JPS5914094B2 - How to recover metallic tin from halogen bath tin plating - Google Patents

How to recover metallic tin from halogen bath tin plating

Info

Publication number
JPS5914094B2
JPS5914094B2 JP14622380A JP14622380A JPS5914094B2 JP S5914094 B2 JPS5914094 B2 JP S5914094B2 JP 14622380 A JP14622380 A JP 14622380A JP 14622380 A JP14622380 A JP 14622380A JP S5914094 B2 JPS5914094 B2 JP S5914094B2
Authority
JP
Japan
Prior art keywords
tin
sludge
slurry
halogen bath
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14622380A
Other languages
Japanese (ja)
Other versions
JPS5770242A (en
Inventor
吉久 河野
俊彦 畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP14622380A priority Critical patent/JPS5914094B2/en
Publication of JPS5770242A publication Critical patent/JPS5770242A/en
Publication of JPS5914094B2 publication Critical patent/JPS5914094B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は、ハロゲン浴錫メツキスラジから金属錫を回収
する方法に関し、特に本発明は、ハロゲン浴による錫メ
ッキ鋼板製造の際浴底部に沈澱するスラジから金属錫を
回収する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for recovering metallic tin from sludge deposited in a halogen bath, and in particular, the present invention relates to a method for recovering metallic tin from sludge that settles at the bottom of a bath during the production of tin-plated steel sheets in a halogen bath. Regarding the method.

従来ハロゲン浴錫メッキ法で生成したスラジは第1図に
示すようにSn精錬時の副原料として処理されるか、ま
たは第2図に示すような湿式電解法による工程を経て電
解後電着金属Snとして取り出される。5 第1図は乾
式Sn精錬法の工程図であり、この副原料として前記ス
ラジを用いると含有する他の有害成分の揮散を招き、ス
ラジからSnを回収する方法としては不適当である。
The sludge produced by the conventional halogen bath tin plating method is either treated as an auxiliary raw material during Sn refining as shown in Figure 1, or it is processed as an electrodeposited metal after electrolysis through a wet electrolytic process as shown in Figure 2. It is extracted as Sn. 5. FIG. 1 is a process diagram of the dry Sn refining method. If the sludge is used as an auxiliary raw material, other harmful components contained therein will be volatilized, making it unsuitable as a method for recovering Sn from sludge.

また上記乾式法において前記スラジを主原料として用い
るのもSn10を回収する方法としては上記スラジを副
原料として用いる場合と同様の理由から不適当である。
第2図は前述の如<湿式電解法によるSn回収工程図で
あるが、同図から判るように電解に供するまでの工程が
繁雑であり、設備的負担が大であ15る。本発明は従来
のハロゲン浴錫メツキスラジから金属錫を回収する方法
の有する欠点を除去、改善した方法、すなわち第2図に
示すような電解までの複雑な工程を短縮し、効率よくス
ラジ中のSnク0 を回収する方法を提供することを目
的とするものであり、特許請求の範囲記載の方法によつ
て前記目的を達成することができる。
Furthermore, using the sludge as the main raw material in the dry method is also inappropriate as a method for recovering Sn10 for the same reason as when using the sludge as an auxiliary raw material.
FIG. 2 is a process diagram for recovering Sn using the wet electrolysis method as described above, but as can be seen from the figure, the steps up to the electrolysis are complicated and require a heavy equipment burden. The present invention is a method that eliminates and improves the drawbacks of the conventional method of recovering metal tin from halogen bath tin plating sludge. It is an object of the present invention to provide a method for recovering ku0, and the above object can be achieved by the method described in the claims.

次に、本発明を詳細に説明する。Next, the present invention will be explained in detail.

本発明をフローシートによつて示すと第3図の25よう
であり、スラジから電解までの処理工程を短縮し、Sn
の組成形態を合理的に電解することができる組成形態と
することに本発明の特徴がある。
The present invention is illustrated by a flow sheet as shown in 25 in Figure 3, which shortens the processing steps from sludge to electrolysis, and
The present invention is characterized in that the compositional form of is a compositional form that can be rationally electrolyzed.

以下本発明を実験データについて説明する。先ずスラジ
に水を加えてスラリー状とするが、30このスラリーは
濃度としてはスラジ乾量として110g未満においても
分解は可能であるが水とスラッジの比が大きくて加熱し
たNaOHに対して温度降下に伴うエネルギー的損失が
著しく好ましくなく、140qをこえるとスラリ粘度が
増大35し取扱いが困難となる。このスラリーは水10
0ml当りスラジ乾量110〜1409を含むよう調整
し、このスラリーを50〜800Cに加熱したNaOl
容液に加えてスラジを分解する。この分解反応は下記(
1)および(2)の反応式にしたがつて行われる。Na
4SnF6+4Na0H→Sn(0H)4+6NaF(
1)Sn(0H)4+2Na0H−+Na2SnO3+
3H20(2))すなわちスラジ中のSnはNa2sn
O3としてNaOH溶液中に溶解する。
The present invention will be explained below with reference to experimental data. First, water is added to the sludge to form a slurry.30 This slurry can be decomposed even when the dry weight of the sludge is less than 110 g, but the ratio of water to sludge is large and the temperature decreases relative to heated NaOH. The energy loss associated with this is extremely undesirable, and when it exceeds 140q, the slurry viscosity increases35 and becomes difficult to handle. This slurry is 10% water
The slurry was adjusted to contain a dry amount of 110 to 1,409 ml per 0 ml, and the slurry was heated to 50 to 800 C.
Decompose the sludge in addition to the liquid. This decomposition reaction is shown below (
The reaction is carried out according to the reaction formulas 1) and (2). Na
4SnF6+4Na0H→Sn(0H)4+6NaF(
1) Sn(0H)4+2Na0H-+Na2SnO3+
3H20(2)) That is, Sn in the sludge is Na2sn
Dissolve in NaOH solution as O3.

この場合NaOHの濃度と温度、スラリー添加量、Sn
溶出率との関係は下記の表に示すとおりであつた。同表
より使用するNaOl−1濃度は10%で、温度は50
〜80℃で、NaOHlOOmlに対しスラリーを8m
1添加したf).11の場合最良の結果が得られること
が判り、温度的には50℃未満で分解が悪く好ましくな
く、8『Cをこえると分解は可能でも熱エネルギー的に
無駄であり、この回収率から判断して50〜80℃で十
分である。
In this case, the concentration and temperature of NaOH, the amount of slurry added, Sn
The relationship with the elution rate was as shown in the table below. From the same table, the concentration of NaOl-1 used is 10%, and the temperature is 50%.
At ~80°C, add 8 m of slurry to ml of NaOHlOOml.
1 added f). It has been found that the best results can be obtained in the case of 11. Temperatures below 50°C are unfavorable as decomposition is poor, while temperatures above 8'C are decomposition possible but thermal energy is wasted, judging from this recovery rate. A temperature of 50 to 80°C is sufficient.

またスラリ添加量としては、温度を50〜80℃とした
場合には8m1が好ましく8m1をこえると分解率が悪
く、スラジ乾量として水100m1当り110〜140
9となしたスラリー範囲での8m1が適当である。8m
1未満の場合においては同様の分解条件で行うと仮定す
れば分解は可能であるが希薄なために分解効率(作業効
率的)が悪く適当でない。
In addition, the amount of slurry added is preferably 8 ml when the temperature is 50 to 80°C, and if it exceeds 8 ml, the decomposition rate is poor, and the dry amount of sludge is 110 to 140 per 100 ml of water.
8 ml in the slurry range defined as 9 is appropriate. 8m
If it is less than 1, decomposition is possible if it is assumed to be carried out under similar decomposition conditions, but the decomposition efficiency (work efficiency) is poor due to the dilution and is not appropriate.

Fe4〔Fe(CN)6〕3は下記(3)式のように分
解されFe(0H)3となつて沈澱する。Fe4〔Fe
(CN)6〕3+12Na0H→4Fe(0H)3+3
Na4〔Fe(CN)6〕3・・・・・・(3)次に沈
澱した上記Fe(0H)3およびその他の重金属類化合
物を分離するためにろ過する。
Fe4[Fe(CN)6]3 is decomposed as shown in the following formula (3) and precipitates as Fe(0H)3. Fe4 [Fe
(CN)6〕3+12Na0H→4Fe(0H)3+3
Na4[Fe(CN)6]3 (3) Next, the precipitated Fe(0H)3 and other heavy metal compounds are separated by filtration.

かくして得られる淵液は直接電解に供する母液となる。
本発明者らはこの母液を電解する条件を種々検討した。
すなわち電解時の重要な要素の1つは電解液のPHであ
り、これは電解物の解離エネルギーに関連し、理論電流
効率に最も近い値が回収率が高くなるので、母液をこの
ような電解条件に適するように管理する必要がある。
The bottom liquid obtained in this way becomes a mother liquid to be directly subjected to electrolysis.
The present inventors investigated various conditions for electrolyzing this mother liquor.
In other words, one of the important factors during electrolysis is the pH of the electrolyte, which is related to the dissociation energy of the electrolyte, and the value closest to the theoretical current efficiency will have a high recovery rate. It must be managed to suit the conditions.

種々実験の結果効率よくSnを回収するためには液温8
0℃±100C、濃塩酸35〜53m1/tを母液に添
加してNaOHを中和することが良いことが判つた。な
お中和の目安としてはSn水酸化物の白色沈澱が生ずる
程度にHCf.を添加すれば良い。ところで、スラジを
分解するためにはNaOll濃度は10〜15%位と高
くても良いが、後に中和する際にHCtの消費量が多く
なる結果となる。
As a result of various experiments, in order to efficiently recover Sn, the liquid temperature is 8.
It has been found that it is good to neutralize NaOH by adding 35 to 53 ml/t of concentrated hydrochloric acid to the mother liquor at 0°C±100C. As a guideline for neutralization, HCf. All you have to do is add. Incidentally, in order to decompose the sludge, the NaOll concentration may be as high as about 10 to 15%, but this results in an increase in the amount of HCt consumed during later neutralization.

スラリー中のスラジをNaOHによつて分解した後残留
するNaOH量はスラジの成分組成によつて異なるので
、中和のために添加されるHCt量も変動することとな
るが、濃HCtとして10〜20TfL1/分解液28
0m1の範囲内であり、PHとしておよそ13〜7程度
に管理することが有利であり、これより多くても少なく
ても電流効率は低下する。第4図は電解電流密度と電解
温度とSn付着量との関係を示す図であり、2.55A
/dイの電流密度で電解を行えば良いことが判る。この
ような条件下で電解を行なつた場合の電解時間とSnの
回収量との関係は第5図に示すようであり、液中に残存
するSn量が約1%以下となると電流効率が減少するの
で、電解液中のSn濃度としては1%以上が含有される
ように液組成の管理を行なう必要がある。また1%以上
での電流効率としては約82%であり、本発明方法によ
つて得られた金属Snの純度は99.5%以上であつた
。以上述べたようにハロゲン浴Snメツキスラジを処理
するには、従来の乾式法を適用することは困難であり、
また従来の湿式法を用いると電解までに複雑な長い工程
を経る必要があつたが、本発明によればスラジをスラリ
ー状として熱アルカリによつて分解し、かつ共存物をも
分解し、さらに生成するFe(0H)3の吸着効果によ
りSnの純度に影響を及ぼす重金属類は除去されるので
、これらの沈澱物を済過除去して電解母液を清浄化して
電解を行なつて金属Snを回収することができ、従来方
による電解までに要する種々の工程を省略することがで
き、設備的負担を非常に少なくすることができる。
The amount of NaOH remaining after decomposing the sludge in the slurry with NaOH varies depending on the component composition of the sludge, so the amount of HCt added for neutralization will also vary; 20TfL1/decomposition liquid 28
It is within the range of 0 m1, and it is advantageous to manage the pH to about 13 to 7. If the pH is more or less than this, the current efficiency will decrease. Figure 4 is a diagram showing the relationship between electrolytic current density, electrolytic temperature, and Sn deposition amount, and is 2.55A.
It can be seen that electrolysis can be carried out at a current density of /di. The relationship between the electrolysis time and the amount of Sn recovered when electrolysis is performed under these conditions is shown in Figure 5, and when the amount of Sn remaining in the solution is about 1% or less, the current efficiency decreases. Therefore, it is necessary to manage the liquid composition so that the Sn concentration in the electrolytic solution is 1% or more. Further, the current efficiency at 1% or more was about 82%, and the purity of the metal Sn obtained by the method of the present invention was 99.5% or more. As mentioned above, it is difficult to apply the conventional dry method to treat Sn metal slag in a halogen bath.
In addition, when using the conventional wet method, it was necessary to go through a long and complicated process before electrolysis, but according to the present invention, the sludge is decomposed in the form of a slurry using a hot alkali, and coexisting substances are also decomposed. Heavy metals that affect the purity of Sn are removed due to the adsorption effect of the generated Fe(0H)3, so these precipitates are removed, the electrolytic mother liquor is purified, and metal Sn is electrolyzed. It can be recovered, various steps required up to electrolysis by conventional methods can be omitted, and the burden on equipment can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はSnメツキスラジの乾式精錬工程図、第2図は
従来のSnメツキスラジの湿式電解法によるSn回収工
程図、第3図は本発明方法の工程図、第4図は電解液温
度とSn付着量とハルセル試験器の極板巾との関係を示
す図、第5図は電極に付着したSn量と電解液中のSn
量と電解時間との関係を示す図である。
Figure 1 is a diagram of the process for pyrometallurgical refining of Sn metal slag, Figure 2 is a diagram of the Sn recovery process using the conventional wet electrolysis method for Sn metal slag, Figure 3 is a diagram of the process of the method of the present invention, and Figure 4 is a diagram of the electrolyte temperature and Sn recovery process. A diagram showing the relationship between the amount of Sn adhered to the electrode and the electrode plate width of the Hull cell tester, Figure 5 shows the relationship between the amount of Sn adhered to the electrode and the Sn in the electrolyte
It is a figure which shows the relationship between amount and electrolysis time.

Claims (1)

【特許請求の範囲】[Claims] 1 ハロゲン浴錫メツキスラジから金属錫を回収する方
法において、該スラジを水100ml当りスラジ乾量1
10〜140gを含むように調整したスラリーを50〜
80℃に加熱した10%NaOH100mlに対して8
mlの割合で添加して化学反応を行なわせ、次いで前記
反応により生じた沈澱物をろ過した後のろ液に酸を加え
てろ液の水素イオン濃度(pH)を7〜13の範囲内に
調整して電解を行なつて錫を電着させることを特徴とす
るハロゲン浴錫メツキスラジから金属錫を回収する方法
1 In a method for recovering metallic tin from halogen bath tin plating sludge, the sludge is mixed with a dry weight of 1 sludge per 100 ml of water.
The slurry adjusted to contain 10 to 140 g is
8 for 100ml of 10% NaOH heated to 80℃
ml to cause a chemical reaction to occur, then add an acid to the filtrate after filtering the precipitate produced by the reaction to adjust the hydrogen ion concentration (pH) of the filtrate within the range of 7 to 13. 1. A method for recovering metallic tin from a halogen bath tin plating slurry, which comprises electrolyzing and electrodepositing tin.
JP14622380A 1980-10-21 1980-10-21 How to recover metallic tin from halogen bath tin plating Expired JPS5914094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14622380A JPS5914094B2 (en) 1980-10-21 1980-10-21 How to recover metallic tin from halogen bath tin plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14622380A JPS5914094B2 (en) 1980-10-21 1980-10-21 How to recover metallic tin from halogen bath tin plating

Publications (2)

Publication Number Publication Date
JPS5770242A JPS5770242A (en) 1982-04-30
JPS5914094B2 true JPS5914094B2 (en) 1984-04-03

Family

ID=15402890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14622380A Expired JPS5914094B2 (en) 1980-10-21 1980-10-21 How to recover metallic tin from halogen bath tin plating

Country Status (1)

Country Link
JP (1) JPS5914094B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5766440A (en) * 1995-08-28 1998-06-16 Kawasaki Steel Corporation Method for treating sludge precipitated in a plating bath containing haloid ions
JP5160163B2 (en) * 2007-08-02 2013-03-13 Dowaメタルマイン株式会社 Tin recovery method

Also Published As

Publication number Publication date
JPS5770242A (en) 1982-04-30

Similar Documents

Publication Publication Date Title
JPH0382720A (en) Method for recovering indium
TWI428451B (en) Valuable metal recovery method from lead-free waste solder
US5569370A (en) Electrochemical system for recovery of metals from their compounds
JPH0532453B2 (en)
NO139096B (en) PROCEDURE FOR THE PREPARATION OF HIGH-RIGHT ELECTROLYTE COPPER BY REDUCTION ELECTROLYSIS
US5039337A (en) Process for producing electrolytic lead and elemental sulfur from galena
JP3427879B2 (en) Method for removing copper from copper-containing nickel chloride solution
JP3151182B2 (en) Copper electrolyte cleaning method
WO2018138917A1 (en) Bismuth purification method
US4368108A (en) Process for electrolytic recovery of gallium or gallium and vanadium from alkaline liquors resulting from alumina production
JP2017066520A (en) Method for refining bismuth
US4645578A (en) Procedure for copper chloride aqueous electrolysis
JP2791161B2 (en) Method for recovering silver from silver-containing nitric acid solution
JPS5914094B2 (en) How to recover metallic tin from halogen bath tin plating
JPS5952696B2 (en) Method for recovering copper and selenium from copper electrolysis anode slime
US3755110A (en) Process for the recovery of mercury from the brine filter sludge obtained in the electrolysis of alkali metal chlorides by the amalgam process
JP2777955B2 (en) Desilvering or silver recovery method
US4895626A (en) Process for refining and purifying gold
JP3690359B2 (en) Sludge treatment method
US4634507A (en) Process for the production of lead from sulphide ores
US2598777A (en) Recovering gallium from metallic aluminum
JPS592754B2 (en) Electrolytic recovery method for antimony, arsenic, mercury and tin
JPS6256215B2 (en)
JP4787951B2 (en) Method for electrolytic purification of silver
JP3060574B2 (en) Metal tin recovery method