wet method direct production copper sulfate process
US1952290A (en) Process for the recovery of arsenic
JPS6247813B2 (en)
EP0846656A1 (en) Process for regenerating sodium sulphide from the sodium sulphate which forms in treating lead paste from exhausted batteries
IE55463B1 (en) Gypsum conversion
NO131895B (en)
US4401632A (en) Recovery of arsenic from flue dust
US2676096A (en) Process for the recovery of cadmium from cadmium containing residues
JP3226475B2 (en) A method for separating and recovering metals from a circulating copper electrolyte and purifying the same in a copper electrorefining system for producing electrolytic copper by electrolytically refining blister copper
KR20040060939A (en) A method for purifying the solution in the hydrometallugical processing of copper
JPS589820B2 (en) Method for recovering gallium from alkaline aluminate solutions obtained from processing aluminum-containing ores
US2531182A (en) Process for the manufacture of boric acid
JPS60131827A (en) Manufacture of solution containing arsenic at high concentration
JPS6247814B2 (en)
US4545972A (en) Process for recovery of metal chloride and cuprous chloride complex salts
JPS6035415B2 (en) Separation method for copper and arsenic
JPS6147212B2 (en)