JPH0745982B2 - Heat pump device - Google Patents

Heat pump device

Info

Publication number
JPH0745982B2
JPH0745982B2 JP21660188A JP21660188A JPH0745982B2 JP H0745982 B2 JPH0745982 B2 JP H0745982B2 JP 21660188 A JP21660188 A JP 21660188A JP 21660188 A JP21660188 A JP 21660188A JP H0745982 B2 JPH0745982 B2 JP H0745982B2
Authority
JP
Japan
Prior art keywords
refrigerant
gas
heat exchanger
separator
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21660188A
Other languages
Japanese (ja)
Other versions
JPH0264364A (en
Inventor
光博 生駒
和生 中谷
雄二 吉田
猛 富澤
浩二 有田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21660188A priority Critical patent/JPH0745982B2/en
Publication of JPH0264364A publication Critical patent/JPH0264364A/en
Publication of JPH0745982B2 publication Critical patent/JPH0745982B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0014Ejectors with a high pressure hot primary flow from a compressor discharge

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非共沸混合冷媒を用い、組成分離により、高
沸点冷媒を貯留して組成を可変するヒートポンプ装置の
改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a heat pump device that uses a non-azeotropic mixed refrigerant and stores a high boiling point refrigerant by composition separation to change the composition.

従来の技術 従来、非共沸混合冷媒を用い、組成分離により高沸点冷
媒を貯留して組成を可変するヒートポンプ装置として、
第4図に示すような装置が提案されている。第4図にお
いて、1は圧縮機、2は凝縮器、3は絞り装置、4は蒸
発器であり、これらを配管接続することにより主回路を
構成している。5は充填材を充填した精留分離器であ
り、上部は配管6により凝縮器2出口と、また減圧器7
を介して蒸発器4入口とそれぞれ接続されている。また
精留分離器5の下部には貯留器8が配置され、その底部
は開閉弁9を介して減圧器7と接続され、貯留器8の内
部には加熱ヒーター10が設けられている。
Conventional technology Conventionally, using a non-azeotropic mixed refrigerant, as a heat pump device that stores a high boiling point refrigerant by composition separation and changes the composition,
A device as shown in FIG. 4 has been proposed. In FIG. 4, 1 is a compressor, 2 is a condenser, 3 is a throttle device, and 4 is an evaporator, and these are connected by piping to form a main circuit. 5 is a rectification separator filled with a packing material, the upper part of which is connected to the outlet of the condenser 2 through a pipe 6 and the decompressor 7
Are connected to the inlet of the evaporator 4 respectively. A reservoir 8 is arranged below the rectification separator 5, the bottom of which is connected to a decompressor 7 via an on-off valve 9, and a heater 10 is provided inside the reservoir 8.

このような装置において非共沸混合冷媒を封入し、組成
を可変する方法について説明する。まず封入した混合冷
媒の組成のままで運転する場合(分離なしモード)に
は、加熱ヒーター10をOFFすることにより、貯留器8は
余剰冷媒を単に貯留し、開閉弁9の閉止時はそのまま貯
め込むし、開放時は貯留しながら一部は減圧器7を経由
して蒸発器4に流出するのみとなるため、主回路は封入
した状態の高沸点冷媒の富んだ混合冷媒の組成のまま運
転することになる。次に高沸点冷媒を貯留して低沸点冷
媒の富んだ組成で運転する場合(分離ありモード)に
は、開閉弁9を閉止し加熱ヒーター10をONすると、貯留
器8内部の冷媒中主に低沸点冷媒が気化され、精留分離
器5内部を上昇する、このとき凝縮器2出口からは配管
6を経由して液冷媒が供給され、精留分離器5内部で気
液接触により精留作用が起こり、上昇する気体は低沸点
冷媒の濃度が高まり、逆に下降する液体は高沸点冷媒の
濃度が高まり、貯留器8には高沸点冷媒が凝縮液の状態
で貯留されることになる。一方上昇する低沸点冷媒に富
んだ気体は減圧器7を経由して蒸発器4に流入するた
め、主回路は低沸点冷媒の富んだ組成で運転できるもの
である。
A method of enclosing a non-azeotropic mixed refrigerant in such a device and varying the composition will be described. First, when operating with the composition of the mixed refrigerant enclosed (no separation mode), by turning off the heater 10, the reservoir 8 simply stores the excess refrigerant, and when the on-off valve 9 is closed, it is stored as it is. However, when it is opened, it is stored and partly flows out to the evaporator 4 via the pressure reducer 7. Therefore, the main circuit operates with the composition of the mixed refrigerant rich in the high boiling point refrigerant in the sealed state. Will be done. Next, when the high-boiling-point refrigerant is stored and operated with a composition rich in the low-boiling-point refrigerant (separation mode), when the on-off valve 9 is closed and the heater 10 is turned on, the refrigerant inside the reservoir 8 is mainly The low-boiling-point refrigerant is vaporized and rises inside the rectification separator 5. At this time, the liquid refrigerant is supplied from the outlet of the condenser 2 through the pipe 6, and the rectification is performed inside the rectification separator 5 by gas-liquid contact. When the action occurs, the rising gas has an increased concentration of the low-boiling-point refrigerant, while the descending liquid has the increased concentration of the high-boiling-point refrigerant, and the high-boiling-point refrigerant is stored in the reservoir 8 in a condensed liquid state. . On the other hand, the rising gas rich in low-boiling-point refrigerant flows into the evaporator 4 via the pressure reducer 7, so that the main circuit can be operated with a composition rich in low-boiling-point refrigerant.

このようなタイプの組成可変型のヒートポンプ装置は、
例えば給湯装置に適用され、通常使用時には高温水を得
るため高沸点冷媒の富んだ封入組成のままで運転し、で
きるだけ短時間で貯湯する必要がある場合には加熱能力
の高い低沸点冷媒の富んだ組成で運転することが可能と
なる。
This type of variable composition heat pump device is
For example, it is applied to a hot water supply device, and in normal use it operates with the encapsulation composition rich in high boiling point refrigerant to obtain high temperature water, and when it is necessary to store hot water in the shortest possible time, it is rich in low boiling point refrigerant It is possible to operate with a different composition.

発明が解決しようとする課題 しかしながら、上記のようなヒートポンプ装置では、加
熱ヒーターを用いて精留作用を起こさせるため、組成可
変する場合のエネルギ効率が低くなる。すなわち、ヒー
ターにより加熱された熱量は精留作用のための気体発生
に利用されるだけで、例えば、給湯側への熱回収が行わ
れないと言った欠点があり、さらに上記ヒートポンプ装
置に四方弁を加えて、圧縮機からの冷媒の流れ方向を切
り換え可能にし冷却側を利用する場合にも、精留分離器
の上部より流出する低沸点冷媒の濃度の高い冷媒ガスを
蒸発器に導くことになり、蒸発器の圧力損失が増加する
と言う欠点があった。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention However, in the heat pump device as described above, since the rectification action is caused by using the heater, the energy efficiency in the case of varying the composition becomes low. That is, the amount of heat heated by the heater is only used for gas generation for rectification, and for example, there is a drawback that heat is not recovered to the hot water supply side, and the heat pump device has a four-way valve. In addition, in order to switch the flow direction of the refrigerant from the compressor and use the cooling side, it is possible to guide the refrigerant gas with a high concentration of the low boiling point refrigerant flowing out from the upper part of the rectification separator to the evaporator. However, there is a drawback that the pressure loss of the evaporator increases.

本発明のヒートポンプ装置は、加熱運転時には、精留分
離のための気体発生に利用した熱量を有効に利用でき、
しかも冷却運転時にも、支障なく精留分離を行なうこと
ができるヒートポンプサイクル構成を提供するものであ
る。
The heat pump device of the present invention can effectively utilize the amount of heat used for gas generation for rectification separation during heating operation,
Moreover, the present invention provides a heat pump cycle configuration that can perform rectification separation without any trouble even during cooling operation.

課題を解決するための手段 本発明のヒートポンプ装置は、下部に加熱手段を有する
貯留器を設けた精留分離器の上部を前記凝縮器の出口側
配管に接続し、前記貯留器の下部を開閉弁を介して蒸発
器等の低圧配管に接続し、前記精留分離器の上部に気液
分離器を接続し、この気液分離器底部の液側出口を蒸発
器の入口側配管に接続し、前記凝縮器の入口側配管に冷
媒エジェクタを設け、前記気液分離器上部のガス側出口
と前記冷媒エジェクタの吸引口とを配管接続したことを
特徴とするものである。
Means for Solving the Problems The heat pump device of the present invention connects the upper part of a rectification separator provided with a reservoir having a heating means in the lower part to the outlet side pipe of the condenser, and opens and closes the lower part of the reservoir. Connect to a low pressure pipe such as an evaporator through a valve, connect a gas-liquid separator to the upper part of the rectification separator, and connect the liquid side outlet of the bottom of this gas liquid separator to the inlet side pipe of the evaporator. A refrigerant ejector is provided in the inlet side pipe of the condenser, and the gas side outlet at the upper part of the gas-liquid separator and the suction port of the refrigerant ejector are connected by pipes.

さらに本発明のヒートポンプ装置は、下部に加熱手段を
有する貯留器を設けた精留分離器の上部を絞り装置と利
用側熱交換器の間の配管に第1逆止弁とこの第1逆止弁
に並列に設けた第1減圧器とを介して接続し、さらに前
記精留分離器の上部を前記熱源側熱交換器と前記絞り装
置の間の配管に第1開閉弁を介して接続し、また前記貯
留器を第2開閉弁を介して前記熱源側熱交換器と前記絞
り装置の間の配管に接続し、前記精留分離器の上部に気
液分離器を接続し、この気液分離器底部の液側出口を前
記熱源側熱交換器と前記絞り装置の間の配管に接続し、
前記圧縮器と前記四方弁との間に冷媒エジェクタを設
け、前記気液分離器上部のガス側出口と前記冷媒エジェ
クタの吸引口とを接続したことを特徴とするものであ
る。
Further, in the heat pump device of the present invention, the first check valve and the first check valve are provided in the pipe between the expansion device and the utilization side heat exchanger, the upper part of the rectification separator having the reservoir having the heating means at the lower part. Connected via a first pressure reducer provided in parallel with the valve, and further connecting the upper part of the rectification separator to a pipe between the heat source side heat exchanger and the expansion device via a first on-off valve. The reservoir is connected to a pipe between the heat source side heat exchanger and the expansion device via a second opening / closing valve, and a gas-liquid separator is connected to an upper portion of the rectification separator. The liquid side outlet of the separator bottom is connected to the pipe between the heat source side heat exchanger and the expansion device,
A refrigerant ejector is provided between the compressor and the four-way valve, and a gas side outlet at an upper portion of the gas-liquid separator and a suction port of the refrigerant ejector are connected to each other.

さらに本発明のヒートポンプ装置は、下部に加熱手段を
有する貯留器を設けた精留分離器の上部を絞り装置と前
記利用側熱交換器の間の配管に第1逆止弁とこの第1逆
止弁に設けた第1減圧器とを介して接続し、さらに前記
精留分離器の上部を前記熱源側熱交換器と前記絞り装置
の間の配管に第1開閉弁を介して接続し、また前記貯留
器を第2開閉弁を介して前記熱源側熱交換器と前記絞り
装置の間の配管に接続し、前記精留分離器の上部に気液
分離器を接続し、この気液分離器底部の液側出口を前記
熱源側熱交換器と前記絞り装置の間の配管に接続し、前
記四方弁と前記利用側熱交換器との間に冷媒エジェクタ
を設け、前記気液分離器上部のガス側出口と前記冷媒エ
ジェクタの吸引口と第3開閉弁を介して接続すると共
に、冷却運転時に前記冷媒エジェクタをバイパスする第
4逆止弁を設けたことを特徴とするものである。
Further, in the heat pump device of the present invention, the first check valve and the first reverse valve are provided in the pipe between the expansion device and the utilization side heat exchanger, the upper part of the rectification separator having the reservoir having the heating means at the lower part. Connected via a first pressure reducer provided on the stop valve, and further connecting the upper part of the rectification separator to a pipe between the heat source side heat exchanger and the expansion device via a first on-off valve, Further, the reservoir is connected to a pipe between the heat source side heat exchanger and the expansion device via a second opening / closing valve, and a gas-liquid separator is connected to an upper portion of the rectification separator, and the gas-liquid separation is performed. A liquid side outlet of the bottom of the vessel is connected to a pipe between the heat source side heat exchanger and the expansion device, a refrigerant ejector is provided between the four-way valve and the use side heat exchanger, and the gas-liquid separator upper portion is provided. Of the refrigerant ejector and the suction port of the refrigerant ejector through the third opening / closing valve, It is characterized in the provision of the fourth check valve for bypassing the refrigerant ejector.

作用 本発明は上記した構成により、分離ありモードにおいて
は、加熱ヒーターにより、貯留器内部の冷媒中主に低沸
点冷媒が気化され、精留分離器内部を上昇する。このと
き凝縮器となる熱交換器の出口からは液冷媒が供給さ
れ、精留分離器内部で気液接触により精留作用が起こ
り、上昇する気体は低沸点冷媒の濃度が高まり、逆に下
降する液体は高沸点冷媒の濃度が高まり、貯留器には高
沸点冷媒が凝縮液の状態で貯留されることになる。一方
上昇した低沸点冷媒に富んだ気体は、供給される液冷媒
の一部と混ざり合って気液分離器に入る。加熱運転時に
は、ここで気体冷媒と液冷媒に分離され、気体冷媒は冷
媒エジェクタの吸引口に導かれるため、再び凝縮器とな
る熱交換器に流入し、凝縮する際に加熱ヒーターにより
与えられた熱量を有効活用することができ、分離された
熱冷媒は蒸発器となる熱交換器に導かれ外気などの熱源
より吸熱蒸発させることができる。また冷却運転時に
も、支障なく精留分離を行なうことができるものであ
る。
Action With the above-described configuration, in the separation mode, the present invention vaporizes mainly the low boiling point refrigerant in the refrigerant inside the reservoir by the heater, and rises inside the rectification separator. At this time, the liquid refrigerant is supplied from the outlet of the heat exchanger that serves as the condenser, and the rectification action occurs due to the gas-liquid contact inside the rectification separator, and the rising gas increases the concentration of the low boiling point refrigerant, and conversely falls. The concentration of the high boiling point refrigerant in the liquid is increased, and the high boiling point refrigerant is stored in the reservoir in a condensed state. On the other hand, the gas rich in the low-boiling-point refrigerant that has risen mixes with a part of the supplied liquid refrigerant and enters the gas-liquid separator. During the heating operation, it is separated into a gas refrigerant and a liquid refrigerant here, and the gas refrigerant is guided to the suction port of the refrigerant ejector, so that it again flows into the heat exchanger that serves as the condenser and is given by the heating heater when condensing. The amount of heat can be effectively utilized, and the separated heat refrigerant can be guided to a heat exchanger that serves as an evaporator and absorbed and evaporated from a heat source such as outside air. Further, even during the cooling operation, rectification separation can be performed without any trouble.

実施例 以下、本発明の一実施例を添付図面に基づいて説明す
る。
Embodiment An embodiment of the present invention will be described below with reference to the accompanying drawings.

第1図は本発明のヒートポンプ装置の一実施例であり、
11は圧縮機、12は凝縮器、13は絞り装置、14は蒸発器で
あり、これらを配管接続することより主回路を構成して
いる。15は充填材を充填した精留分離器であり、その上
部は凝縮器12出口と接続し、同じく精留分離器15の上部
には気液分離器16が接続され、この気液分離器15底部の
液側出口は減圧器17を介して蒸発器14入口に接続すると
ともに、凝縮器12入口に冷媒エジェクタ18を設け、気液
分離器15上部のガス側出口は冷媒エジェクタ18の吸引口
に接続されている。また精留分離器15の下部には加熱ヒ
ーター19を内蔵した貯留器20を配しており、この貯留器
20の下部は開閉弁21および減圧器17を介して蒸発器14に
接続されている。なお、気液分離器16底部の液側出口は
フロート22によるフロート弁構造となっており、気液分
離器16に流入した液冷媒のみを確実に液側出口より、流
出させる構成となっている。
FIG. 1 shows an embodiment of the heat pump device of the present invention,
Reference numeral 11 is a compressor, 12 is a condenser, 13 is a throttle device, and 14 is an evaporator, and these are connected by piping to form a main circuit. 15 is a rectification separator filled with a packing material, the upper part of which is connected to the outlet of the condenser 12, and the gas-liquid separator 16 is connected to the upper part of the rectification separator 15 as well. The liquid side outlet at the bottom is connected to the inlet of the evaporator 14 via the pressure reducer 17, the refrigerant ejector 18 is provided at the inlet of the condenser 12, and the gas side outlet of the upper part of the gas-liquid separator 15 is the suction port of the refrigerant ejector 18. It is connected. In addition, a reservoir 20 with a built-in heater 19 is arranged below the rectification separator 15.
The lower part of 20 is connected to the evaporator 14 via an on-off valve 21 and a pressure reducer 17. The liquid-side outlet at the bottom of the gas-liquid separator 16 has a float valve structure with a float 22 so that only the liquid refrigerant that has flowed into the gas-liquid separator 16 is reliably discharged from the liquid-side outlet. .

このようなヒートポンプ装置において非共沸混合冷媒を
封入し、組成を可変する方法について説明する。まず分
離なしモードでは、加熱ヒーター19をOFFし、開閉弁21
を開放することにより、貯留器20には余剰冷媒が貯留さ
れ、一部は減圧器17を経由して蒸発器14に流出するのみ
となるため、主回路は封入した状態の高沸点冷媒の富ん
だ混合冷媒の組成のまま運転することになる。次に分離
ありモードでは、加熱ヒーター19をONし、開閉弁21を閉
止することにより、貯留器20内部の冷媒中主に低沸点冷
媒が気化され、精留分離器15内部を上昇する。このとき
凝縮器12出口から液冷媒が精留分離器15上部に供給さ
れ、精留分離器16内部で気液接触により精留作用が起こ
り、上昇する気体は低沸点冷媒の濃度が高まり、逆に下
降する液体は高沸点冷媒の濃度が高まり、貯留器20には
高沸点冷媒が凝縮液の状態で貯留されることになる。一
方上昇した低沸点冷媒に富んだ気体は供給される液冷媒
の一部と混合して気液分離器16に入り、ここで気体冷媒
と液冷媒に分離され、気体冷媒は凝縮器12入口に設けた
冷媒エジェクタ18の吸引口に導かれる。この冷媒エジェ
クタ18による吸引効果により精留作用の促進が図れると
共に、気体冷媒は再び凝縮器12に流入し凝縮する際に加
熱ヒーターにより与えられた熱量を有効活用することが
できる。一方、分離された液冷媒は気液分離器16底部の
液側出口より、減圧器17を介して蒸発器14に導かれ、こ
こで主回路を流れる冷媒と混合して、外気などの熱源よ
り吸熱蒸発し、再び圧縮機に吸引される。このようにし
て主回路は低沸点冷媒の富んだ混合冷媒の組成で運転で
きるものである。
A method of enclosing a non-azeotropic mixed refrigerant in such a heat pump device and varying the composition will be described. First, in the non-separation mode, the heater 19 is turned off and the on-off valve 21
By opening, the excess refrigerant is stored in the reservoir 20, and only a part of the excess refrigerant flows out to the evaporator 14 via the pressure reducer 17, so that the main circuit is rich in high boiling point refrigerant in the sealed state. The operation will continue with the composition of the mixed refrigerant. Next, in the separation mode, the heater 19 is turned on and the on-off valve 21 is closed to vaporize mainly the low boiling point refrigerant in the refrigerant inside the reservoir 20 and raise the inside of the rectification separator 15. At this time, the liquid refrigerant is supplied to the upper part of the rectification separator 15 from the outlet of the condenser 12, the rectification action occurs due to the gas-liquid contact inside the rectification separator 16, and the rising gas has a high concentration of the low boiling point refrigerant, and the reverse The concentration of the high-boiling-point refrigerant increases in the liquid descending to the high-boiling-point refrigerant, and the high-boiling-point refrigerant is stored in the reservoir 20 in a condensed liquid state. On the other hand, the gas rich in the low boiling point refrigerant that has risen is mixed with a part of the liquid refrigerant supplied and enters the gas-liquid separator 16, where it is separated into a gas refrigerant and a liquid refrigerant, and the gas refrigerant enters the condenser 12 inlet. It is guided to the suction port of the provided refrigerant ejector 18. By the suction effect of the refrigerant ejector 18, the rectification action can be promoted, and when the gaseous refrigerant flows into the condenser 12 again and is condensed, the heat quantity given by the heater can be effectively utilized. On the other hand, the separated liquid refrigerant is introduced from the liquid-side outlet at the bottom of the gas-liquid separator 16 to the evaporator 14 via the pressure reducer 17, where it is mixed with the refrigerant flowing in the main circuit and is supplied from a heat source such as outside air. It is endothermically evaporated and again sucked into the compressor. In this way, the main circuit can be operated with a mixed refrigerant composition rich in low boiling point refrigerants.

なお主回路の組成を元に戻すには、加熱ヒーター19をOF
Fし、開閉弁21を開放すると、貯留器20内の高沸点冷媒
が主回路に混入して、主回路は封入した状態の高沸点冷
媒の富んだ混合冷媒の組成となる。
To restore the composition of the main circuit to the original condition, set the heater 19 to OF
Then, when the on-off valve 21 is opened, the high boiling point refrigerant in the reservoir 20 is mixed into the main circuit, and the main circuit has a composition of the mixed refrigerant rich in the high boiling point refrigerant.

なお、加熱ヒーター19の代わりに圧縮機11の吐出配管等
冷凍サイクル中の高温熱源を用いてもよいことはもちろ
んのことである。
It goes without saying that a high temperature heat source in the refrigeration cycle such as the discharge pipe of the compressor 11 may be used instead of the heater 19.

第2図は本発明のヒートポンプ装置の他の実施例の構成
図であり、23は圧縮機、24は四方弁、25は利用側熱交換
器、26は絞り装置、27は熱源側熱交換器であり、これら
を配管接続することにより主ヒートポンプ回路を構成し
ている。28は充填材を充填した精留分離器であり、その
上部を絞り装置26と利用側熱交換器25の間の配管に第1
逆止弁29と第1減圧器30の並列回路により接続し、さら
に精留分離器28の上部を熱源側熱交換器27と絞り装置26
の間の配管に第1開閉弁31を介して接続し、また精留分
離器28の下部には加熱ヒーター32を内蔵した貯留器33を
配しており、この貯留器33の下部は第2減圧器34および
第2開閉弁35を介して熱源側熱交換器27と絞り装置26の
間の配管に接続されている。さらに精留分離器28の上部
には気液分離器36が接続され、この気液分離器36底部の
液側出口を第2逆止弁37および第2減圧器34を介して、
熱源側熱交換器27と絞り装置26の間の配管に接続すると
共に、圧縮機23と四方弁24との間に冷媒エジェクタ38を
設け、気液分離器36上部のガス側出口と冷媒エジェクタ
38の吸引口とを第3逆止弁39を介して接続したものであ
る。なお、気液分離器36底部の液側出口はフロート40に
よるフロート弁構造となっており、気液分離器36に流入
した液冷媒のみを確実に液側出口より、流出させる構成
となっている。
FIG. 2 is a configuration diagram of another embodiment of the heat pump device of the present invention, in which 23 is a compressor, 24 is a four-way valve, 25 is a use side heat exchanger, 26 is a throttle device, and 27 is a heat source side heat exchanger. The main heat pump circuit is configured by connecting these with piping. 28 is a rectification separator filled with a packing material, and the upper part of the rectification separator is connected to a pipe between the expansion device 26 and the heat exchanger 25 on the use side.
The check valve 29 and the first decompressor 30 are connected by a parallel circuit, and the upper part of the rectification separator 28 is connected to the heat source side heat exchanger 27 and the expansion device 26.
Is connected to the pipe between them via a first on-off valve 31, and a reservoir 33 having a heater 32 built in is arranged below the rectification separator 28. It is connected to a pipe between the heat source side heat exchanger 27 and the expansion device 26 via the pressure reducer 34 and the second opening / closing valve 35. Further, a gas-liquid separator 36 is connected to the upper part of the rectification separator 28, and the liquid-side outlet at the bottom of the gas-liquid separator 36 is passed through a second check valve 37 and a second decompressor 34.
The refrigerant ejector 38 is provided between the compressor 23 and the four-way valve 24 while being connected to the pipe between the heat source side heat exchanger 27 and the expansion device 26, and the gas side outlet at the upper part of the gas-liquid separator 36 and the refrigerant ejector.
The suction port of 38 is connected via a third check valve 39. Incidentally, the liquid side outlet at the bottom of the gas-liquid separator 36 has a float valve structure by the float 40, so that only the liquid refrigerant that has flowed into the gas-liquid separator 36 is reliably discharged from the liquid side outlet. .

このようなヒートポンプ装置において非共沸混合冷媒を
封入し、組成を可変する方法について説明する。まず分
離なしモードでは、加熱ヒーター32をOFFし、第1開閉
弁31を閉じ、第2開閉弁35を開放することにより、加熱
運転時には、利用側熱交換器25で凝縮された冷媒の一部
が分流され、第1逆止弁29、精留分離器28を介して貯留
器33に入り一部は余剰冷媒として貯留され、残りは第2
開閉弁35、第2減圧器34を経由して熱源側交換器27に流
出するため、主回路は封入した状態の高沸点冷媒の富ん
だ混合冷媒の組成のまま運転することになる。また、冷
却運転時にも、熱源側熱交換器27で凝縮された冷媒の一
部が分流され、第2減圧器34、第2開閉弁35を経由して
貯留器33に入り一部は余剰冷媒として貯留され、残りは
精留分離器28の上部より第1減圧器30を介して利用側熱
交換器25に流出するため、主回路は封入した状態の高沸
点冷媒の富んだ混合冷媒の組成のまま運転することにな
る。
A method of enclosing a non-azeotropic mixed refrigerant in such a heat pump device and varying the composition will be described. First, in the non-separation mode, the heating heater 32 is turned off, the first opening / closing valve 31 is closed, and the second opening / closing valve 35 is opened, so that at the time of heating operation, a part of the refrigerant condensed in the usage-side heat exchanger 25. Is split, enters the reservoir 33 via the first check valve 29 and the rectification separator 28, and part of it is stored as excess refrigerant and the rest is second
Since it flows out to the heat source side exchanger 27 via the on-off valve 35 and the second pressure reducer 34, the main circuit operates with the composition of the mixed refrigerant rich in the high boiling point refrigerant in the sealed state. Further, even during the cooling operation, a part of the refrigerant condensed in the heat source side heat exchanger 27 is diverted and enters the reservoir 33 via the second pressure reducer 34 and the second opening / closing valve 35, and a part of the excess refrigerant. And the rest flows out from the upper part of the rectification separator 28 to the utilization side heat exchanger 25 through the first pressure reducer 30, so that the main circuit is filled with a composition of a mixed refrigerant rich in high boiling point refrigerant. You will continue to drive.

次に加熱運転時の分離ありモードでは、加熱ヒーター32
をONし、第2開閉弁35を閉じることにより、加熱ヒータ
ー32により貯留器33内部の冷媒中主に低沸点冷媒が気化
され、精留分離器28内部を上昇する。このとき利用側熱
交換器25で凝縮された液冷媒の一部が分流され、第1逆
止弁29を介して精留分離器28上部に供給され、精留分離
器28内部で気液接触により精留作用が起こり、上昇する
気体は低沸点冷媒の濃度が高まり、逆に下降する液体は
高沸点冷媒の濃度が高まり、貯留器33には高沸点冷媒が
凝縮液の状態で貯留されることになる。一方上昇した低
沸点冷媒に富んだ気体は供給される液冷媒の一部と混合
して気液分離器36に入り、ここで気体冷媒と液冷媒に分
離され、気体冷媒は圧縮機23と四方弁24との間に設けた
冷媒エジェクタ38の吸引口に導かれる。この冷媒エジェ
クタ38による吸引効果により精留作用の促進が図れると
共に、気体冷媒は再び利用側熱交換器25に流入し凝縮す
る際に加熱ヒーターにより与えられた熱量を有効活用す
ることができる。一方、分離された液冷媒は気液分離器
36底部の液側出口より、第2逆止弁37、第2減圧器34を
介して熱源側熱交換器27に導かれ、ここで主回路を流れ
る冷媒と混合して、外気などの熱源より吸熱蒸発し、再
び圧縮機23に吸引される。このようにして主回路は低沸
点冷媒の富んだ混合冷媒の組成で運転できるものであ
る。
Next, in the mode with separation during heating operation, the heater 32
Is turned on and the second on-off valve 35 is closed, the low-boiling-point refrigerant mainly in the refrigerant inside the reservoir 33 is vaporized by the heater 32, and the inside of the rectification separator 28 rises. At this time, a part of the liquid refrigerant condensed in the utilization side heat exchanger 25 is diverted and supplied to the upper part of the rectification separator 28 via the first check valve 29, and the gas-liquid contact is made inside the rectification separator 28. The rectification action occurs due to the rising gas, the concentration of the low boiling point refrigerant increases, conversely the descending liquid increases the concentration of the high boiling point refrigerant, the high boiling point refrigerant is stored in the reservoir 33 in a condensed liquid state. It will be. On the other hand, the gas rich in the low-boiling-point refrigerant that has risen mixes with a part of the supplied liquid refrigerant and enters the gas-liquid separator 36, where it is separated into a gas refrigerant and a liquid refrigerant, and the gas refrigerant is compressed with the compressor 23 and four sides. It is guided to the suction port of the refrigerant ejector 38 provided between the valve 24 and the valve. By the suction effect of the refrigerant ejector 38, the rectification action can be promoted, and the gas refrigerant can effectively utilize the heat quantity given by the heater when flowing into the utilization-side heat exchanger 25 and condensing again. On the other hand, the separated liquid refrigerant is a gas-liquid separator.
From the liquid side outlet at the bottom of the 36, it is guided to the heat source side heat exchanger 27 via the second check valve 37 and the second pressure reducer 34, where it is mixed with the refrigerant flowing in the main circuit, and from the heat source such as the outside air. It is endothermically evaporated and again sucked into the compressor 23. In this way, the main circuit can be operated with a mixed refrigerant composition rich in low boiling point refrigerants.

また、冷却運転時の分離ありモードでは、加熱ヒーター
32をONし、第1開閉弁31を開放し、第2開閉弁35を閉じ
ることにより、ヒーター32により貯留器33内部の冷媒中
主に低沸点冷媒が気化され、精留分離器28内部を上昇す
る。このとき熱源側熱交換器27で凝縮された液冷媒の一
部が分流され、第1開閉弁31を介して精留分離器28上部
に供給され、精留分離器28内部で気液接触により精留作
用が起こり、上昇する気体は低沸点冷媒の濃度が高ま
り、逆に下降する液体は高沸点冷媒の濃度が高まり、貯
留器33には高沸点冷媒が凝縮液の状態で貯留されること
になる。一方上昇した低沸点冷媒に富んだ気体は第1減
圧器30を介して利用側熱交換器25に流入する。これによ
り主回路は低沸点冷媒の富んだ混合冷媒の組成で運転で
きるものである。
Also, in the mode with separation during cooling operation, the heating heater
By turning on 32, opening the first on-off valve 31, and closing the second on-off valve 35, the heater 32 vaporizes mainly the low boiling point refrigerant in the refrigerant inside the reservoir 33, and the inside of the rectification separator 28 To rise. At this time, a part of the liquid refrigerant condensed in the heat source side heat exchanger 27 is diverted and supplied to the upper portion of the rectification separator 28 via the first opening / closing valve 31 and is contacted inside the rectification separator 28 by gas-liquid contact. The rectification action occurs, the rising gas has a high concentration of the low-boiling-point refrigerant, while the descending liquid has a high concentration of the high-boiling-point refrigerant, and the high-boiling-point refrigerant is stored in the reservoir 33 in a condensed liquid state. become. On the other hand, the increased gas rich in low boiling point refrigerant flows into the utilization side heat exchanger 25 via the first pressure reducer 30. This allows the main circuit to operate with a mixed refrigerant composition rich in low boiling point refrigerants.

なお主回路の組成を元に戻すには、加熱ヒーター32をOF
Fし、第1開閉弁31を閉じ、第2開閉弁35を開放する
と、貯留器33内の高沸点冷媒が主回路に混入して、主回
路は封入した状態の高沸点冷媒の富んだ混合冷媒の組成
となる。
To restore the composition of the main circuit to the original condition, set the heater 32 to OF
Then, when the first on-off valve 31 is closed and the second on-off valve 35 is opened, the high boiling point refrigerant in the reservoir 33 is mixed into the main circuit, and the main circuit is filled with the high boiling point refrigerant rich mixture. It becomes the composition of the refrigerant.

なお、加熱ヒーター32の代わりに圧縮機23の吐出配管等
冷凍サイクル中の高温熱源を用いてもよいことはもちろ
んのことであり、この場合には凝縮器となる熱源側熱交
換器27の負荷を軽減することができるものである。
It is needless to say that a high temperature heat source in the refrigeration cycle such as the discharge pipe of the compressor 23 may be used instead of the heater 32, and in this case, the load of the heat source side heat exchanger 27 which becomes the condenser. Can be reduced.

第3図は本発明のヒートポンプ装置の他の実施例の構成
図であり、第2図の実施例と同一の機能部品には同一番
号を付して示している。
FIG. 3 is a block diagram of another embodiment of the heat pump device of the present invention, in which the same functional parts as those of the embodiment of FIG. 2 are designated by the same reference numerals.

本実施例においては、四方弁24と利用側熱交換器25との
間に冷媒エジェクタ38を設け、気液分離器36上部のガス
側出口と冷媒エジェクタ38の吸引口とを第3開閉弁41を
介して接続すると共に、冷却運転時に冷媒エジェクタ38
をバイパスする第4逆止弁42が設けられている。
In this embodiment, a refrigerant ejector 38 is provided between the four-way valve 24 and the use side heat exchanger 25, and the gas side outlet at the upper part of the gas-liquid separator 36 and the suction port of the refrigerant ejector 38 are connected to the third opening / closing valve 41. And the refrigerant ejector 38 during the cooling operation.
A fourth check valve 42 is provided to bypass the.

本実施例において、分離なしモードでは、加熱ヒータ32
をOFFし、第1開閉弁29および第3開閉弁41を閉じ、第
2開閉弁35を開放することにより、また、加熱運転時の
分離ありモードでは、加熱ヒータ32をONし、第1開閉弁
29および第2開閉弁35を閉じ、第3開閉弁41を開放する
ことにより、さらに、冷却運転時の分離ありモードで
は、加熱ヒータ32をONし、第2開閉弁35および第3開閉
弁41を閉じ、第1開閉弁31を開放することにより、第2
図に示した実施例と同様の方法で、非共沸混合冷媒の組
成を可変することができる。そのため、精留分離のた
め、加熱ヒータ32で消費された熱量を回収して効果のあ
る加熱運転時のみ、冷媒エジェクタ38を作動させ、加熱
ヒータ32で消費された熱量を回収する必要のない冷却運
転時には、精留分離器28の上部より流出する低沸点冷媒
の濃度の高い冷媒ガスを蒸発器となる利用側熱交換器25
をバイパスして圧縮機23の吸入側に導くことになり、蒸
発器の圧力損失の増加を防止するとともに、主回路を流
れる冷媒も冷媒エジェクタ38をバイパスさせることによ
り、冷媒エジェクタ38が圧力損失の原因となることを防
止できるものである。
In this embodiment, the heater 32 is used in the non-separation mode.
Is turned off, the first opening / closing valve 29 and the third opening / closing valve 41 are closed, and the second opening / closing valve 35 is opened. Also, in the separation mode during heating operation, the heating heater 32 is turned on and the first opening / closing valve is opened. valve
By closing 29 and the second opening / closing valve 35 and opening the third opening / closing valve 41, the heater 32 is further turned on in the separation mode during the cooling operation to turn on the second opening / closing valve 35 and the third opening / closing valve 41. The second opening / closing valve 31 by opening the first opening / closing valve 31.
The composition of the non-azeotropic mixed refrigerant can be changed by the same method as that of the embodiment shown in the figure. Therefore, for rectification separation, cooling is performed without operating the refrigerant ejector 38 to recover the heat amount consumed by the heater 32 and recover the heat amount consumed by the heater 32 only during the effective heating operation. During operation, the refrigerant gas with a high concentration of low-boiling-point refrigerant flowing out from the upper portion of the rectification separator 28 serves as an evaporator, and the heat exchanger 25 on the use side
Will be guided to the suction side of the compressor 23, preventing the increase of the pressure loss of the evaporator, the refrigerant flowing through the main circuit also bypasses the refrigerant ejector 38, the refrigerant ejector 38 of the pressure loss. It is possible to prevent the cause.

発明の効果 以上の説明より明らかなように、本発明のヒートポンプ
装置は、下部に加熱手段を有する貯留器を設けた精留分
離器の上部を前記凝縮器出口に接続し、貯留器の下部を
開閉弁を介して蒸発器等の低圧配管に接続し、前記精留
分離器の上部に接続される気液分離器を設け、この気液
分離器底部の液側出口を蒸発器入口に接続するととも
に、前記凝縮器入口に冷媒エジェクタを設け、前記気液
分離器上部のガス側出口と前記冷媒エジェクタの吸引口
とを接続した構成であるから、分離ありモードの時に、
冷媒エジェクタによる吸引効果により精留作用の促進が
図れると共に、精留分離器の上部に接続した気液分離器
により、上昇してきた低沸点冷媒に富んだ気体冷媒のみ
を再び利用側熱交換器入口に導くことができるため、気
体冷媒が凝縮する際の放熱すなわち加熱ヒーターにより
与えられた熱量(気体発生に利用した熱量)を有効に利
用できると共に、蒸発器へ流れる液冷媒の循環量を減少
させることがないものである。
EFFECTS OF THE INVENTION As is apparent from the above description, the heat pump device of the present invention connects the upper part of the rectification separator provided with the reservoir having the heating means in the lower part to the condenser outlet, and the lower part of the reservoir. It is connected to a low-pressure pipe such as an evaporator through an on-off valve, and a gas-liquid separator is provided which is connected to the upper part of the rectification separator, and the liquid-side outlet at the bottom of this gas-liquid separator is connected to the evaporator inlet. Along with, a refrigerant ejector is provided at the condenser inlet, and since the gas side outlet of the gas-liquid separator and the suction port of the refrigerant ejector are connected, in the separation mode,
The rectification action can be promoted by the suction effect of the refrigerant ejector, and the gas-liquid separator connected to the upper part of the rectification separator only reuses the rising gas refrigerant rich in low boiling point refrigerant to the heat exchanger inlet side. Therefore, the heat release when the gas refrigerant is condensed, that is, the heat quantity given by the heater (heat quantity used for gas generation) can be effectively used, and the circulation quantity of the liquid refrigerant flowing to the evaporator is reduced. There is no such thing.

さらに、本発明のヒートポンプ装置は下部に加熱手段を
有する貯留器を設けた精留分離器の上部を前記絞り装置
と利用側熱交換器の間の配管に第1逆止弁と第1減圧器
の並列回路により接続し、さらに同精留分離器の上部を
前記熱源側熱交換器と絞り装置の間の配管に第1開閉弁
を介して接続し、また前記貯留器を第2開閉弁を介して
前記熱源側熱交換器と絞り装置の間の配管に接続し、前
記精留分離器の上部に接続される気液分離器を設け、こ
の気液分離器底部の液側出口を前記熱源側熱交換器と絞
り装置の間の配管に接続すると共に、前記圧縮機と四方
弁との間に冷媒エジェクタを設け、前記気液分離器上部
のガス側出口と前記冷媒エジェクタの吸引口とを接続し
た構成であるから、加熱運転時の分離ありモードの時
に、加熱ヒーターにより与えられた熱量(気体発生に利
用した熱量)を有効に利用できるものであり、冷却運転
時にも、加熱運転時と同様に支障なく精留分離を行なう
ことができ、しかも加熱ヒーターの代わりに圧縮機の吐
出配管等冷凍サイクル中の高温熱源を用いることによ
り、凝縮器となる熱源側熱交換器の負荷を軽減すること
ができるものである。
Further, in the heat pump device of the present invention, the first check valve and the first decompressor are provided in the pipe between the expansion device and the utilization side heat exchanger, where the upper part of the rectification separator provided with the reservoir having the heating means in the lower part is provided. Connected by a parallel circuit, the upper part of the rectification separator is connected to the pipe between the heat source side heat exchanger and the expansion device via a first opening / closing valve, and the reservoir is connected to a second opening / closing valve. Is connected to the pipe between the heat source side heat exchanger and the expansion device, and a gas-liquid separator connected to the upper part of the rectification separator is provided, and the liquid side outlet at the bottom of the gas-liquid separator is the heat source. While connecting to the pipe between the side heat exchanger and the expansion device, a refrigerant ejector is provided between the compressor and the four-way valve, and the gas side outlet of the gas-liquid separator upper part and the suction port of the refrigerant ejector. Since it is a connected configuration, it can be used as a heating heater in the mode with separation during heating operation. The amount of heat given to the unit (the amount of heat used to generate gas) can be effectively used, and rectification separation can be performed during cooling operation as well as during heating operation, without any problem, and instead of a heater. By using a high temperature heat source in the refrigeration cycle such as the discharge pipe of the compressor, it is possible to reduce the load on the heat source side heat exchanger serving as a condenser.

さらに、本発明のヒートポンプ装置は下部に加熱手段を
有する貯留器を設けた精留分離器の上部を前記絞り装置
と利用側熱交換器の間の配管に第1逆止弁と第1減圧器
の並列回路により接続し、さらに同精留分離器の上部を
前記熱源側熱交換器と絞り装置の間の配管に第1開閉弁
を介して接続し、また前記貯留器を第2開閉弁を介して
前記熱源側熱交換器と絞り装置の間の配管に接続し、前
記精留分離器の上部に接続される気液分離器を設け、こ
の気液分離器底部の液側出口を前記熱源側熱交換器と絞
り装置の間の配管に接続すると共に、前記四方弁と利用
側熱交換器との間に冷媒エジェクタを設け、前記気液分
離器上部のガス側出口と前記冷媒エジェクタの吸引口と
を第3開閉弁を介して接続すると共に、冷却運転時に前
記冷媒エジェクタをバイパスする第4逆止弁を設けた構
成であるから、精留分離のため、加熱ヒータで消費され
た熱量を回収して効果のある加熱運転時のみ、冷媒エジ
ェクタを作動させ、加熱ヒータで消費された熱量を回収
する必要のない冷却運転時には精留分離器の上部より流
出する低沸点冷媒の濃度の高い冷媒ガスを蒸発器となる
利用側熱交換器をバイパスして圧縮機の吸入側に導くこ
とになり、蒸発器の圧力損失の増加防止するとともに、
主回路を流れる冷媒も冷媒エジェクタをバイパスするこ
とにより、冷媒エジェクタが圧力損失の原因となること
を防止できる等、実用上多大な効果を発揮するものであ
る。
Further, in the heat pump device of the present invention, the first check valve and the first decompressor are provided in the pipe between the expansion device and the utilization side heat exchanger, where the upper part of the rectification separator provided with the reservoir having the heating means in the lower part is provided. Connected by a parallel circuit, the upper part of the rectification separator is connected to the pipe between the heat source side heat exchanger and the expansion device via a first opening / closing valve, and the reservoir is connected to a second opening / closing valve. Is connected to the pipe between the heat source side heat exchanger and the expansion device, and a gas-liquid separator connected to the upper part of the rectification separator is provided, and the liquid side outlet at the bottom of the gas-liquid separator is the heat source. While being connected to the pipe between the side heat exchanger and the expansion device, a refrigerant ejector is provided between the four-way valve and the utilization side heat exchanger, and the gas side outlet at the upper part of the gas-liquid separator and the suction of the refrigerant ejector. And a refrigerant ejector during cooling operation. Because of the configuration in which the fourth check valve for bypassing is provided, the amount of heat consumed by the heating heater is collected for rectification separation, and the refrigerant ejector is activated and consumed by the heating heater only during effective heating operation. During a cooling operation that does not need to recover the generated heat quantity, the refrigerant gas with a high concentration of low-boiling point refrigerant flowing out from the upper part of the rectification separator is bypassed to the heat exchanger on the utilization side and becomes the suction side of the compressor. It will lead to prevent the increase of pressure loss of the evaporator and
By bypassing the refrigerant ejector with the refrigerant flowing through the main circuit as well, it is possible to prevent the refrigerant ejector from causing a pressure loss, so that it exerts a great practical effect.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例のヒートポンプ装置の構成
図、第2図は本発明の他の実施例のヒートポンプの構成
図、第3図は本発明の他の実施例のヒートポンプの構成
図、第4図は従来例のヒートポンプ装置の構造図であ
る。 11、23……圧縮機、12……凝縮器、13、26……絞り装
置、14……蒸発器、15、28……精留分離器、16、36……
気液分離器、18、38……冷媒エジェクタ、24……四方
弁、25……利用側熱交換器、27……熱源側熱交換器、29
……第1逆止弁、30……第1減圧器、31……第1開閉
弁、32……加熱ヒーター、33……貯留器、34……第2減
圧器、35……第2開閉弁、37……第2逆止弁、39……第
3逆止弁、40……フロート、41……第4逆止弁。
1 is a block diagram of a heat pump device according to an embodiment of the present invention, FIG. 2 is a block diagram of a heat pump according to another embodiment of the present invention, and FIG. 3 is a block diagram of a heat pump according to another embodiment of the present invention. FIG. 4 is a structural diagram of a conventional heat pump device. 11, 23 ...... Compressor, 12 ...... Condenser, 13, 26 ...... Throttling device, 14 …… Evaporator, 15, 28 …… Fractionation separator, 16, 36 ……
Gas-liquid separator, 18, 38 …… Refrigerant ejector, 24 …… Four-way valve, 25 …… Use side heat exchanger, 27 …… Heat source side heat exchanger, 29
...... First check valve, 30 ...... First decompressor, 31 ...... First on-off valve, 32 ...... Heating heater, 33 ...... Reservoir, 34 ...... Second decompressor, 35 ...... Second opening and closing Valve, 37 ... second check valve, 39 ... third check valve, 40 ... float, 41 ... fourth check valve.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 富澤 猛 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 有田 浩二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takeshi Tomizawa 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Koji Arita, 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】非共沸混合冷媒を封入し、圧縮機、凝縮
器、絞り装置、蒸発器を順に配管して接続して主回路を
構成し、下部に加熱手段を有する貯留器を設けた精留分
離器の上部を前記凝縮器の出口側配管に接続し、前記貯
留器の下部を開閉弁を介して蒸発器等の低圧配管に接続
し、前記精留分離器の上部に気液分離器を接続し、この
気液分離器底部の液側出口を蒸発器の入口側配管に接続
し、前記凝縮器の入口側配管に冷媒エジェクタを設け、
前記気液分離器上部のガス側出口と前記冷媒エジェクタ
の吸引口とを配管接続したことを特徴とするヒートポン
プ装置。
1. A non-azeotropic mixed refrigerant is sealed, a compressor, a condenser, a throttle device, and an evaporator are sequentially connected by piping to form a main circuit, and a reservoir having a heating means is provided at a lower portion. The upper part of the rectification separator is connected to the outlet side pipe of the condenser, the lower part of the reservoir is connected to a low-pressure pipe such as an evaporator through an on-off valve, and the upper part of the rectification separator is separated into gas and liquid. Connected to the evaporator, the liquid side outlet of the bottom of the gas-liquid separator is connected to the inlet side pipe of the evaporator, the inlet side pipe of the condenser is provided with a refrigerant ejector,
A heat pump device, wherein a gas side outlet at an upper portion of the gas-liquid separator and a suction port of the refrigerant ejector are connected by piping.
【請求項2】非共沸混合冷媒を封入し、圧縮機、四方
弁、利用側熱交換器、絞り装置、熱源側熱交換器を順に
接続して主ヒートポンプ回路を構成し、下部に加熱手段
を有する貯留器を設けた精留分離器の上部を前記絞り装
置と前記利用側熱交換器の間の配管に第1逆止弁とこの
第1逆止弁に並列に設けた第1減圧器とを介して接続
し、さらに前記精留分離器の上部を前記熱源側熱交換器
と前記絞り装置の間の配管に第1開閉弁を介して接続
し、また前記貯留器を第2開閉弁を介して前記熱源側熱
交換器と前記絞り装置の間の配管に接続し、前記精留分
離器の上部に気液分離器を接続し、この気液分離器底部
の液側出口を前記熱源側熱交換器と、前記絞り装置の間
の配管に接続し、前記圧縮機と前記四方弁との間に冷媒
エジェクタを設け、前記気液分離器上部のガス側出口と
前記冷媒エジェクタの吸引口とを接続したことを特徴と
するヒートポンプ装置。
2. A non-azeotropic mixed refrigerant is enclosed, and a compressor, a four-way valve, a use side heat exchanger, a throttle device, and a heat source side heat exchanger are sequentially connected to form a main heat pump circuit, and a heating means is provided at a lower portion. A first check valve and a first decompressor provided in parallel with the upper portion of the rectification separator provided with a reservoir having a reservoir in the pipe between the expansion device and the utilization side heat exchanger. And the upper portion of the rectification separator is connected to a pipe between the heat source side heat exchanger and the expansion device via a first opening / closing valve, and the reservoir is connected to a second opening / closing valve. Is connected to the pipe between the heat source side heat exchanger and the expansion device, the gas-liquid separator is connected to the upper part of the rectification separator, and the liquid side outlet of the bottom of the gas-liquid separator is the heat source. A side heat exchanger and a pipe between the expansion device are connected, and a refrigerant ejector is provided between the compressor and the four-way valve, Heat pump apparatus characterized by a liquid separator top of the gas-side outlet connected with the suction port of the coolant ejector.
【請求項3】非共沸混合冷媒を封入し、圧縮機、四方
弁、利用側熱交換器、絞り装置、熱源側熱交換器を順に
配管して接続して主ヒートポンプ回路を構成し、下部に
加熱手段を有する貯留器を設けた精留分離器の上部を前
記絞り装置と前記利用側熱交換器の間の配管に第1逆止
弁とこの第1逆止弁に並列に設けた第1減圧器とを介し
て接続し、さらに前記精留分離器の上部を前記熱源側熱
交換器と前記絞り装置の間の配管に第1開閉弁を介して
接続し、また前記貯留器を第2開閉弁を介して前記熱源
側熱交換器と前記絞り装置の間の配管に接続し、前記精
留分離器の上部に気液分離器を接続し、この気液分離器
底部の液側出口を前記熱源側熱交換器と、前記絞り装置
の間の配管に接続し、前記四方弁と前記利用側熱交換器
との間に冷媒エジェクタを設け、前記気液分離器上部の
ガス側出口と前記冷媒エジェクタの吸引口とを第3開閉
弁を介して接続すると共に、冷却運転時に前記冷媒エジ
ェクタをバイパスする第4逆止弁を設けたことを特徴と
するヒートポンプ装置。
3. A main heat pump circuit is constructed by enclosing a non-azeotropic mixed refrigerant and connecting a compressor, a four-way valve, a utilization side heat exchanger, a throttle device, and a heat source side heat exchanger in this order to form a main heat pump circuit. A first check valve and a first check valve provided in parallel with the upper part of the rectification separator provided with a reservoir having heating means in the pipe between the expansion device and the utilization side heat exchanger. 1 through a pressure reducer, the upper part of the rectification separator is further connected to a pipe between the heat source side heat exchanger and the expansion device through a first opening / closing valve, and the reservoir is 2 Connected to a pipe between the heat source side heat exchanger and the expansion device via an on-off valve, connected a gas-liquid separator to the upper part of the rectification separator, and provided a liquid-side outlet at the bottom of the gas-liquid separator. Is connected to a pipe between the heat source side heat exchanger and the expansion device, and a refrigerant ejector is provided between the four-way valve and the use side heat exchanger. And a fourth check valve that bypasses the refrigerant ejector during the cooling operation while connecting the gas side outlet at the upper part of the gas-liquid separator and the suction port of the refrigerant ejector through a third opening / closing valve. A heat pump device characterized in that
【請求項4】気液分離器底部の液側出口をフロート弁構
造としたことを特徴とする請求項1、2または3記載の
ヒートポンプ装置。
4. The heat pump device according to claim 1, wherein the liquid side outlet at the bottom of the gas-liquid separator has a float valve structure.
JP21660188A 1988-08-31 1988-08-31 Heat pump device Expired - Fee Related JPH0745982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21660188A JPH0745982B2 (en) 1988-08-31 1988-08-31 Heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21660188A JPH0745982B2 (en) 1988-08-31 1988-08-31 Heat pump device

Publications (2)

Publication Number Publication Date
JPH0264364A JPH0264364A (en) 1990-03-05
JPH0745982B2 true JPH0745982B2 (en) 1995-05-17

Family

ID=16690982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21660188A Expired - Fee Related JPH0745982B2 (en) 1988-08-31 1988-08-31 Heat pump device

Country Status (1)

Country Link
JP (1) JPH0745982B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5551255A (en) * 1994-09-27 1996-09-03 The United States Of America As Represented By The Secretary Of Commerce Accumulator distillation insert for zeotropic refrigerant mixtures
JP4848608B2 (en) * 2001-09-12 2011-12-28 三菱電機株式会社 Refrigerant circuit
DE102005056873A1 (en) * 2005-11-28 2007-05-31 Oliver Heine Viewing device e.g. electronic paper, for producing spatial impression of e.g. coin, has covering unit fastened to wall area of front wall and pivotable from closed position, in which front wall is partially covered, to opened position
JP2010283687A (en) * 2009-06-05 2010-12-16 Ricoh Co Ltd Program, information processing apparatus, gradation correction parameter generating method, and storage medium
JP2013194929A (en) * 2012-03-16 2013-09-30 Fujitsu General Ltd Air conditioner

Also Published As

Publication number Publication date
JPH0264364A (en) 1990-03-05

Similar Documents

Publication Publication Date Title
EP0301503B1 (en) Heat pump system
JPH11148739A (en) In-stage compression heat pump with variable refrigerating capacity
EP0377329B1 (en) Heat pump apparatus
JPH0745982B2 (en) Heat pump device
JPH0769083B2 (en) Heat pump device
JPH0769084B2 (en) Heat pump device
JPH0737856B2 (en) Heat pump device
JPH0440622B2 (en)
JPH0769082B2 (en) Heat pump device
JPH0531066B2 (en)
JPH0264362A (en) Heat pump device
JPH0264367A (en) Heat pump device
JPH058350B2 (en)
JP2532754B2 (en) Refrigeration cycle equipment
JPH0646118B2 (en) Heat pump device
JPH01111172A (en) Heat pump device
JP2512127B2 (en) Heat pump device
JPH0739889B2 (en) Heat pump device
JPH0481708B2 (en)
JPS636346A (en) Refrigeration cycle
JPH06103128B2 (en) Heat pump device
JPH0735930B2 (en) Heat pump device
JPH0371622B2 (en)
JPH03244970A (en) Heat pump device
JPS636347A (en) Refrigeration cycle

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees