JP4538801B2 - Method for recovering Ni from deoxidation solution - Google Patents

Method for recovering Ni from deoxidation solution Download PDF

Info

Publication number
JP4538801B2
JP4538801B2 JP2005089597A JP2005089597A JP4538801B2 JP 4538801 B2 JP4538801 B2 JP 4538801B2 JP 2005089597 A JP2005089597 A JP 2005089597A JP 2005089597 A JP2005089597 A JP 2005089597A JP 4538801 B2 JP4538801 B2 JP 4538801B2
Authority
JP
Japan
Prior art keywords
solution
concentration
liquid
copper
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005089597A
Other languages
Japanese (ja)
Other versions
JP2006265710A (en
Inventor
秀則 岡本
弘雄 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2005089597A priority Critical patent/JP4538801B2/en
Publication of JP2006265710A publication Critical patent/JP2006265710A/en
Application granted granted Critical
Publication of JP4538801B2 publication Critical patent/JP4538801B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

本発明は、銅電解液の浄液に関するものであり、より詳しく述べるならば銅電解におけるNi、As含有電解液から脱酸樹脂と脱As樹脂を用い、NiとAsを同時に除去する工程で得られる脱酸液からNiを回収する方法に関するものである。   The present invention relates to a copper electrolyte cleaning solution. More specifically, the present invention can be obtained in a step of simultaneously removing Ni and As from a Ni, As-containing electrolyte in copper electrolysis using a deoxidized resin and a de-As resin. The present invention relates to a method for recovering Ni from a deoxidized solution.

銅電解液から不純物を除く工程、一般的に浄液工程と呼ばれているプロセスには種々の方法があり、脱銅後、電解、硫化、溶媒抽出、析出法等でAs、Sb、Biなどの不純物を取り除いた後、Niを硫酸Niの形で結晶析出させる方法が取られている。
例えば、図.1に示すごとく、銅電解液を脱銅電解し、As、Sb、Biを除去し、Niを晶析し、粗硫酸Niを回収し、回収後液は、銅電解工程に送られる。
There are various methods in the process of removing impurities from the copper electrolyte, generally referred to as the liquid purification process. After removing copper, As, Sb, Bi, etc. by electrolysis, sulfurization, solvent extraction, precipitation, etc. After removing the impurities, Ni is crystallized in the form of Ni sulfate.
For example, as shown in Fig. 1, the copper electrolyte is subjected to copper removal electrolysis, As, Sb and Bi are removed, Ni is crystallized, and crude sulfuric acid Ni is recovered. The recovered liquid is sent to the copper electrolysis process. It is done.

Niの晶析には、液中燃焼法、冷凍法、中和法等が採用されている。
特開2003-222408(特許文献1)等に示される液中燃焼法は、液中燃焼により被処理液を濃縮し、硫酸濃度を高めることによりNiの溶解度を下げ、溶解度差によりNiを晶析させる方法であり、冷凍法は被処理液の温度を下げ、溶解度差によりNiを晶析させる方法である。
For crystallization of Ni, a submerged combustion method, a freezing method, a neutralization method, or the like is employed.
In the submerged combustion method disclosed in Japanese Patent Application Laid-Open No. 2003-222408 (Patent Document 1) or the like, the liquid to be treated is concentrated by submerged combustion, the solubility of Ni is lowered by increasing the sulfuric acid concentration, and Ni is crystallized by the difference in solubility. The freezing method is a method in which the temperature of the liquid to be treated is lowered and Ni is crystallized by the difference in solubility.

一方、電解液の脱酸に関して、特開2004-169158(特許文献2)、Michael Sheedy
“ACID RECOVERY AND PURIFICATION USING ABSORPTION RESIN TECHNOLOGY(非特許文献2)等に示されるイオン交換樹脂を使用して行い、Ni除去の際の中和コストを低減する方法も検討されているが、酸回収率は80%程度となっており、20%程度の酸ロスが発生する。
Ni回収物の純度を上げるためには、As,Sb,Bi等の不純物濃度をあらかじめ下げる必要がある。
On the other hand, regarding deoxidation of electrolyte solution, JP2004-169158 (Patent Document 2), Michael Sheedy
“ACID RECOVERY AND PURIFICATION USING ABSORPTION RESIN TECHNOLOGY” (Non-patent Document 2) etc. are used to reduce the neutralization cost when removing Ni. Is about 80%, and an acid loss of about 20% occurs.
In order to increase the purity of the Ni recovered product, it is necessary to reduce the concentration of impurities such as As, Sb and Bi in advance.

例えば、電解液からAs,Sb,Bi等を電解で除去する方法は、銅とAs,Sb,Biを同時に析出させるため、得られる電着物は製品とならず、溶錬工程に繰り返される事になる。
また、上記電解後液から、Niを硫酸Niで回収する液中燃焼法、冷凍法は、溶解度差を用いたNi回収方法であるため、被処理液の硫酸濃度が高いと濃縮率を上げることが出来ず、効率的な脱Niが行えないという欠点がある。
For example, in the method of removing As, Sb, Bi, etc. from the electrolytic solution by electrolysis, copper and As, Sb, Bi are deposited at the same time, so that the obtained electrodeposit does not become a product and is repeated in the smelting process. Become.
The submerged combustion method and the freezing method, in which Ni is recovered with Ni sulfate from the post-electrolysis solution, are Ni recovery methods using a difference in solubility, so that the concentration rate increases when the sulfuric acid concentration of the liquid to be treated is high. Cannot be effectively removed Ni.

特開2003-222408 液中燃焼装置JP-A-2003-222408 Submerged combustion apparatus 特開2004-169158 銅電解液の浄液方法Patent application title: Method for purifying copper electrolyte Michael Sheedy “ACID RECOVERYAND PURIFICATION USING ABSORPTION RESIN TECHNOLOGY”Michael Sheedy “ACID RECOVERYAND PURIFICATION USING ABSORPTION RESIN TECHNOLOGY”

本発明は、銅電解における浄液工程において、電解液の濃縮率を上げ、Ni回収効率を向上させ、効率的かつ低コストの処理方法を提案するものである。 The present invention proposes an efficient and low-cost processing method by increasing the concentration rate of the electrolytic solution and improving the Ni recovery efficiency in the liquid purification process in copper electrolysis.

すなわち、本発明は That is, the present invention

(1)銅電解液浄液工程において電解液からの脱Sb,脱Biをアミノリン酸基をもつキレート樹脂で行い、
脱Sb,脱Bi後の液を、強塩基性陰イオン交換樹脂とグルカミン基をもつキレート樹脂に、直列に通液し、As,Sb,Bi,硫酸を吸着除去したNi含有低濃度酸溶液(以下脱酸液と称す。)を回収し
この脱酸液を既存の濃縮工程で濃縮し、高濃度脱酸液(以下濃縮液と称す。)を得、液中燃焼法、冷凍法での溶解度差を大きくして効率よく硫酸Niを回収する脱酸液からのNi回収方法。
(1) In the copper electrolyte solution cleaning step, desulfurization and debi from the electrolyte are performed with a chelate resin having an aminophosphate group,
The Ni-containing low-concentration acid solution in which As, Sb, Bi, and sulfuric acid are adsorbed and removed by passing the solution after de-Sb and de-Bi in series with a strongly basic anion exchange resin and a chelate resin having a glucamine group ( (Hereinafter referred to as “deoxidation liquid”) and this deoxidation liquid is concentrated in the existing concentration step to obtain a high concentration deoxidation liquid (hereinafter referred to as “concentration liquid”), and the solubility in the submerged combustion method and the freezing method. A method for recovering Ni from a deoxidation solution that efficiently recovers Ni sulfate by increasing the difference.

(2)上記(1)における濃縮液を硫化処理しNi以外の不純物を硫化物として除去した後に、液中燃焼法、冷凍法で硫酸Niを回収する脱酸液からのNi回収方法。
である。
(2) A method of recovering Ni from a deoxidized solution in which Ni sulfate is recovered by a submerged combustion method or a refrigeration method after sulfiding the concentrated liquid in (1) above to remove impurities other than Ni as sulfides.
It is.

本発明によれば、
(1)銅電解液中のAs,Sb,Biを銅と分離して除去できるため、銅とAs,Sb.Biの化合物の発生量が低減できるので、有価物の溶錬工程戻しを回避できる。
(2)脱As樹脂の溶離液にイオン交換樹脂の脱酸時に発生する薄い硫酸溶液を再利用できる。
According to the present invention,
(1) Since As, Sb, Bi in the copper electrolyte can be separated and removed from copper, the generation amount of copper and As, Sb.Bi compounds can be reduced, so that the return of the valuable material to the smelting process can be avoided. .
(2) The thin sulfuric acid solution generated during deoxidation of the ion exchange resin can be reused as the eluent of the de-As resin.

(3)Ni晶析工程(脱Ni工程)での溶解度差を大きくすることができ、脱Ni効率を向上できる上、脱Ni後液を銅電解工程に繰り返しすることも可能である。
(4)また、本発明は、硫酸ロスを低減する事ができる。
(3) The solubility difference in the Ni crystallization process (de-Ni process) can be increased, the de-Ni efficiency can be improved, and the post-de-Ni solution can be repeated in the copper electrolysis process.
(4) Moreover, this invention can reduce a sulfuric acid loss.

本発明を用いた銅電解液浄液フローを図2に示す。
本発明の処理対象液は、銅の電解液である。
銅電解液中のトータル硫酸濃度は、250から280g/L、内フリーの硫酸は、160から180g/L、銅は、45から55g/L、Sbは、0.2から0.5g/L、Asは、3.5から5.5g/L、Biは、0.15から0.35g/L、Niは、10から14g/L、Feは、0.3から0.5g/L、Caは、0.38から0.45g/Lである。
The copper electrolyte solution cleaning flow using the present invention is shown in FIG.
The solution to be treated of the present invention is a copper electrolyte.
The total sulfuric acid concentration in the copper electrolyte is 250 to 280 g / L, the inner free sulfuric acid is 160 to 180 g / L, the copper is 45 to 55 g / L, the Sb is 0.2 to 0.5 g / L, As is 3.5 to 5.5 g / L, Bi is 0.15 to 0.35 g / L, Ni is 10 to 14 g / L, Fe is 0.3 to 0.5 g / L, Ca is 0.38 to 0.45 g / L.

本発明においては、最初に、脱Sb,脱Biを行う。
脱Sb,脱Biは、アミノリン酸基を持つキレート樹脂で同時に行う。 該樹脂は、例えば、S950(PUROLITE株式会社製)を使用する。
また処理液(電解液)は樹脂に対し、SV(1時間に樹脂量の何倍の液を通液したかを示す値、通液速度を表す)6から8でBV(樹脂量の何倍の液を通液したか、通液量を表す)70から90程度通液する。
In the present invention, first, Sb removal and Bi removal are performed.
De-Sb and De-Bi are simultaneously performed with a chelate resin having an aminophosphate group. For example, S950 (manufactured by PUROLITE Co., Ltd.) is used as the resin.
The treatment solution (electrolytic solution) is SV (value indicating how many times the amount of the resin has been passed in 1 hour, representing the flow rate) with respect to the resin. About 70 to 90).

次いで、脱Sb脱Bi後液を、脱酸,脱As樹脂に通液する。
脱酸樹脂塔と脱As樹脂塔は直列につなげ、上記脱Sb,脱Bi後液と水を交互に通液する。
脱酸樹脂は、例えば、PA316(三菱化学株式会社製)を使用する。
脱As樹脂は、例えば、CRB02(三菱化学株式会社製)を使用する。
また処理液は樹脂に対し、SV3から5でBV2から4程度通液する。
Next, the solution after de-Sb-de-Bi is passed through de-acid and de-As resin.
The deoxidizing resin tower and the de-As resin tower are connected in series, and the liquid after Sd and Bi removal and water are alternately passed.
For example, PA316 (manufactured by Mitsubishi Chemical Corporation) is used as the deoxidizing resin.
For example, CRB02 (manufactured by Mitsubishi Chemical Corporation) is used as the de-As resin.
Further, the treatment liquid is passed through the resin by SV3 to 5 and BV2 to 4 or so.

この操作により、イ)酸濃度とAs濃度が低い脱酸液と、ロ)酸濃度の高い回収酸及びハ)酸濃度、銅濃度、Ni濃度が低くAsを含有したAs溶離液に分離回収することが可能となる。
脱酸液と回収酸の区切りは、現状濃縮率の何倍まで濃縮するかにより決定される。
By this operation, it is separated and recovered into a) a deoxidizing solution having a low acid concentration and an As concentration, b) a recovered acid having a high acid concentration, and c) an As eluent having a low acid concentration, copper concentration and Ni concentration and containing As. It becomes possible.
The separation between the deacidified solution and the recovered acid is determined by how many times the current concentration rate is concentrated.

すなわち、現状濃縮率の2倍濃縮しようとした場合は、脱酸液の回収開始時点からの累計回収液の硫酸濃度が、現状硫酸濃度の半分となった時点で、脱酸液の回収を中止し、回収酸の回収に切り替えることになる。 In other words, when trying to concentrate twice the current concentration rate, the recovery of the deacid solution is stopped when the sulfuric acid concentration in the cumulative recovery solution from the start of recovery of the deacid solution is half of the current concentration of sulfuric acid. Then, it switches to recovery of recovered acid.

脱酸液からのNi回収には、既設Ni回収設備がそのまま使用できる。なお、上述したように、現状よりも濃縮率を高める事が可能であるため、硫酸Ni晶析前後のNi溶解度差を現状よりも大きくすることができ、効率的なNi回収が行える。 The existing Ni recovery equipment can be used as it is for recovering Ni from the deoxidation solution. As described above, since the concentration rate can be increased more than the current state, the Ni solubility difference before and after the Ni sulfate crystallization can be made larger than the current state, and efficient Ni recovery can be performed.

上述の方法による脱As,Sb,Biだけでは、Ni晶析前液の不純物除去量が不足する場合は、Ni晶析前の濃縮液を硫化処理し、Cu,As,Sb,Biを硫化物として除去することも可能である。 If the amount of impurities removed from the pre-Ni crystallization solution is insufficient only by removing As, Sb, Bi by the above method, the concentrated solution before Ni crystallization is sulfidized, and Cu, As, Sb, Bi is sulfided. It is also possible to remove as.

本方法で銅電解液からAs,Sb,Biを除去できるため、銅電解の銅バランスを保つための脱銅電解液中銅濃度を高く保持することができ、脱銅電解での電解採取銅を全量外販可能な品質で生産できるようになる。 Since As, Sb, Bi can be removed from the copper electrolyte by this method, the copper concentration in the copper removal electrolyte for maintaining the copper balance of copper electrolysis can be kept high. Production will be possible with quality that can be sold outside the whole quantity.

電解液をアミノリン酸基を持つキレート樹脂により、脱Sb脱Biした。
上記の処理後の液を脱酸樹脂PA316 7Lを充填した樹脂塔と、脱As樹脂CRB02 7Lを充填した樹脂塔を直列につなげ、通液速度420cc/分で、電解液50分、水50分を交互に通液し、処理した。 その結果を表1及び表2に示す。


The electrolyte solution was de-Sb de-Bi with a chelate resin having an aminophosphate group.
The liquid after the above treatment was connected in series with a resin tower filled with deoxidized resin PA316 7L and a resin tower filled with de-As resin CRB02 7L, and at a flow rate of 420 cc / min, electrolytic solution 50 minutes, water 50 minutes Were alternately passed and processed. The results are shown in Tables 1 and 2.


酸濃度67g/L、銅濃度34g/L、Ni濃度9g/L、As濃度0.8g/L、Sb濃度0.03g/L、Bi濃度0.07g/Lの脱酸液が回収できている。 A deoxidized solution having an acid concentration of 67 g / L, copper concentration of 34 g / L, Ni concentration of 9 g / L, As concentration of 0.8 g / L, Sb concentration of 0.03 g / L, and Bi concentration of 0.07 g / L can be recovered. .

なお、通常の電解液のNi/酸の比率は10.9/158.7=0.069であるのに対し、脱酸液のNi/酸の比率は9/67=0.134となっており、例えば酸濃度300g/Lまで濃縮した場合は、通常の電解液Ni濃度20.6g/Lに対し、脱酸液Ni濃度41.8g/Lとなり、Ni晶析時のΔNiを大きくできることが分かる。 The ratio of Ni / acid in a normal electrolyte is 10.9 / 158.7 = 0.069, whereas the ratio of Ni / acid in a deoxidizer is 9/67 = 0.134. For example, when the acid concentration is concentrated to 300 g / L, the Ni concentration in deoxidizing solution is 41.8 g / L with respect to the normal electrolytic solution Ni concentration of 20.6 g / L, and ΔNi during Ni crystallization can be increased. I understand.

図3に上記方法と同様な方法で回収した脱酸液から、Niを晶析した結果を示す。
酸濃度74g/L、銅濃度34g/L、Ni濃度8g/L、As濃度0.77g/L、Sb濃度0.025g/L、Bi濃度0.022g/Lの脱酸液20Lを揮発濃縮して10Lとした。
濃縮過程で晶析した硫酸銅をのぞいた後液を脱銅電解して金属銅を回収し、液のCu濃度を下げた。
FIG. 3 shows the result of crystallization of Ni from the deoxidized solution recovered by the same method as described above.
Volatilizes and concentrates 20L of deoxidized solution with acid concentration 74g / L, copper concentration 34g / L, Ni concentration 8g / L, As concentration 0.77g / L, Sb concentration 0.025g / L, Bi concentration 0.022g / L 10L.
After removing the copper sulfate crystallized during the concentration process, the solution was electrolessly electrolyzed to recover metallic copper, and the Cu concentration of the solution was lowered.

この液をさらに半分の5Lに揮発濃縮した(原料脱酸液から4倍濃縮)。
この濃縮液を冷却し、銅を硫酸銅として晶析除去して得られる濃縮後液に、別途、硫酸に水硫化ナトリウム溶液を加えて発生させた硫化水素ガスを酸化還元電位が最低150mV(銀−塩化銀電極基準)に達するまで吹き込み、CuとAsを硫化物として完全に液から除いた。
This liquid was further volatile concentrated to 5 L of half (concentrated 4 times from the raw material deoxidized liquid).
The concentrated liquid is cooled and the concentrated liquid obtained by crystallizing and removing copper as copper sulfate is separately added to a hydrogen sulfide gas generated by adding a sodium hydrosulfide solution to sulfuric acid. -The silver chloride electrode reference) was reached and Cu and As were completely removed from the solution as sulfides.

硫化処理した液に少量の脱酸液を添加して液中の硫化水素を除いた後−15℃に冷却して粗硫酸Niを晶析させた。
この処理の原料とした脱酸液はもとのNi/酸の比率が8/74.1=0.108で前記の実施例1よりは分離成績は若干劣るがそれでも濃縮をすることでNi晶析時のΔNiを通常の電解液の処理(通常ΔNi:12g/L×2倍−14.8g/L=9.2g/L、実施例2:31.27g/L−14.8g/L=16.47g/L)よりは上げることができた。
A small amount of deoxidizing solution was added to the sulfurized solution to remove hydrogen sulfide in the solution, and then cooled to −15 ° C. to crystallize crude Ni sulfate.
The deoxidizing solution used as the raw material for this treatment had an original Ni / acid ratio of 8 / 74.1 = 0.108, which was slightly inferior to the separation results of Example 1 above, but was still concentrated to concentrate Ni crystals. ΔNi at the time of analysis was treated with an ordinary electrolytic solution (usually ΔNi: 12 g / L × 2 times-14.8 g / L = 9.2 g / L, Example 2: 31.27 g / L-14.8 g / L = 16.47 g / L).

最終的に得られた硫酸Niの品位を、表3実施例2に示す。
これに対し、通常の電解液を2倍濃縮した液から硫化・冷凍により回収した粗硫酸Niの品位の比較例を本発明と対比して表3の比較例に示す。
本発明で回収した硫酸Niの品位は従来技術による回収品と、Feを除き、As,Sb,Bi,Cu,Ca等について、同等以上の水準であった。
Table 3 Example 2 shows the quality of the finally obtained Ni sulfate.
On the other hand, a comparative example of the quality of crude sulfuric acid Ni recovered by sulfidation and freezing from a solution obtained by concentrating a normal electrolyte solution twice is shown in Comparative Example of Table 3 in comparison with the present invention.
The quality of the Ni sulfate recovered in the present invention was the same or better than that of the recovered product according to the prior art and As, Sb, Bi, Cu, Ca, etc. except for Fe.

従来のNi回収方法を示す。The conventional Ni collection | recovery method is shown. 本発明の一態様であるキレート樹脂を用いた不純物の除去フローシートを示す。The impurity removal flow sheet using the chelate resin which is 1 aspect of this invention is shown. 本発明の一態様である脱酸液からの硫酸Niの回収方法のフローシートを示す。The flow sheet of the recovery method of the sulfuric acid Ni from the deoxidation liquid which is 1 aspect of this invention is shown.

Claims (2)

銅電解液浄液工程において電解液からの脱Sb,脱Biをアミノリン酸基をもつキレート樹脂で行い、
脱Sb,脱Bi後の液を、強塩基性陰イオン交換樹脂とグルカミン基をもつキレート樹脂に、直列に通液し、As,Sb,Bi,硫酸を吸着除去したNi含有低濃度酸溶液(以下脱酸液と称す。)を回収し
この脱酸液を既存の濃縮工程で濃縮し、高濃度脱酸液(以下濃縮液と称す。)を得、液中燃焼法、冷凍法での溶解度差を大きくして効率よく硫酸Niを回収することを特徴とする脱酸液からのNi回収方法。
In the copper electrolyte solution purification process, desulfurization and debi from the electrolyte are performed with a chelate resin having an aminophosphate group,
The Ni-containing low-concentration acid solution in which As, Sb, Bi, and sulfuric acid are adsorbed and removed by passing the solution after de-Sb and de-Bi in series with a strongly basic anion exchange resin and a chelate resin having a glucamine group ( (Hereinafter referred to as “deoxidation liquid”) and this deoxidation liquid is concentrated in the existing concentration step to obtain a high concentration deoxidation liquid (hereinafter referred to as “concentration liquid”), and the solubility in the submerged combustion method and the freezing method. A method for recovering Ni from a deoxidizing solution, characterized by efficiently recovering Ni sulfate by increasing the difference.
請求項1記載の濃縮液を硫化処理しNi以外の不純物を硫化物として除去した後に、液中燃焼法、冷凍法で硫酸Niを回収する脱酸液からのNi回収方法。












A method for recovering Ni from a deoxidized solution, wherein the concentrated solution according to claim 1 is subjected to a sulfidation treatment to remove impurities other than Ni as sulfides, and thereafter Ni sulfate is recovered by a submerged combustion method or a refrigeration method.












JP2005089597A 2005-03-25 2005-03-25 Method for recovering Ni from deoxidation solution Expired - Fee Related JP4538801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005089597A JP4538801B2 (en) 2005-03-25 2005-03-25 Method for recovering Ni from deoxidation solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005089597A JP4538801B2 (en) 2005-03-25 2005-03-25 Method for recovering Ni from deoxidation solution

Publications (2)

Publication Number Publication Date
JP2006265710A JP2006265710A (en) 2006-10-05
JP4538801B2 true JP4538801B2 (en) 2010-09-08

Family

ID=37201968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005089597A Expired - Fee Related JP4538801B2 (en) 2005-03-25 2005-03-25 Method for recovering Ni from deoxidation solution

Country Status (1)

Country Link
JP (1) JP4538801B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5666196B2 (en) * 2010-08-11 2015-02-12 オルガノ株式会社 Copper sulfate recovery method and copper sulfate recovery device
JP6409683B2 (en) * 2015-06-03 2018-10-24 住友金属鉱山株式会社 Arsenic recovery method
CN110079826B (en) * 2019-05-07 2021-04-06 昆明理工大学 Method for recovering nickel sulfate from copper smelting high-impurity high-nickel anode copper plate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61110800A (en) * 1984-11-06 1986-05-29 Nippon Mining Co Ltd Method for purifying copper electrolytic solution
JPH11286797A (en) * 1998-03-31 1999-10-19 Nippon Mining & Metals Co Ltd Method for purifying copper electrolyte
JP2003222408A (en) * 2002-01-31 2003-08-08 Mitsui Mining & Smelting Co Ltd Combustion device in liquid
JP2004169158A (en) * 2002-11-22 2004-06-17 Nippon Mining & Metals Co Ltd Method for cleaning cooper electrolyte

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61110800A (en) * 1984-11-06 1986-05-29 Nippon Mining Co Ltd Method for purifying copper electrolytic solution
JPH11286797A (en) * 1998-03-31 1999-10-19 Nippon Mining & Metals Co Ltd Method for purifying copper electrolyte
JP2003222408A (en) * 2002-01-31 2003-08-08 Mitsui Mining & Smelting Co Ltd Combustion device in liquid
JP2004169158A (en) * 2002-11-22 2004-06-17 Nippon Mining & Metals Co Ltd Method for cleaning cooper electrolyte

Also Published As

Publication number Publication date
JP2006265710A (en) 2006-10-05

Similar Documents

Publication Publication Date Title
JP5598778B2 (en) Method for producing high-purity nickel sulfate and method for removing impurity element from solution containing nickel
JP6336469B2 (en) Method for producing scandium-containing solid material with high scandium content
AU756317B2 (en) Separation and concentration method
JP2020019665A (en) Production method of high purity cobalt chloride aqueous solution
JP2020019664A (en) Production method of high purity cobalt chloride aqueous solution
JP4538801B2 (en) Method for recovering Ni from deoxidation solution
JP5589854B2 (en) How to recover bismuth
JP5944666B2 (en) Manufacturing method of high purity manganese
NO139096B (en) PROCEDURE FOR THE PREPARATION OF HIGH-RIGHT ELECTROLYTE COPPER BY REDUCTION ELECTROLYSIS
KR102041294B1 (en) Method for recovering covalt from solution comprising covalt, nickel and iron
JP2006089809A (en) METHOD FOR SEPARATING AND RECOVERING Sb AND Bi
JP3151182B2 (en) Copper electrolyte cleaning method
CN110983070B (en) Method for preparing refined nickel sulfate from copper electrolyte decoppered liquid
JP2016180184A (en) High purity manganese
KR20230028221A (en) Method for producing cobalt sulfate
JP7360091B2 (en) Solvent extraction method and method for producing cobalt aqueous solution
JP2004124115A (en) Method of recovering copper from copper electrolytic solution, and liquid purification method
JP4124071B2 (en) Purification method of nickel chloride aqueous solution
US20140262814A1 (en) Systems and methods for recovery of cobalt metal and ionic cobalt
US20140262815A1 (en) Systems and methods for cobalt recovery
JP4779163B2 (en) Method for producing copper sulfate solution
JP5553646B2 (en) Purification method of ammonium tungstate solution
JP2004169158A (en) Method for cleaning cooper electrolyte
JP2010248043A (en) Method for refining aqueous nickel chloride solution
JP6346402B2 (en) Cobalt recovery method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100610

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees