JPH04261017A - Fabrication of thin film transistor array substrate - Google Patents

Fabrication of thin film transistor array substrate

Info

Publication number
JPH04261017A
JPH04261017A JP3020671A JP2067191A JPH04261017A JP H04261017 A JPH04261017 A JP H04261017A JP 3020671 A JP3020671 A JP 3020671A JP 2067191 A JP2067191 A JP 2067191A JP H04261017 A JPH04261017 A JP H04261017A
Authority
JP
Japan
Prior art keywords
gas
electrode
amorphous silicon
insulating film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3020671A
Other languages
Japanese (ja)
Inventor
Makoto Otani
誠 大谷
Tatsuo Ishibashi
石橋 達夫
Hirokazu Sakamoto
阪本 弘和
Masahiro Hayama
羽山 昌宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3020671A priority Critical patent/JPH04261017A/en
Publication of JPH04261017A publication Critical patent/JPH04261017A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Drying Of Semiconductors (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To ensure a high reliability electrode by forming an electrode pattern on a transparent substrate and thereafter forming an insulating film and an amorphous silicon film, and etching those films with mixed gas of sulfur hexafluoride gas and nitrogen trifluoride gas or carbon fluoride chloride gas in a plasma state at a predetermined flow rate ratio is oxygen. CONSTITUTION:A transparent conductive film is formed on a glass substrate 1 and unnecessary parts are eliminated through patterning to yield a picture element electrode 2. A gate electrode 3 is formed with high melting point metal such as chromium, etc. Further, a silicon nitride gate insulating film 4 and an amorphous silicon film 5 are formed in order to form a desired pattern, and the gate insulating film and the amorphous silicon film are etched. The taper etching is carried out in mixed gas of sulfur hexafluoride gas and nitrogen trifluoride gas or carbon fluoride chloride gas in a plasma state with oxygen gas of a 10-38% flow rate ratio.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、例えば液晶表示装置
に用いられる薄膜トランジスタアレイ基板の製造方法に
関するもので、特にその電極の被覆性を改善するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a thin film transistor array substrate used in, for example, a liquid crystal display device, and in particular to improving the covering properties of its electrodes.

【0002】0002

【従来の技術】図3、図4は例えば特開昭62−326
51号公報に示された従来の薄膜トランジスタ(以下、
TFTと称す)アレイ基板を示す平面図および断面図で
ある。図において、1はガラス等の透明絶縁物よりなる
基板、2は基板1上に形成された透明導電膜からなる画
素電極、3はゲート電極、4はゲート絶縁膜、5はアモ
ルファスシリコン膜、6はソース電極、7はドレイン電
極で、これらの電極3〜7によってTFTが形成されて
いる。このようなTFTアレイ基板は次の工程を経て製
造されている。まず、基板1上にスパッタリング又は蒸
着により透明導電膜層を形成してホトリソグラフィおよ
びエッチングにより所定パターンの画素電極2を形成し
、次いで同基板1上にスパッタリングにより導電膜を形
成して同様にホトリソグラフィとエッチングによりゲー
ト電極3を形成する。次いで、ゲート絶縁膜4、アモル
ファスシリコン膜5の順にプラズマCVD法で連続形成
し、その後、ゲート絶縁膜4とアモルファスシリコン膜
5とをホトリソグラフィと異方性エッチングにより所定
パターンに形成する。最後にアモルファスシリコン膜5
の上にスパッタリングにより導電膜を形成し、ホトリソ
グラフィおよびエッチングにより不要の導電膜を除去し
てソース電極6およびドレイン電極7とを形成する。
[Prior Art] Figures 3 and 4 are, for example, published in Japanese Patent Application Laid-Open No. 62-326.
The conventional thin film transistor (hereinafter referred to as
1 is a plan view and a cross-sectional view showing an array substrate (referred to as TFT); FIG. In the figure, 1 is a substrate made of a transparent insulating material such as glass, 2 is a pixel electrode made of a transparent conductive film formed on the substrate 1, 3 is a gate electrode, 4 is a gate insulating film, 5 is an amorphous silicon film, and 6 is a pixel electrode made of a transparent conductive film formed on the substrate 1. is a source electrode, and 7 is a drain electrode, and these electrodes 3 to 7 form a TFT. Such a TFT array substrate is manufactured through the following steps. First, a transparent conductive film layer is formed on the substrate 1 by sputtering or vapor deposition, and a pixel electrode 2 with a predetermined pattern is formed by photolithography and etching. Next, a conductive film is formed on the substrate 1 by sputtering, and then photolithography is performed in the same manner. Gate electrode 3 is formed by lithography and etching. Next, a gate insulating film 4 and an amorphous silicon film 5 are successively formed in this order by plasma CVD, and then the gate insulating film 4 and amorphous silicon film 5 are formed into a predetermined pattern by photolithography and anisotropic etching. Finally, amorphous silicon film 5
A conductive film is formed thereon by sputtering, and unnecessary conductive films are removed by photolithography and etching to form a source electrode 6 and a drain electrode 7.

【0003】このようなTFTは、ゲート電極3および
ソース電極6に電圧が印加されることによって作動する
スイッチング素子として働き、ドレイン電極7を通して
画素電極2に電荷を供給する。従って、画素電極2に電
荷を供給させるためには、ゲート電極3、ソース電極6
およびドレイン電極7が断線していないことが最低限必
要であり、一方、このTFTアレイ基板を例えば液晶表
示装置用に用いる場合には、一つの液晶表示装置内にあ
る100万個程度のTFTが全て作動することが必要で
あり、電極の断線欠陥発生率を極めて低くすることが必
要となる。
[0003] Such a TFT functions as a switching element that is activated by applying a voltage to the gate electrode 3 and the source electrode 6, and supplies charge to the pixel electrode 2 through the drain electrode 7. Therefore, in order to supply charge to the pixel electrode 2, the gate electrode 3, the source electrode 6
It is minimum necessary that the drain electrode 7 and drain electrode 7 are not disconnected.On the other hand, when this TFT array substrate is used for a liquid crystal display device, for example, about 1 million TFTs in one liquid crystal display device are used. It is necessary for all of them to work, and it is necessary to extremely reduce the incidence of disconnection defects in the electrodes.

【0004】0004

【発明が解決しようとする課題】従来のTFTは以上の
ように構成されており、同一パターンでゲート絶縁膜4
とアモルファスシリコン膜5を連続エッチングしている
。そのため、反応性イオンエッチング法により異方性垂
直エッチングした場合にはエッチング段差部の形状は急
峻となり、その後に形成するソース電極及びドレイン電
極がエッチング段差部でくびれ、断線を発生し易くなる
問題があった。
[Problem to be Solved by the Invention] The conventional TFT is constructed as described above, and the gate insulating film 4 is formed in the same pattern.
The amorphous silicon film 5 is continuously etched. Therefore, when anisotropic vertical etching is performed using reactive ion etching, the shape of the etched step becomes steep, causing the problem that the source and drain electrodes formed later become constricted at the etching step, making wire breakage more likely. there were.

【0005】この発明は上記のような問題点を解消する
ためになされたもので、信頼性の高い電極を安定に形成
することができるTFTアレイ基板の製造方法を提供す
ることを目的とする。
The present invention was made to solve the above-mentioned problems, and an object of the present invention is to provide a method for manufacturing a TFT array substrate in which highly reliable electrodes can be stably formed.

【0006】[0006]

【課題を解決するための手段】この発明に係るTFTア
レイ基板の製造方法は、ゲート絶縁膜およびアモルファ
スシリコン膜をプラズマ状態の6弗化イオウガス、3弗
化窒素ガス、あるいは弗化塩化炭素ガスと流量比10〜
38%の酸素ガスとによってエッチングするように構成
したものである。
[Means for Solving the Problems] A method for manufacturing a TFT array substrate according to the present invention includes forming a gate insulating film and an amorphous silicon film using sulfur hexafluoride gas, nitrogen trifluoride gas, or carbon fluorochloride gas in a plasma state. Flow rate ratio 10~
The structure is such that etching is performed using 38% oxygen gas.

【0007】[0007]

【作用】この発明による製造方法では、エッチング段差
部のテーパー角を制御できるので被覆性に必要な最大の
テーパー角にすることができ、この結果、テーパー形状
にしたことによるパターン寸法の増加を必要最小限に抑
えることができるとともにテーパー形状の上に形成する
導電膜の断線を抑制することができる。
[Operation] In the manufacturing method according to the present invention, since the taper angle of the etched step part can be controlled, the taper angle can be set to the maximum required for coverage, and as a result, it is not necessary to increase the pattern size due to the tapered shape. This can be minimized, and disconnection of the conductive film formed on the tapered shape can be suppressed.

【0008】[0008]

【実施例】以下、この発明の一実施例を図について説明
する。図1は、この発明の一実施例を示すTFTの構成
断面図である。ガラス基板1上にスパッタ法又は蒸着法
等の薄膜形成法で得た酸化インジウム・スズ等の透明導
電膜を形成した後に、パターン化処理を介して透明導電
膜の不要部をエッチング除去し、画素電極2とする。次
に、スパッタ法で得たクロム等の高融点金属でゲート電
極3を形成する。この上に、プラズマCVD法によりシ
リコンナイトライドから成るゲート絶縁膜、アモルファ
スシリコン膜を順に積層した後、所望のパターンを形成
し、プラズマエッチング法によりゲート絶縁膜とアモル
ファスシリコン膜とを連続エッチングし、テーパー形状
のエッチング断面を得る。テーパーエッチングは、例え
ば6弗化イオウガス(SF6 ガス)と酸素ガス(O2
 ガス)の混合ガスを用いたプラズマ中に前記基板をさ
らすことにより行ない、通常プラズマ発生装置として平
行平板型電極装置を用いる。最後に、スパッタ法でアル
ミ等からなるソース電極6およびドレイン電極7を形成
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of the structure of a TFT showing an embodiment of the present invention. After forming a transparent conductive film of indium tin oxide or the like obtained by a thin film forming method such as sputtering or vapor deposition on the glass substrate 1, unnecessary parts of the transparent conductive film are etched away through a patterning process to form pixels. This is called electrode 2. Next, the gate electrode 3 is formed using a high melting point metal such as chromium obtained by sputtering. After sequentially laminating a gate insulating film made of silicon nitride and an amorphous silicon film thereon using a plasma CVD method, a desired pattern is formed, and the gate insulating film and amorphous silicon film are sequentially etched using a plasma etching method. Obtain a tapered etched cross section. Taper etching is performed using, for example, sulfur hexafluoride gas (SF6 gas) and oxygen gas (O2 gas).
This is carried out by exposing the substrate to plasma using a mixed gas (gas), and a parallel plate type electrode device is usually used as the plasma generator. Finally, a source electrode 6 and a drain electrode 7 made of aluminum or the like are formed by sputtering.

【0009】図2は、このような製造方法で得たテーパ
ー角とO2 ガス組成の関係を示すもので、O2 ガス
組成が10%以下となると所定のパターン形状が得にく
くなり、また、38%を越えるとテーパー角度が60度
以上となってゲート絶縁膜4およびアモルファスシリコ
ン膜5上に形成されるソース電極6およびドレイン電極
7に断線を発生し易いものとなっていた。
FIG. 2 shows the relationship between the taper angle obtained by such a manufacturing method and the O2 gas composition. When the O2 gas composition is less than 10%, it becomes difficult to obtain a desired pattern shape; If the taper angle exceeds 60 degrees, the source electrode 6 and drain electrode 7 formed on the gate insulating film 4 and the amorphous silicon film 5 are likely to be disconnected.

【0010】上記のように構成されたTFTアレイ基板
においては、ゲート絶縁膜4及びアモルファスシリコン
膜5を連続エッチングする工程において、テーパーエッ
チングを行なっているため、その後形成するソース電極
6及びドレイン電極7の被覆性が良好となり、エッチン
グ段差部でのくびれが生じず、ソース電極6及びドレイ
ン電極7の断線数が著しく減少し、欠陥のないTFTア
レイ基板を歩留まりよく形成することができる。また、
O2 ガスの組成を調整することによってテーパー角度
を制御できるため、テーパー化によるパターン寸法の増
加を最小限に抑えることができ、画素電極2の有効面積
を低下させることなく信頼性の高い電極を安定に得るこ
とができる。
In the TFT array substrate configured as described above, taper etching is performed in the process of sequentially etching the gate insulating film 4 and the amorphous silicon film 5, so that the source electrode 6 and drain electrode 7 formed later are The coverage is improved, no constriction occurs at the etched step portion, the number of disconnections in the source electrode 6 and drain electrode 7 is significantly reduced, and a defect-free TFT array substrate can be formed with a high yield. Also,
Since the taper angle can be controlled by adjusting the O2 gas composition, the increase in pattern size due to taper can be minimized, and a highly reliable electrode can be made stably without reducing the effective area of the pixel electrode 2. can be obtained.

【0011】なお、上記実施例ではSF6 ガスとO2
 ガスの混合ガスを用いたが、SF6 ガスの代わりに
3弗化窒素ガス(NF3 ガス)あるいはCF2 Cl
2 等の弗化塩化炭素ガスを用いても同様にテーパーエ
ッチングを行なわせることができる。
[0011] In the above embodiment, SF6 gas and O2
A mixture of gases was used, but nitrogen trifluoride gas (NF3 gas) or CF2Cl gas was used instead of SF6 gas.
Taper etching can be similarly performed using a fluorochlorinated carbon gas such as No.2.

【0012】0012

【発明の効果】以上のように、この発明によれば、ゲー
ト絶縁膜とアモルファスシリコン膜とをプラズマ状態の
6弗化イオウガス、3弗化窒素ガスあるいは弗化塩化炭
素ガスと酸素ガスの混合ガスによってエッチングするよ
うに構成したため、エッチング断面での電極の被覆性が
よくなり、断線の発生を抑制することが可能となるとと
もにテーパー角度を制御することによってパターン寸法
の増加を最小限に抑えることができる効果がある。
As described above, according to the present invention, the gate insulating film and the amorphous silicon film are heated using a plasma state of sulfur hexafluoride gas, nitrogen trifluoride gas, or a mixture of carbon fluorochloride gas and oxygen gas. Since the electrode is etched by etching, the coverage of the electrode at the etched cross section is improved, making it possible to suppress the occurrence of wire breakage, and by controlling the taper angle, it is possible to minimize the increase in pattern size. There is an effect that can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の一実施例である製造方法により形成
されたTFTアレイ基板を示す断面図である。
FIG. 1 is a cross-sectional view showing a TFT array substrate formed by a manufacturing method that is an embodiment of the present invention.

【図2】この発明におけるテーパー角と酸素ガス組成と
の関係を示す特性図である。
FIG. 2 is a characteristic diagram showing the relationship between taper angle and oxygen gas composition in the present invention.

【図3】従来のTFTアレイ基板の構成を示す平面図で
ある。
FIG. 3 is a plan view showing the configuration of a conventional TFT array substrate.

【図4】図3におけるIV−IV断面図である。FIG. 4 is a sectional view taken along line IV-IV in FIG. 3;

【符号の説明】[Explanation of symbols]

1  絶縁基板 2  画素電極 3  ゲート電極 4  ゲート絶縁膜 5  アモルファスシリコン膜 6  ソース電極 7  ドレイン電極 1 Insulating substrate 2 Pixel electrode 3 Gate electrode 4 Gate insulating film 5 Amorphous silicon film 6 Source electrode 7 Drain electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  透明基板上に電極パターンを形成した
後、絶縁膜およびアモルファスシリコン膜を積層し、こ
れらをプラズマ状態の6弗化イオウガス、3弗化窒素ガ
スあるいは弗化塩化炭素ガスと流量比10〜38%の酸
素ガスとの混合ガスによってエッチングすることを特徴
とした薄膜トランジスタアレイ基板の製造方法。
1. After forming an electrode pattern on a transparent substrate, an insulating film and an amorphous silicon film are laminated, and these are mixed with sulfur hexafluoride gas, nitrogen trifluoride gas, or carbon fluoride chloride gas in a plasma state at a flow rate ratio of A method for manufacturing a thin film transistor array substrate, characterized in that etching is performed using a mixed gas with 10 to 38% oxygen gas.
JP3020671A 1991-02-14 1991-02-14 Fabrication of thin film transistor array substrate Pending JPH04261017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3020671A JPH04261017A (en) 1991-02-14 1991-02-14 Fabrication of thin film transistor array substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3020671A JPH04261017A (en) 1991-02-14 1991-02-14 Fabrication of thin film transistor array substrate

Publications (1)

Publication Number Publication Date
JPH04261017A true JPH04261017A (en) 1992-09-17

Family

ID=12033667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3020671A Pending JPH04261017A (en) 1991-02-14 1991-02-14 Fabrication of thin film transistor array substrate

Country Status (1)

Country Link
JP (1) JPH04261017A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5728608A (en) * 1995-10-11 1998-03-17 Applied Komatsu Technology, Inc. Tapered dielectric etch in semiconductor devices
US6054392A (en) * 1997-05-27 2000-04-25 Mitsubishi Denki Kabushiki Kaisha Active matrix substrate and method of forming a contact hole in the same
JP2004004757A (en) * 2002-04-15 2004-01-08 Semiconductor Energy Lab Co Ltd Display device and its manufacturing method
US6886573B2 (en) 2002-09-06 2005-05-03 Air Products And Chemicals, Inc. Plasma cleaning gas with lower global warming potential than SF6
US6939805B2 (en) * 2001-09-24 2005-09-06 Infineon Technologies Ag Method of etching a layer in a trench and method of fabricating a trench capacitor
US7619695B2 (en) 2006-05-10 2009-11-17 Epson Imaging Devices Corporation Liquid crystal display and manufacturing method therefor
US7635865B2 (en) 1999-07-22 2009-12-22 Semiconductor Energy Laboratory Co., Ltd. Wiring and manufacturing method thereof, semiconductor device comprising said wiring, and dry etching method
WO2013042497A1 (en) * 2011-09-22 2013-03-28 Sppテクノロジーズ株式会社 Plasma etching method
JP2013084977A (en) * 2012-12-19 2013-05-09 Nlt Technologies Ltd Method for manufacturing thin film transistor
WO2014189125A1 (en) * 2013-05-24 2014-11-27 株式会社フジクラ Thin film transistor and matrix circuit

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5895937A (en) * 1995-10-11 1999-04-20 Applied Komatsu Technology, Inc. Tapered dielectric etch in semiconductor devices
US5728608A (en) * 1995-10-11 1998-03-17 Applied Komatsu Technology, Inc. Tapered dielectric etch in semiconductor devices
US6054392A (en) * 1997-05-27 2000-04-25 Mitsubishi Denki Kabushiki Kaisha Active matrix substrate and method of forming a contact hole in the same
US9045831B2 (en) 1999-07-22 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Wiring and manufacturing method thereof, semiconductor device comprising said wiring, and dry etching method
US7635865B2 (en) 1999-07-22 2009-12-22 Semiconductor Energy Laboratory Co., Ltd. Wiring and manufacturing method thereof, semiconductor device comprising said wiring, and dry etching method
US7666718B2 (en) 1999-07-22 2010-02-23 Semiconductor Energy Laboratory Co., Ltd. Wiring and manufacturing method thereof, semiconductor device comprising said wiring, and dry etching method
US6939805B2 (en) * 2001-09-24 2005-09-06 Infineon Technologies Ag Method of etching a layer in a trench and method of fabricating a trench capacitor
JP2004004757A (en) * 2002-04-15 2004-01-08 Semiconductor Energy Lab Co Ltd Display device and its manufacturing method
US6886573B2 (en) 2002-09-06 2005-05-03 Air Products And Chemicals, Inc. Plasma cleaning gas with lower global warming potential than SF6
US7619695B2 (en) 2006-05-10 2009-11-17 Epson Imaging Devices Corporation Liquid crystal display and manufacturing method therefor
WO2013042497A1 (en) * 2011-09-22 2013-03-28 Sppテクノロジーズ株式会社 Plasma etching method
JP2013084977A (en) * 2012-12-19 2013-05-09 Nlt Technologies Ltd Method for manufacturing thin film transistor
WO2014189125A1 (en) * 2013-05-24 2014-11-27 株式会社フジクラ Thin film transistor and matrix circuit

Similar Documents

Publication Publication Date Title
USRE39211E1 (en) Method for manufacturing a liquid crystal display
US6081308A (en) Method for manufacturing liquid crystal display
TWI539222B (en) Liquid crystal display device
US7405425B2 (en) Thin film transistor, method of manufacturing the same, display apparatus having the same and method of manufacturing the display apparatus
JPH05235034A (en) Manufacture of thin-film transistor
JPH0815218B2 (en) Method for manufacturing semiconductor device
JP2776378B2 (en) Thin film transistor array substrate and method of manufacturing the same
JPH09197435A (en) Liquid crystal display device and its production
JPH04261017A (en) Fabrication of thin film transistor array substrate
US5723366A (en) Dry etching method, method of fabricating semiconductor device, and method of fabricating liquid crystal display device
JP3452679B2 (en) Method of manufacturing thin film transistor, thin film transistor and liquid crystal display
JPH0918006A (en) Thin film transistor and manufacture thereof
JPH06132257A (en) Manufacture of semiconductor element
JPH01209764A (en) Thin film transistor and manufacture thereof
KR100195253B1 (en) Manufacturing method of polysilicon thin film transistor
JPH0281028A (en) Liquid crystal display device
JPH06214245A (en) Active matrix display element
KR20020076934A (en) Apparatus for thin film transistor liquid crystal display and method for manufacturing the same
JPH07110496A (en) Production of active matrix panel
KR20000003756A (en) Thin film transistor and method thereof
JPH022636A (en) Manufacture of thin film transistor array
KR100269286B1 (en) Manufacturing method for polysilicon-TFT
JPH0254577A (en) Manufacture of thin film transistor
JPH02196470A (en) Thin film transistor and manufacture thereof
JPS63155766A (en) Thin film transistor