JPH01155149A - Refrigeration cycle device - Google Patents

Refrigeration cycle device

Info

Publication number
JPH01155149A
JPH01155149A JP31273487A JP31273487A JPH01155149A JP H01155149 A JPH01155149 A JP H01155149A JP 31273487 A JP31273487 A JP 31273487A JP 31273487 A JP31273487 A JP 31273487A JP H01155149 A JPH01155149 A JP H01155149A
Authority
JP
Japan
Prior art keywords
refrigerant
boiling point
compressor
pressure
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31273487A
Other languages
Japanese (ja)
Other versions
JPH0752038B2 (en
Inventor
Mitsuhiro Ikoma
生駒 光博
Kazuo Nakatani
和生 中谷
Takeshi Tomizawa
猛 富澤
Yuji Yoshida
雄二 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62312734A priority Critical patent/JPH0752038B2/en
Publication of JPH01155149A publication Critical patent/JPH01155149A/en
Publication of JPH0752038B2 publication Critical patent/JPH0752038B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0011Ejectors with the cooled primary flow at reduced or low pressure

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE: To prevent increase in compression ratio and in specific capacity of a suction refrigerant by a method wherein a gasified high boiling point refrigerant and a low boiling point refrigerant gas are guided to a suction port of a refrigerant ejector to be mixed and sucked into a compressor to make the suction pressure of the compressor higher than the pressure of an evaporators. CONSTITUTION: A non-azeotropic mixed refrigerant discharged from a compressor 8 is condensed by a condenser and then, separated into a high boiling point refrigerant and a low boiling point refrigerant by a separator 10. The low boiling point gas refrigerant flowing out from the separator 10 undergoes a heat exchange with a high boiling point liquid refrigerant with an auxiliary condenser 11 so that the high boiling point liquid refrigerant is vaporized by evaporation and the low boiling point gas refrigerant is turned to a condensed liquid. The vaporized high boiling point refrigerant flows into a refrigerant ejector 14. The liquefied low boiling point refrigerant is evaporated by an evaporator 13 to be sucked into a suction port of the refrigerant ejector 14 and mixed with the high boiling point refrigerant to be boosted to an intermediate pressure to be sucked into the compressor 8. Thus, when the pressure of the evaporator 13 is lowered to obtain a low temperature, the suction pressure of the compressor 8 can be turned to an intermediate pressure higher than the pressure of the evaporator 13 thereby preventing increase in compression ratio and in specific capacity of the suction refrigerant.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非共沸混合冷媒を用いて低温を得る冷凍サイ
クル装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an improvement in a refrigeration cycle device that obtains a low temperature using a non-azeotropic refrigerant mixture.

従来の技術 従来、非共沸混合冷媒を用いて低温を得る冷凍サイクル
装置として、第2図に示すような装置が提案されている
。第2図において、1は圧縮機、2は凝縮器、3は気i
夜分離器、4は補助凝縮器、5.6は絞り装置、7は蒸
発器であり、このような装置において圧縮61より吐出
された非共沸混合冷媒を凝縮器2で凝縮させたのち、気
液分溜器3によりn4に冷媒とガス状冷媒とに分離させ
、補助凝縮″a4でガス状冷媒を凝縮させたのち、絞り
装置6を介して蒸発器7へ流す一方、液状冷媒は絞り装
置5で減圧され補助凝縮器4でガス状冷媒と熱交換して
蒸発したのち、蒸発器7から流出する冷媒と混合されて
圧縮[1に吸入される。
2. Description of the Related Art Conventionally, a device as shown in FIG. 2 has been proposed as a refrigeration cycle device that obtains a low temperature using a non-azeotropic mixed refrigerant. In Figure 2, 1 is a compressor, 2 is a condenser, and 3 is an air i
A night separator, 4 is an auxiliary condenser, 5.6 is a throttle device, and 7 is an evaporator. In such a device, the non-azeotropic mixed refrigerant discharged from the compressor 61 is condensed in the condenser 2, and then The gas-liquid separator 3 separates the refrigerant into n4 and the gaseous refrigerant, and after condensing the gaseous refrigerant in the auxiliary condenser ``a4'', it flows to the evaporator 7 via the throttle device 6, while the liquid refrigerant is throttled. After being depressurized in the device 5 and evaporated by exchanging heat with the gaseous refrigerant in the auxiliary condenser 4, it is mixed with the refrigerant flowing out from the evaporator 7 and sucked into the compressor [1].

発明が解決しようとする問題点 しかしながら、I:記のような冷凍サイクル装置では、
蒸発器7から流出する冷媒と補助凝縮器4て蒸発して流
出する冷媒とを混合して圧縮機lに吸入さωるため、補
助凝縮器4で蒸発する冷媒圧力は蒸発器7で蒸発する冷
媒圧力とほぼ同一の低い圧力にする必要があり、そのた
め蒸発器7で低温を得ろためには圧縮機lの吸入圧力が
非常に低くなり、圧縮比が大きくなって圧縮機lの効率
低下の原因となると共に、圧縮機1乞こ吸入される冷媒
の比容積も大きくなり冷媒循環漬の低下をもたらずとい
った欠点があった。
Problems to be Solved by the Invention However, in the refrigeration cycle device as described in I.
The refrigerant flowing out from the evaporator 7 and the refrigerant evaporating from the auxiliary condenser 4 are mixed and sucked into the compressor 1, so that the pressure of the refrigerant evaporated in the auxiliary condenser 4 is evaporated in the evaporator 7. It is necessary to maintain a low pressure that is almost the same as the refrigerant pressure. Therefore, in order to obtain a low temperature in the evaporator 7, the suction pressure of the compressor 1 must be extremely low, and the compression ratio will increase, causing a decrease in the efficiency of the compressor 1. In addition to this, the specific volume of the refrigerant sucked into the compressor 1 also becomes large, resulting in a drawback that the refrigerant circulation efficiency is not reduced.

本発明のは、圧縮機の吸入圧力を下げることなく、蒸発
器において低温が得られる冷凍サイクル構成を提供する
ことを目的とする。
An object of the present invention is to provide a refrigeration cycle configuration in which a low temperature can be obtained in the evaporator without lowering the suction pressure of the compressor.

問題点を解決するための手段 本発明の冷凍す・fクル装置は、非共沸混合冷媒を封入
し、圧縮機、凝縮器、高沸点冷媒と低沸点冷媒を分Mす
る分離器、高沸点液冷媒の蒸発により低沸点ガス冷媒を
凝縮させる補助凝縮器、絞り装置、蒸発器等を順次接続
すると共に、前記補助凝縮器の高沸点冷媒の出口と圧縮
機の吸入側との間に冷媒エジェクタを設け、さらに前記
蒸発器出目と前記冷媒エジェクタの吸引口とを接続した
ことを特徴とするものである。
Means for Solving the Problems The refrigeration system of the present invention includes a compressor, a condenser, a separator for separating high-boiling point refrigerant and low-boiling point refrigerant, and a high-boiling point refrigerant. An auxiliary condenser, a throttling device, an evaporator, etc. for condensing a low-boiling gas refrigerant by evaporation of a liquid refrigerant are connected in sequence, and a refrigerant ejector is provided between the high-boiling refrigerant outlet of the auxiliary condenser and the suction side of the compressor. Further, the evaporator exit and the suction port of the refrigerant ejector are connected.

作用 本発明は1−記した構成により、圧縮機より叶出さ第1
た非共沸混合冷媒を、凝縮器で凝縮させたのち、分M器
により高沸点冷媒と低沸点冷媒に分離し、補DJJ凝縮
器において高沸点液冷媒との熱交換により低沸点ガス冷
媒を凝縮させると共に、カス化された高沸点冷媒は冷媒
エジェクタを介して前記圧縮機の吸入側に導き、一方、
液化された低沸点冷媒は紋り装置を介して蒸発器で蒸発
させたのち、前記冷媒エジェクタの吸引口に導き、前記
高沸点冷媒と混合させて前記圧縮機の吸入側に導くこと
ができ、低温を得るために蒸発器の圧力を低くした場合
にも圧縮機の吸入圧力を蒸発器の圧力より高くできるた
め、圧縮比の増大および圧縮機に吸入される冷媒の比容
積の増大を防止できるものである。
Operation The present invention has the following configuration:
After condensing the non-azeotropic mixed refrigerant in a condenser, it is separated into a high-boiling point refrigerant and a low-boiling point refrigerant in a separator, and a low-boiling point gas refrigerant is converted into a low-boiling point gas refrigerant by heat exchange with the high-boiling point liquid refrigerant in the auxiliary DJJ condenser. While being condensed, the high boiling point refrigerant that has been turned into scum is guided to the suction side of the compressor via a refrigerant ejector, while
The liquefied low boiling point refrigerant is evaporated in an evaporator via a sintering device, and then guided to the suction port of the refrigerant ejector, mixed with the high boiling point refrigerant, and guided to the suction side of the compressor, Even when the pressure of the evaporator is lowered to obtain a lower temperature, the suction pressure of the compressor can be made higher than the pressure of the evaporator, which prevents an increase in the compression ratio and the specific volume of the refrigerant sucked into the compressor. It is something.

実施例 以下、本発明の一実施例を添付図面に基づいて説明する
EXAMPLE Hereinafter, an example of the present invention will be described based on the accompanying drawings.

第1図は本発明の冷凍サイクル装置の一実施例てあり、
圧縮機8、凝縮器9、高沸点冷媒と低沸点冷媒を分離す
る精留分離器lO1高沸点液冷媒の蒸発により低沸点ガ
ス冷媒を凝縮させる補助凝縮器11、絞り装置12、蒸
発器13を順次接続すると共に、補1171凝縮器11
の高沸点冷媒の出口と圧縮機8の吸入側との間に冷媒エ
ジェクタ14を設け、さらに蒸発器13出日と冷媒エジ
ェクタ14の吸引口とが接続されている。
FIG. 1 shows an embodiment of the refrigeration cycle device of the present invention.
Compressor 8, condenser 9, rectification separator lO1 for separating high boiling point refrigerant and low boiling point refrigerant, auxiliary condenser 11 for condensing low boiling point gas refrigerant by evaporation of high boiling point liquid refrigerant, throttling device 12, and evaporator 13. While connecting sequentially, auxiliary 1171 condenser 11
A refrigerant ejector 14 is provided between the outlet of the high boiling point refrigerant and the suction side of the compressor 8, and furthermore, the output of the evaporator 13 and the suction port of the refrigerant ejector 14 are connected.

なお精留分離器10は精留塔15、貯留器16、加熱ヒ
ータ17から構成されており、精留分離器IOの貯留器
16より高沸点液冷媒を、精留塔15の−L部より低沸
点ガス冷媒を抽出することができる。また、18は高沸
点冷媒用の減圧器である。
The rectification separator 10 is composed of a rectification column 15, a reservoir 16, and a heater 17, and the high-boiling liquid refrigerant is supplied from the reservoir 16 of the rectification separator IO and from the -L section of the rectification column 15. Low-boiling gas refrigerants can be extracted. Further, 18 is a pressure reducer for high boiling point refrigerant.

このような冷凍サイクル装置において非共沸混合冷媒を
封入し、圧縮機8を駆動すると圧縮機8より吐出された
非共沸混合冷媒は、凝縮器9で凝縮したのち、精留分離
器10の精留塔151一部より貯留器16に入り、ここ
で加熱ヒーター17により、貯留316内部の冷媒中主
に低沸点冷媒が気化され、精留塔15内部をJ−Wする
。このとき凝縮器9出[二1からは液冷媒が供給され、
精留塔15内部で気液接触により精留作用が起こり、上
昇する気体は低沸点冷媒の濃度が高まり、逆に下降ずろ
液体は高沸点冷媒の濃度が高まり、貯留器16は凝縮液
の状態の高沸点冷媒で満たされる。この貯留器16より
流出する高沸点液冷媒は減圧器18で中間圧まで減圧さ
れて補助凝縮器11に導かれろ。
In such a refrigeration cycle device, when a non-azeotropic mixed refrigerant is sealed and the compressor 8 is driven, the non-azeotropic mixed refrigerant discharged from the compressor 8 is condensed in the condenser 9 and then transferred to the rectification separator 10. The refrigerant enters the reservoir 16 from a part of the rectification column 151, where mainly the low boiling point refrigerant in the refrigerant inside the reservoir 316 is vaporized by the heating heater 17, and the inside of the rectification column 15 is J-Wed. At this time, liquid refrigerant is supplied from condenser 9 [21],
A rectification action occurs due to gas-liquid contact inside the rectification column 15, and the rising gas has an increased concentration of low-boiling point refrigerant, and conversely, the descending liquid has an increased concentration of high-boiling point refrigerant, and the reservoir 16 is in the state of condensed liquid. filled with high boiling point refrigerant. The high boiling point liquid refrigerant flowing out from the reservoir 16 is reduced in pressure to an intermediate pressure by a pressure reducer 18 and is led to the auxiliary condenser 11.

一方、精留塔15上部より流出する低沸点ガス冷媒は補
助凝縮器11に流入し、ここで、高沸点液冷媒と熱交換
して高沸点液冷媒は蒸発気化し、低沸点ガス冷媒は凝縮
液化する。気化された高沸点冷媒は冷媒エジェクタ14
に流入する。また、液化された低沸点冷媒は紋り装置1
2で低温低圧の状態にされ、蒸発器13に導かれる。こ
こで低温蒸発することにより冷凍効果を発揮したのち、
冷媒エジェクタ14の吸引口に吸い込まれ、高沸点冷媒
と混合1)で中間圧までd圧されたのち圧縮[8に吸入
される。
On the other hand, the low-boiling point gas refrigerant flowing out from the upper part of the rectification column 15 flows into the auxiliary condenser 11, where it exchanges heat with the high-boiling point liquid refrigerant, and the high-boiling point liquid refrigerant is evaporated and vaporized, and the low-boiling point gas refrigerant is condensed. liquefy. The vaporized high boiling point refrigerant is sent to the refrigerant ejector 14
flows into. In addition, the liquefied low boiling point refrigerant is
2, it is brought to a low temperature and low pressure state, and is led to an evaporator 13. After demonstrating the freezing effect by low-temperature evaporation here,
The refrigerant is sucked into the suction port of the refrigerant ejector 14, mixed with a high boiling point refrigerant 1) to an intermediate pressure d, and then sucked into the compressor [8].

このように低温を得るために蒸発器13の圧力を低くし
た場合にも圧縮[8の吸入圧力を蒸発器13の圧力より
高い中間圧にできるため、圧縮比の増大および圧縮機8
に吸入される冷媒の比容積の増大を防止できるものであ
る。
In this way, even when the pressure of the evaporator 13 is lowered to obtain a low temperature, the suction pressure of the compressor [8] can be made to an intermediate pressure higher than the pressure of the evaporator 13, which increases the compression ratio and reduces the pressure of the compressor [8].
This prevents an increase in the specific volume of the refrigerant sucked into the refrigerant.

なお、加熱ヒーター17の代わりに圧縮機11の吐出配
管等冷凍サイクル中の高温熱源を用いてもよいことはも
ちろんのことであり、その場合には凝縮器9の小型化に
も効果がある。
It goes without saying that a high-temperature heat source in the refrigeration cycle, such as the discharge pipe of the compressor 11, may be used instead of the heater 17, and in that case, the condenser 9 can also be made smaller.

また、本実施例においては高沸点冷媒と低沸点冷媒をよ
り厳密に分離して従来と同一の低圧でもより低温を実現
するため、精留塔15、貯留器16、加熱ヒータ17よ
りなる精留分離器10を用いたが、混合する冷媒の種類
あるいは使用目的により精留分離器10の代わりに気液
分離器を使用することもできる。
In addition, in this embodiment, in order to more strictly separate the high boiling point refrigerant and the low boiling point refrigerant and achieve a lower temperature even at the same low pressure as in the past, the rectifying column 15, the reservoir 16, and the heater 17 are used. Although the separator 10 is used, a gas-liquid separator may be used instead of the rectification separator 10 depending on the type of refrigerant to be mixed or the purpose of use.

発明の効果 以上の説明より明らかなように、本発明の冷凍サイクル
装置においては、低温を得るために蒸発器の圧力を低く
した場合にも圧縮機の吸入圧力を蒸発器の圧力より高い
中間圧に保つことができ、圧縮比の増大による効率恢下
や、圧縮機に吸入される冷媒の比容積の増大による冷媒
循環量の減少を防止でき、冷凍サイクル装置の効率向上
を図ることができるものである。また、分離器として精
留塔、貯留器、加熱ヒータよりなる精留分離器を用いる
ことにより、気液分離器を使用する場合に比べて蒸発器
に導かれる低沸点冷媒の濃度を非常に高めることができ
、そのため同一蒸発圧力でもより低温が得られる。
Effects of the Invention As is clear from the above explanation, in the refrigeration cycle device of the present invention, even when the pressure of the evaporator is lowered to obtain a low temperature, the suction pressure of the compressor is maintained at an intermediate pressure higher than the pressure of the evaporator. It is possible to improve the efficiency of refrigeration cycle equipment by preventing a decrease in efficiency due to an increase in the compression ratio and a decrease in the amount of refrigerant circulating due to an increase in the specific volume of refrigerant sucked into the compressor. It is. In addition, by using a rectification separator consisting of a rectification column, a reservoir, and a heater as a separator, the concentration of the low-boiling refrigerant led to the evaporator can be greatly increased compared to when using a gas-liquid separator. Therefore, lower temperatures can be obtained with the same evaporation pressure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の冷凍サイクル装置の構成図
、第2図は従来例の冷凍サイクル装置の構成図である。 8・・・・圧縮機、9・・・・凝縮器、lO・・・・精
留分離器、11・・・・補助凝縮器、12・・・・絞り
装置、13・・・・蒸発器、14・・・・冷媒エジェク
タ。
FIG. 1 is a configuration diagram of a refrigeration cycle device according to an embodiment of the present invention, and FIG. 2 is a configuration diagram of a conventional refrigeration cycle device. 8... Compressor, 9... Condenser, 1O... Rectification separator, 11... Auxiliary condenser, 12... Squeezing device, 13... Evaporator , 14... Refrigerant ejector.

Claims (2)

【特許請求の範囲】[Claims] (1) 非共沸混合冷媒を封入し、圧縮機、凝縮器、高
沸点冷媒と低沸点冷媒を分離する分離器、高沸点液冷媒
の蒸発により低沸点ガス冷媒を凝縮させる補助凝縮器、
絞り装置、蒸発器等を順次接続すると共に、前記補助凝
縮器の高沸点冷媒の出口と圧縮機の吸入側との間に冷媒
エジェクタを設け、前記蒸発器出口と前記冷媒エジェク
タの吸引口とを接続したことを特徴とする冷凍サイクル
装置。
(1) A compressor, a condenser, a separator that separates a high-boiling point refrigerant and a low-boiling point refrigerant, and an auxiliary condenser that condenses a low-boiling gas refrigerant by evaporating the high-boiling point liquid refrigerant;
A throttling device, an evaporator, etc. are connected in sequence, and a refrigerant ejector is provided between the high boiling point refrigerant outlet of the auxiliary condenser and the suction side of the compressor, and the evaporator outlet and the suction port of the refrigerant ejector are connected. A refrigeration cycle device characterized by being connected.
(2) 分離器として精留塔、貯留器、加熱ヒータから
なる精留分離器を設けると共に、前記精留分離器の貯留
器より高沸点液冷媒を、精留塔の上部より低沸点ガス冷
媒を抽出することを特徴とする特許請求の範囲第1項記
載の冷凍サイクル装置。
(2) A rectification separator consisting of a rectification column, a reservoir, and a heater is provided as a separator, and a high-boiling liquid refrigerant is supplied from the reservoir of the rectification separator, and a low-boiling gas refrigerant is supplied from the upper part of the rectification column. The refrigeration cycle device according to claim 1, wherein the refrigeration cycle device extracts the following.
JP62312734A 1987-12-10 1987-12-10 Refrigeration cycle equipment Expired - Lifetime JPH0752038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62312734A JPH0752038B2 (en) 1987-12-10 1987-12-10 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62312734A JPH0752038B2 (en) 1987-12-10 1987-12-10 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JPH01155149A true JPH01155149A (en) 1989-06-19
JPH0752038B2 JPH0752038B2 (en) 1995-06-05

Family

ID=18032781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62312734A Expired - Lifetime JPH0752038B2 (en) 1987-12-10 1987-12-10 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JPH0752038B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045773A (en) * 2006-08-11 2008-02-28 Denso Corp Ejector type refrigerating cycle
JP2008082693A (en) * 2006-08-28 2008-04-10 Calsonic Kansei Corp Refrigerating cycle
US7779647B2 (en) 2005-05-24 2010-08-24 Denso Corporation Ejector and ejector cycle device
CN107192153A (en) * 2017-07-25 2017-09-22 广东工业大学 Twin-stage sweat cooling system with injector

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5938564A (en) * 1982-08-24 1984-03-02 松下電器産業株式会社 Refrigerator
JPS6280452A (en) * 1985-10-02 1987-04-13 株式会社日立製作所 Refrigeration cycle
JPS62261861A (en) * 1986-05-06 1987-11-14 三菱電機株式会社 Heat pump device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5938564A (en) * 1982-08-24 1984-03-02 松下電器産業株式会社 Refrigerator
JPS6280452A (en) * 1985-10-02 1987-04-13 株式会社日立製作所 Refrigeration cycle
JPS62261861A (en) * 1986-05-06 1987-11-14 三菱電機株式会社 Heat pump device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7779647B2 (en) 2005-05-24 2010-08-24 Denso Corporation Ejector and ejector cycle device
JP2008045773A (en) * 2006-08-11 2008-02-28 Denso Corp Ejector type refrigerating cycle
JP2008082693A (en) * 2006-08-28 2008-04-10 Calsonic Kansei Corp Refrigerating cycle
CN107192153A (en) * 2017-07-25 2017-09-22 广东工业大学 Twin-stage sweat cooling system with injector
CN107192153B (en) * 2017-07-25 2023-07-28 广东工业大学 Double-stage evaporation refrigeration system with ejector

Also Published As

Publication number Publication date
JPH0752038B2 (en) 1995-06-05

Similar Documents

Publication Publication Date Title
JPH01155149A (en) Refrigeration cycle device
US5186011A (en) Refrigerant cycling apparatus
JP2002081777A (en) Refrigeration cycle
US5966948A (en) Sub-ambient absorber GAX cycle
JPH02272265A (en) Two stage compression refrigeration cycle and heat-pump type air conditioner
JPS5938564A (en) Refrigerator
JPS63238367A (en) Refrigeration cycle device
JPH02213652A (en) Two-stage compression and freezing cycle type air conditioner
CN211041463U (en) Large-temperature-difference component-concentration-variable self-cascade heat pump unit
JPH0391663A (en) Refrigeration cycling device
JPS6246781B2 (en)
JP2532754B2 (en) Refrigeration cycle equipment
JPH01155148A (en) Refrigeration cycle device
JPS5938566A (en) Refrigerator
JPH01155145A (en) Refrigeration cycle device
JPH0432663A (en) Refrigeration cycle arrangement
JP2574545B2 (en) Refrigeration cycle device
JPH0188270U (en)
CN118499987A (en) Second-class absorption heat pump system based on liquid-liquid phase separation and waste heat recovery device
JPS62261861A (en) Heat pump device
JPH02272271A (en) Cooling-heating hot water feeding system
JPS61186759A (en) Refrigerator
JPH0514185B2 (en)
JPH0371622B2 (en)
JPH01111171A (en) Heat pump device