JPH04260757A - Freezing cycle device - Google Patents

Freezing cycle device

Info

Publication number
JPH04260757A
JPH04260757A JP2319791A JP2319791A JPH04260757A JP H04260757 A JPH04260757 A JP H04260757A JP 2319791 A JP2319791 A JP 2319791A JP 2319791 A JP2319791 A JP 2319791A JP H04260757 A JPH04260757 A JP H04260757A
Authority
JP
Japan
Prior art keywords
refrigerant
boiling point
compressor
rectification separator
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2319791A
Other languages
Japanese (ja)
Other versions
JP2532754B2 (en
Inventor
Yuji Yoshida
雄二 吉田
Minoru Tagashira
実 田頭
Kazuo Nakatani
和生 中谷
Shozo Funakura
正三 船倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3023197A priority Critical patent/JP2532754B2/en
Priority to DE69206442T priority patent/DE69206442T2/en
Priority to EP92102570A priority patent/EP0499999B1/en
Priority to US07/836,430 priority patent/US5186011A/en
Publication of JPH04260757A publication Critical patent/JPH04260757A/en
Application granted granted Critical
Publication of JP2532754B2 publication Critical patent/JP2532754B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To ensure higher temperature with a condenser and lower temperature with an evaporator in highly effective operation separating a higher stage high boiling point refrigerant and a lower stage low boiling point refrigerant without use of a heat exchanger intermediate of a multiple system freezing cycle device, and lowering suction and discharge temperature of the high stage compressor and operating a title device in a low compression ratio of the two compressors CONSTITUTION:There are coupled in succession a first compressor 1, a rectification separator 2, a second compressor 3 connected to the bottom of the rectification separator 2, a condenser 4, a main pressure reducer 6, and an evaporator 7, etc. Further, an outlet pipe 5 of the condenser 4 is bypassed and connected to the bottom of the rectification separator 2 after passage through the first pressure reducer device 9 and the top of the rectification separator 2 is connected to the outlet pipe 5 of the main pressure reducer device 6 after passage through the second pressure reducer device 11. Finally, a non-azeotropic mixture refrigerant of the low boiling point refrigerant and the high boiling point refrigerant is encapsulated.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、冷暖房や給湯または超
低温装置などの、より高温または低温を得る冷凍サイク
ル装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to refrigeration cycle devices for obtaining higher or lower temperatures, such as air conditioning, hot water supply, or ultra-low temperature devices.

【0002】0002

【従来の技術】近年、冷凍サイクル装置は、より高温ま
たはより低温が得られることが求められている。
2. Description of the Related Art In recent years, refrigeration cycle devices have been required to be able to operate at higher temperatures or lower temperatures.

【0003】従来、この種の冷凍サイクル装置として、
複数個の冷凍サイクル装置をカスケード式に連結した多
元の冷凍サイクル装置が知られている。この多元の冷凍
サイクル装置においては、通常、高段の冷凍サイクルに
沸点の高い冷媒成分(以下、高沸点冷媒という)が封入
され、低段の冷凍サイクルに沸点の低い冷媒成分(以下
、低沸点冷媒という)が封入され、高段の蒸発冷媒と低
段の凝縮冷媒を熱交換させる中間熱交換器を配置するよ
うに構成していた。
[0003] Conventionally, this type of refrigeration cycle device
A multi-component refrigeration cycle device in which a plurality of refrigeration cycle devices are connected in a cascade manner is known. In this multicomponent refrigeration cycle device, a refrigerant component with a high boiling point (hereinafter referred to as a high-boiling point refrigerant) is usually sealed in a high-stage refrigeration cycle, and a refrigerant component with a low boiling point (hereinafter referred to as a low-boiling point refrigerant) is enclosed in a low-stage refrigeration cycle. It was configured to include an intermediate heat exchanger that exchanges heat between the evaporative refrigerant in the higher stage and the condensed refrigerant in the lower stage.

【0004】このような冷凍サイクル装置では、高段の
冷凍サイクルに高沸点冷媒を封入しているため、高段の
凝縮器において蒸気圧を低くしながら高温を得ることが
でき、低段の冷凍サイクルに低沸点冷媒を封入している
ため、低段の蒸発器において負圧にすることなく低温を
得ることができる。
[0004] In such a refrigeration cycle device, since a high boiling point refrigerant is sealed in the high stage refrigeration cycle, a high temperature can be obtained while lowering the vapor pressure in the high stage condenser. Since the cycle is filled with a low boiling point refrigerant, low temperatures can be obtained without creating negative pressure in the low stage evaporator.

【0005】[0005]

【発明が解決しようとする課題】このような従来の冷凍
サイクル装置では、より高温または低温を得る目的には
適しているが、高段の冷凍サイクルに封入された高沸点
冷媒と低段の冷凍サイクルに封入された低沸点冷媒とを
分離するために、高段の蒸発冷媒と低段の凝縮冷媒を熱
交換させており、その結果、高段の蒸発温度は低段の凝
縮温度よりも低く、高段および低段の各冷凍サイクルに
配置された圧縮機は圧縮比が大きい状態で運転されるこ
とになり、効率の悪いという問題を有していた。
[Problems to be Solved by the Invention] Such conventional refrigeration cycle devices are suitable for the purpose of obtaining higher or lower temperatures; In order to separate the low boiling point refrigerant sealed in the cycle, the evaporating refrigerant in the high stage and the condensing refrigerant in the low stage exchange heat, and as a result, the evaporation temperature in the high stage is lower than the condensing temperature in the lower stage. The compressors disposed in each of the high-stage and low-stage refrigeration cycles are operated at high compression ratios, resulting in a problem of poor efficiency.

【0006】また、最近の冷凍サイクル装置の利用形態
としては、高温給湯装置や超低温装置などの単機能の利
用だけでなく、高温給湯と冷暖房の両用兼用のように多
目的に利用できることが望まれている。このとき、多元
の冷凍サイクル装置においては、高段の凝縮器において
給湯と暖房の両機能を行わせることは可能であるが、高
沸点冷媒は加熱能力が低いため、装置を大がかりにしな
ければならないという問題を有していた。
[0006]Furthermore, recent usage patterns of refrigeration cycle equipment include not only single-function usage such as high-temperature hot water supply equipment and ultra-low temperature equipment, but also multi-purpose usage such as dual use of high-temperature hot water supply and cooling/heating. There is. At this time, in multi-component refrigeration cycle equipment, it is possible to perform both hot water supply and heating functions in the high-stage condenser, but the heating capacity of high-boiling point refrigerants is low, so the equipment must be large-scale. There was a problem.

【0007】本発明は上記課題を解決するもので、中間
部における熱交換器を用いることなく高段の高沸点冷媒
と低段の低沸点冷媒を分離し、しかも高段の圧縮機の吸
入および吐出温度を低下しながら2つの圧縮機を低圧縮
比で運転できるようにし、高効率な運転で、凝縮器では
より高温を得るとともに蒸発器ではより低温を得ること
を可能とすることを第1の目的としている。
The present invention solves the above-mentioned problems by separating the high-boiling point refrigerant in the upper stage and the low-boiling point refrigerant in the lower stage without using a heat exchanger in the intermediate section, and in addition, the suction and the low-boiling point refrigerant in the high stage compressor. The first objective is to be able to operate the two compressors at a low compression ratio while lowering the discharge temperature, and to operate with high efficiency, making it possible to obtain a higher temperature in the condenser and a lower temperature in the evaporator. The purpose is to

【0008】また、高段の高沸点冷媒と低段の低沸点冷
媒を混合し、高段の凝縮器において加熱能力を増大させ
るように冷媒の組成制御ができるようにすることを第2
の目的としている。
[0008] A second objective is to mix the high-boiling point refrigerant in the high stage and the low-boiling point refrigerant in the low stage, and to be able to control the composition of the refrigerant so as to increase the heating capacity in the high stage condenser.
The purpose is to

【0009】[0009]

【課題を解決するための手段】本発明は上記第1の目的
を達成するために、第1圧縮機、精留分離器、精留分離
器底部に接続された第2圧縮機、凝縮器、主減圧装置、
蒸発器などを順に連結し、前記凝縮器の出口管をバイパ
スして第1減圧装置を経由して前記精留分離器底部に接
続し、前記精留分離器頂部を第2減圧装置を経由して主
減圧装置の出口管と接続し、低沸点冷媒と高沸点冷媒か
ら成る非共沸混合冷媒を封入したことを第1の課題解決
手段としている。
[Means for Solving the Problems] In order to achieve the first object, the present invention provides a first compressor, a rectification separator, a second compressor connected to the bottom of the rectification separator, a condenser, main pressure reducer,
The evaporator etc. are connected in sequence, the outlet pipe of the condenser is bypassed and the bottom part of the rectification separator is connected via a first pressure reduction device, and the top part of the rectification separator is connected to the bottom part of the rectification separator via a second pressure reduction device. The first means for solving the problem is that the refrigerant is connected to the outlet pipe of the main pressure reducing device and a non-azeotropic mixed refrigerant consisting of a low boiling point refrigerant and a high boiling point refrigerant is sealed.

【0010】また、第2の目的を達成するために、上記
第1の課題解決手段の第1減圧装置または第2減圧装置
を閉止可能としたことを第2の課題解決手段としている
[0010] In order to achieve the second object, a second means for solving the problem is to make the first pressure reducing device or the second pressure reducing device of the first problem solving means closable.

【0011】[0011]

【作用】本発明は上記した第1の課題解決手段により、
精留分離器の内部では非共沸混合冷媒の分離が起こり、
頂部では低沸点冷媒が濃縮され、底部では高沸点冷媒が
濃縮される。したがって、精留分離器の底部に接続され
た第2圧縮機の吸入温度は低く、第2圧縮機、凝縮器、
第1減圧装置、精留分離器底部に接続される第2の冷凍
サイクルと、凝縮器の出口管から主減圧装置の出口管で
第2減圧装置の出口管の合流点までの回路には濃縮され
た高沸点冷媒が循環する。また、低沸点冷媒が濃縮され
る精留分離器頂部からは第2減圧装置を経由して主減圧
装置の出口管において主減圧装置からの高沸点冷媒と混
合されて、蒸発器、第1圧縮機、精留分離器を接続した
第1の冷凍サイクルには、第2の冷凍サイクルよりも低
沸点成分の多い混合された組成の非共沸混合冷媒が循環
する。このようにして混合された組成の非共沸混合冷媒
は、再び精留分離器の内部で分離が起こり、頂部では低
沸点冷媒が濃縮され、底部では高沸点冷媒が濃縮される
[Operation] The present invention has the above-mentioned first problem solving means.
Separation of the non-azeotropic refrigerant mixture takes place inside the rectification separator.
At the top, the low-boiling refrigerant is concentrated, and at the bottom, the high-boiling refrigerant is concentrated. Therefore, the suction temperature of the second compressor connected to the bottom of the rectification separator is low, and the second compressor, condenser,
The first pressure reducing device, the second refrigeration cycle connected to the bottom of the rectification separator, and the circuit from the condenser outlet pipe to the confluence of the main pressure reducing device outlet pipe and the second pressure reducing device outlet pipe are concentrated. The high boiling point refrigerant is circulated. In addition, from the top of the rectification separator where the low boiling point refrigerant is concentrated, it passes through the second pressure reducing device and is mixed with the high boiling point refrigerant from the main pressure reducing device at the outlet pipe of the main pressure reducing device. A non-azeotropic mixed refrigerant having a mixed composition containing more low-boiling point components than the second refrigeration cycle circulates in the first refrigeration cycle connected to the refrigeration system and the rectification separator. The non-azeotropic mixed refrigerant having the composition thus mixed undergoes separation again inside the rectification separator, with the low boiling point refrigerant being concentrated at the top and the high boiling point refrigerant being concentrated at the bottom.

【0012】したがって、従来の多元の冷凍サイクル装
置のような中間部における熱交換器を必要とせず、第1
の冷凍サイクルの低沸点冷媒と、第2の冷凍サイクルの
高沸点冷媒とに分離することができるだけでなく、第2
圧縮機の吸入および吐出温度を低下させながら、2つの
圧縮機を低圧縮比で運転させることができ、高効率な運
転で凝縮器ではより高温を得るとともに蒸発器ではより
低温を得ることが可能となり、このような分離後の冷媒
成分や蒸気圧は、最初に封入される非共沸混合冷媒の組
合せや組成、および各減圧装置による圧力設定などによ
って任意に選択することができる。
[0012] Therefore, unlike the conventional multicomponent refrigeration cycle equipment, there is no need for an intermediate heat exchanger, and the first heat exchanger is not required.
Not only can the refrigerant be separated into a low boiling point refrigerant in the second refrigeration cycle and a high boiling point refrigerant in the second refrigeration cycle, but also
The two compressors can be operated at a low compression ratio while reducing the suction and discharge temperatures of the compressors, allowing high efficiency operation to obtain higher temperatures in the condenser and lower temperatures in the evaporator. The refrigerant components and vapor pressure after such separation can be arbitrarily selected depending on the combination and composition of the non-azeotropic mixed refrigerant initially sealed, the pressure setting by each pressure reducing device, etc.

【0013】また、第2の課題解決手段により、凝縮器
の出口管をバイパスして第1減圧装置を経由して精留分
離器底部に接続される回路や、精留分離器頂部を第2減
圧装置を経由して主減圧装置の出口管と接続される回路
を閉止すれば、精留分離器の内部での分離も停止され、
封入された組成の非共沸混合冷媒が、第1圧縮機、精留
分離器、精留分離器底部に接続された第2圧縮機、凝縮
器、主減圧装置、蒸発器を循環し、分離時よりも低沸点
成分の多い非共沸混合冷媒が凝縮器において凝縮するた
め、加熱能力を増大させることができる。
[0013] The second problem-solving means also provides a circuit that bypasses the outlet pipe of the condenser and is connected to the bottom of the rectification separator via the first pressure reducing device, and a circuit that connects the top of the rectification separator to the second By closing the circuit connected to the outlet pipe of the main pressure reducing device via the pressure reducing device, separation inside the rectification separator will also be stopped.
The enclosed non-azeotropic mixed refrigerant is circulated through the first compressor, the rectification separator, the second compressor connected to the bottom of the rectification separator, the condenser, the main pressure reducing device, and the evaporator, and is separated. Since the non-azeotropic refrigerant mixture containing more low-boiling point components than in the case of heating is condensed in the condenser, the heating capacity can be increased.

【0014】[0014]

【実施例】以下、本発明の一実施例を図1を参照しなが
ら説明する。
Embodiment An embodiment of the present invention will be described below with reference to FIG.

【0015】図に示すように、第1圧縮機1の吐出管は
精留分離器2の中部に接続している。第2圧縮機3は精
留分離器2の底部に接続している。凝縮器4は第2圧縮
機3に接続し、その出口管5は主減圧装置6に接続して
いる。蒸発器7は主減圧装置6に接続し、この蒸発器7
の出口配管は第1圧縮機1に連結している。また、凝縮
器4の出口管5をバイパスする出口バイパス管8は、第
1減圧装置9を経由して精留分離器2の底部と接続し、
精留分離器2の頂部は配管10により第2減圧装置11
を経由して主減圧装置6の出口管5と接続している。し
たがって、蒸発器7および第1圧縮機1とも接続される
ことになる。貯留器12は精留分離器2の底部に設け、
第1圧縮機1の吐出管は、貯留器12の内部に設けた熱
交換器13を経由して、精留分離器2の中部と接続する
ようにしている。精留分離器2の頂部は配管10と接続
される手前で循環回路を構成し、この循環回路内には冷
却器14を配置して、冷却器14の冷熱源は蒸発器7の
出口配管などで構成している。さらに、凝縮器4の出口
バイパス管8中に配置された第1減圧装置9、または精
留分離器2の頂部からの配管10中に配置された第2減
圧装置11はそれぞれ閉止可能な膨張弁によって構成し
ている。そして、上記冷凍サイクル装置には、低沸点冷
媒と高沸点冷媒からなる非共沸混合冷媒を封入している
As shown in the figure, the discharge pipe of the first compressor 1 is connected to the middle part of the rectification separator 2. The second compressor 3 is connected to the bottom of the rectification separator 2. The condenser 4 is connected to the second compressor 3 and its outlet pipe 5 is connected to the main pressure reducing device 6 . The evaporator 7 is connected to the main pressure reducing device 6, and this evaporator 7
The outlet pipe is connected to the first compressor 1. Further, an outlet bypass pipe 8 that bypasses the outlet pipe 5 of the condenser 4 is connected to the bottom of the rectification separator 2 via a first pressure reducing device 9,
The top of the rectification separator 2 is connected to a second pressure reducing device 11 by a pipe 10.
It is connected to the outlet pipe 5 of the main pressure reducing device 6 via. Therefore, the evaporator 7 and the first compressor 1 are also connected. The reservoir 12 is provided at the bottom of the rectification separator 2,
The discharge pipe of the first compressor 1 is connected to the middle part of the rectification separator 2 via a heat exchanger 13 provided inside the reservoir 12. The top of the rectification separator 2 constitutes a circulation circuit before being connected to the piping 10, and a cooler 14 is disposed within this circulation circuit. It consists of Furthermore, a first pressure reduction device 9 arranged in the outlet bypass pipe 8 of the condenser 4 or a second pressure reduction device 11 arranged in the pipe 10 from the top of the rectification separator 2 is a respective closable expansion valve. It is composed of The refrigeration cycle device is sealed with a non-azeotropic mixed refrigerant consisting of a low boiling point refrigerant and a high boiling point refrigerant.

【0016】上記構成において動作を説明すると、精留
分離器2の内部では、第1圧縮機1の吐出管から供給さ
れるガス冷媒が貯留器12の内部に設けた熱交換器13
を経由して部分的に液化される二相冷媒と、第1圧縮機
1の吐出管から供給されるガス冷媒により、熱交換器1
3を通じて加熱され気化する精留分離器2の底部に設け
た貯留器12中のガス冷媒と、精留分離器2の頂部で配
管10と接続される手前の循環回路内の冷却器14によ
り液化され、再び精留分離器2の頂部に帰還する液冷媒
により、精留作用によって非共沸混合冷媒の分離が起こ
り、頂部では低沸点冷媒が濃縮され、底部では高沸点冷
媒が濃縮される。したがって、精留分離器2の底部に接
続された第2圧縮機3はほとんど飽和ガス冷媒を吸入す
るためその吸入温度は低く、第2圧縮機3、凝縮器4、
出口バイパス管8、第1減圧装置9、精留分離器2の底
部に接続される第2の冷凍サイクルと、凝縮器4の出口
管5から主減圧装置6の出口管5で第2減圧装置11の
出口管の合流点までの回路には、濃縮された高沸点冷媒
が循環する。また、低沸点冷媒が濃縮される精留分離器
2の頂部からは配管10により、第2減圧装置11を経
由して主減圧装置6の出口管5と接続しているので、連
結された主減圧装置6からの高沸点冷媒と混合されて、
蒸発器7、第1圧縮機1、精留分離器2を接続した第1
の冷凍サイクルには、第2の冷凍サイクルよりも低沸点
成分の多い混合された組成の非共沸混合冷媒が循環する
。このようにして混合された組成の非共沸混合冷媒は、
再び精留分離器2の内部で分離が起こり、頂部では低沸
点冷媒が濃縮され、底部では高沸点冷媒が濃縮される。
To explain the operation in the above configuration, inside the rectification separator 2, the gas refrigerant supplied from the discharge pipe of the first compressor 1 passes through the heat exchanger 13 provided inside the reservoir 12.
The two-phase refrigerant is partially liquefied via the gas refrigerant supplied from the discharge pipe of the first compressor
The gas refrigerant in the reservoir 12 provided at the bottom of the rectification separator 2 is heated and vaporized through the gas refrigerant 3, and the gas refrigerant is liquefied by the cooler 14 in the circulation circuit at the top of the rectification separator 2 before being connected to the piping 10. The liquid refrigerant that is then returned to the top of the rectification separator 2 causes separation of the non-azeotropic mixed refrigerant by rectification, and the low boiling point refrigerant is concentrated at the top, and the high boiling point refrigerant is concentrated at the bottom. Therefore, since the second compressor 3 connected to the bottom of the rectification separator 2 sucks almost saturated gas refrigerant, its suction temperature is low, and the second compressor 3, condenser 4,
An outlet bypass pipe 8, a first pressure reducing device 9, a second refrigeration cycle connected to the bottom of the rectification separator 2, and a second pressure reducing device from the outlet pipe 5 of the condenser 4 to the outlet pipe 5 of the main pressure reducing device 6. A concentrated high-boiling refrigerant is circulated in the circuit up to the confluence of the 11 outlet pipes. In addition, since the top of the rectification separator 2 where the low boiling point refrigerant is concentrated is connected to the outlet pipe 5 of the main pressure reduction device 6 via the second pressure reduction device 11 via a pipe 10, the connected main mixed with the high boiling point refrigerant from the pressure reducing device 6;
A first unit connected to an evaporator 7, a first compressor 1, and a rectification separator 2
In the refrigeration cycle, a non-azeotropic mixed refrigerant having a mixed composition containing more low-boiling point components than in the second refrigeration cycle is circulated. The non-azeotropic mixed refrigerant composition mixed in this way is
Separation takes place again inside the rectification separator 2, with the low-boiling refrigerant being concentrated at the top and the high-boiling refrigerant being concentrated at the bottom.

【0017】したがって、従来の多元の冷凍サイクル装
置のような中間部における熱交換器を必要とせず、第2
の冷凍サイクルの高沸点冷媒と、第1の冷凍サイクル中
の第2の冷凍サイクルよりも低沸点成分の多い組成の非
共沸混合冷媒とに分離することができるだけでなく、第
2圧縮機3の吸入および吐出温度を低下させながら、第
1圧縮機1の吐出圧力と第2圧縮機3の吸入圧力がほぼ
同一となり、第1圧縮機1および第2圧縮機3はそれぞ
れ圧縮比が小さい状態で運転されることになり、高効率
な運転が可能となり、第2の冷凍サイクル中の凝縮器4
において蒸気圧を低くしながら高温を得ることができ、
第1の冷凍サイクル中の蒸発器7において負圧にするこ
となく低温を得ることができる。なお、このような分離
後の冷媒成分や蒸気圧は、最初に封入される非共沸混合
冷媒の組合せや組成、および主減圧装置6や第1減圧装
置9、第2減圧装置11による圧力設定などによって任
意に選択することができるものであり、精留分離器2の
分離のための操作圧力が、第1圧縮機1の吐出圧力や第
2圧縮機3の吸入圧力とほぼ同一の圧力レベルになるよ
うに、全体の冷凍サイクルを上記のように構成したこと
によって可能となる。
[0017] Therefore, unlike the conventional multicomponent refrigeration cycle equipment, there is no need for an intermediate heat exchanger, and the second heat exchanger is not required.
Not only can the refrigerant in the second refrigeration cycle be separated into a high boiling point refrigerant in the first refrigeration cycle and a non-azeotropic mixed refrigerant having a composition containing more low boiling point components than in the second refrigeration cycle, but also in the second compressor 3. The discharge pressure of the first compressor 1 and the suction pressure of the second compressor 3 become almost the same while the suction and discharge temperatures of This enables highly efficient operation, and the condenser 4 in the second refrigeration cycle
It is possible to obtain high temperatures while lowering the vapor pressure at
A low temperature can be obtained without creating a negative pressure in the evaporator 7 in the first refrigeration cycle. Note that the refrigerant components and vapor pressure after such separation depend on the combination and composition of the non-azeotropic mixed refrigerant initially sealed, and the pressure settings by the main pressure reducing device 6, first pressure reducing device 9, and second pressure reducing device 11. The operating pressure for separation of the rectification separator 2 is at almost the same pressure level as the discharge pressure of the first compressor 1 and the suction pressure of the second compressor 3. This is made possible by configuring the entire refrigeration cycle as described above.

【0018】また、凝縮器4の出口バイパス管8中に配
置した第1減圧装置9や、精留分離器2の頂部からの配
管10中に配置した第2減圧装置11を閉止すれば、精
留分離器2の内部での分離も停止され、封入された組成
の非共沸混合冷媒が、第1圧縮機1、熱交換器13、精
留分離器2、精留分離器2の底部に接続された第2圧縮
機3、凝縮器4、凝縮器4の出口管5、主減圧装置6、
蒸発器7を循環し、分離時よりも低沸点成分の多い非共
沸混合冷媒が凝縮器4において凝縮するため、加熱能力
を増大させることができる。このような冷媒の組成制御
も可能となる。
Furthermore, if the first pressure reducing device 9 disposed in the outlet bypass pipe 8 of the condenser 4 and the second pressure reducing device 11 disposed in the pipe 10 from the top of the rectification separator 2 are closed, the refinery Separation inside the distillation separator 2 is also stopped, and the enclosed non-azeotropic mixed refrigerant is transferred to the bottom of the first compressor 1, the heat exchanger 13, the rectification separator 2, and the rectification separator 2. A connected second compressor 3, a condenser 4, an outlet pipe 5 of the condenser 4, a main pressure reducing device 6,
Since the non-azeotropic mixed refrigerant that circulates through the evaporator 7 and has more low boiling point components than when separated is condensed in the condenser 4, the heating capacity can be increased. It also becomes possible to control the composition of the refrigerant.

【0019】なお、上記実施例では、第1圧縮機1の吐
出管は精留分離器2の中部に接続しているが、精留分離
器2と第1圧縮機1の吐出管の接続位置は精留分離器2
の頂部と底部の間であればよく、また、熱交換器13の
加熱源や冷却器14の冷熱源は第1圧縮機1から供給さ
れる二相冷媒による分離を促進するための付加手段であ
れば、他の手段を用いてもよい。また、原理的な冷凍サ
イクル装置の実施例として説明したが、冷暖房や給湯ま
たは超低温装置などに適用してもよいことはもちろんで
ある。
In the above embodiment, the discharge pipe of the first compressor 1 is connected to the middle part of the rectification separator 2, but the connection position of the discharge pipe of the rectification separator 2 and the first compressor 1 is is rectification separator 2
The heating source of the heat exchanger 13 and the cold source of the cooler 14 are additional means for promoting separation by the two-phase refrigerant supplied from the first compressor 1. Other means may be used if available. Although the present invention has been described as an example of a basic refrigeration cycle device, it goes without saying that it may be applied to air conditioning, hot water supply, ultra-low temperature devices, and the like.

【0020】[0020]

【発明の効果】以上の実施例から明らかなように本発明
によれば、第1圧縮機、精留分離器、精留分離器底部に
接続された第2圧縮機、凝縮器、主減圧装置、蒸発器な
どを順に連結し、前記凝縮器の出口管をバイパスして第
1減圧装置を経由して前記精留分離器底部に接続し、前
記精留分離器頂部を第2減圧装置を経由して主減圧装置
の出口管と接続し、低沸点冷媒と高沸点冷媒から成る非
共沸混合冷媒を封入したから、精留分離器の内部では非
共沸混合冷媒の分離が起こり、頂部では低沸点冷媒が濃
縮され、底部では高沸点冷媒が濃縮され、凝縮器には濃
縮された高沸点冷媒が循環し、蒸発器には低沸点冷媒が
循環し、従来の多元の冷凍サイクル装置のような中間部
における熱交換器を不要としながら、第2圧縮機の吸入
および吐出温度を低下させることができ、高効率な運転
で凝縮器ではより高温と蒸発器ではより低温を得ること
ができる。
As is clear from the above embodiments, according to the present invention, a first compressor, a rectification separator, a second compressor connected to the bottom of the rectification separator, a condenser, and a main pressure reducing device are provided. , an evaporator, etc., are connected to the bottom of the rectification separator via a first pressure reduction device by bypassing the outlet pipe of the condenser, and the top of the rectification separator is connected to the bottom of the rectification separator via a second pressure reduction device. Since the non-azeotropic mixed refrigerant consisting of a low-boiling point refrigerant and a high-boiling point refrigerant is sealed inside the rectification separator, the non-azeotropic mixed refrigerant is separated, and at the top, it is connected to the outlet pipe of the main pressure reducing device. The low boiling point refrigerant is concentrated, the high boiling point refrigerant is concentrated at the bottom, the concentrated high boiling point refrigerant is circulated in the condenser, and the low boiling point refrigerant is circulated in the evaporator, similar to the traditional multi-component refrigeration cycle equipment. The suction and discharge temperatures of the second compressor can be lowered while eliminating the need for a heat exchanger in the intermediate section, and high-efficiency operation allows higher temperatures in the condenser and lower temperatures in the evaporator to be obtained.

【0021】また、凝縮器の出口管をバイパスして第1
減圧装置を経由して精留分離器底部に接続される回路や
、精留分離器頂部を第2減圧装置を経由して主減圧装置
の出口管と接続される回路において、第1減圧装置また
は第2減圧装置を閉止することにより、精留分離器の内
部での分離も停止することができ、封入された組成の非
共沸混合冷媒が、第1圧縮機、精留分離器、精留分離器
底部に接続された第2圧縮機、凝縮器、主減圧装置、蒸
発器を循環し、分離時よりも低沸点成分の多い非共沸混
合冷媒が凝縮器において凝縮するため、加熱能力を増大
させることができ、このような冷媒の組成制御も可能と
なる。
[0021] Alternatively, the outlet pipe of the condenser may be bypassed and the first
In a circuit that is connected to the bottom of the rectification separator via a pressure reduction device, or in a circuit that connects the top of the rectification separator to the outlet pipe of the main pressure reduction device via a second pressure reduction device, the first pressure reduction device or By closing the second pressure reducing device, separation inside the rectification separator can also be stopped, and the non-azeotropic mixed refrigerant with the enclosed composition can be transferred to the first compressor, the rectification separator, and the rectification separator. It circulates through the second compressor connected to the bottom of the separator, the condenser, the main pressure reducing device, and the evaporator, and the non-azeotropic refrigerant mixture, which has more low-boiling point components than during separation, condenses in the condenser, increasing the heating capacity. It is also possible to control the composition of the refrigerant.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例の冷凍サイクル装置の構成図
FIG. 1 is a configuration diagram of a refrigeration cycle device according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1  第1圧縮機 2  精留分離器 3  第2圧縮機 4  凝縮器 5  出口管 6  主減圧装置 7  蒸発器 9  第1減圧装置 11  第2減圧装置 1 First compressor 2 Rectification separator 3 Second compressor 4 Condenser 5 Outlet pipe 6 Main pressure reducing device 7 Evaporator 9 First pressure reducing device 11 Second pressure reducing device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  第1圧縮機、精留分離器、精留分離器
底部に接続された第2圧縮機、凝縮器、主減圧装置、蒸
発器などを順に連結し、前記凝縮器の出口管をバイパス
して第1減圧装置を経由して前記精留分離器底部に接続
し、前記精留分離器頂部を第2減圧装置を経由して主減
圧装置の出口管と接続し、低沸点冷媒と高沸点冷媒から
成る非共沸混合冷媒を封入した冷凍サイクル装置。
Claim 1: A first compressor, a rectification separator, a second compressor connected to the bottom of the rectification separator, a condenser, a main pressure reducing device, an evaporator, etc. are connected in order, and an outlet pipe of the condenser is connected in sequence. is bypassed and connected to the bottom of the rectification separator via a first pressure reduction device, and the top of the rectification separator is connected to the outlet pipe of the main pressure reduction device via a second pressure reduction device. A refrigeration cycle device containing a non-azeotropic mixed refrigerant consisting of a high boiling point refrigerant and a high boiling point refrigerant.
【請求項2】  第1減圧装置または第2減圧装置を閉
止可能とした請求項1記載の冷凍サイクル装置。
2. The refrigeration cycle device according to claim 1, wherein the first pressure reducing device or the second pressure reducing device can be closed.
JP3023197A 1991-02-18 1991-02-18 Refrigeration cycle equipment Expired - Fee Related JP2532754B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3023197A JP2532754B2 (en) 1991-02-18 1991-02-18 Refrigeration cycle equipment
DE69206442T DE69206442T2 (en) 1991-02-18 1992-02-15 Refrigerant circuit device.
EP92102570A EP0499999B1 (en) 1991-02-18 1992-02-15 Refrigerant cycling apparatus
US07/836,430 US5186011A (en) 1991-02-18 1992-02-18 Refrigerant cycling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3023197A JP2532754B2 (en) 1991-02-18 1991-02-18 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JPH04260757A true JPH04260757A (en) 1992-09-16
JP2532754B2 JP2532754B2 (en) 1996-09-11

Family

ID=12103946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3023197A Expired - Fee Related JP2532754B2 (en) 1991-02-18 1991-02-18 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP2532754B2 (en)

Also Published As

Publication number Publication date
JP2532754B2 (en) 1996-09-11

Similar Documents

Publication Publication Date Title
JPH0333985B2 (en)
JPH10332212A (en) Refrigeration cycle of air conditioner
EP0499999B1 (en) Refrigerant cycling apparatus
JP2002081777A (en) Refrigeration cycle
CN110411047A (en) Refrigeration system
JP2698118B2 (en) Air conditioner
JPH04260757A (en) Freezing cycle device
JP2574545B2 (en) Refrigeration cycle device
JPH07103588A (en) Freezer-refrigerator
JPS6353456B2 (en)
JPH0745982B2 (en) Heat pump device
JPH1068560A (en) Refrigeration cycle device
JPH0833254B2 (en) Heat pump system
JPH01155149A (en) Refrigeration cycle device
JPH04103966A (en) Freezing cycle device
JPH0544582B2 (en)
JPH01131863A (en) Heat pump device
JPH0623625B2 (en) Refrigeration system using mixed refrigerant
JPS6230697Y2 (en)
JPH08210716A (en) Refrigerator
JPH0641097Y2 (en) Low temperature refrigerator
JPH0460352A (en) Heat pump device
JPS62237252A (en) Air conditioner
JPH0244156A (en) Heat pump device
JPH09196481A (en) Method for altering composition of mixture refrigerant and structure of circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees