JPH0739889B2 - Heat pump device - Google Patents
Heat pump deviceInfo
- Publication number
- JPH0739889B2 JPH0739889B2 JP1058325A JP5832589A JPH0739889B2 JP H0739889 B2 JPH0739889 B2 JP H0739889B2 JP 1058325 A JP1058325 A JP 1058325A JP 5832589 A JP5832589 A JP 5832589A JP H0739889 B2 JPH0739889 B2 JP H0739889B2
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- reservoir
- valve
- condenser
- main circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は、非共沸混合冷媒を用い、組成分離により、高
沸点冷媒を貯留して組成を可変するヒートポンプ装置の
改良に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a heat pump device that uses a non-azeotropic mixed refrigerant and stores a high boiling point refrigerant by composition separation to change the composition.
従来の技術 非共沸混合冷媒を用い、組成分離により高沸点冷媒を貯
留して組成を可変するヒートポンプ装置として、我々は
第2図に示すような装置を提案している。第2図におい
て、1は圧縮機、2は凝縮器、3は加熱器、4は第1絞
り装置、5は蒸発器であり、これらを配管接続すること
により主回路を構成している。6は充填材を充填した精
留分離器であり、その上部は第2絞り装置7を介して凝
縮器2と加熱器3との間の配管に接続し、同じく上部を
配管8によって蒸発器5と圧縮機1との間の配管に接続
している。また、精留分離器6の下部には加熱器3を内
蔵した貯留器9を配しており、この貯留器9の下部は開
閉弁10を介して蒸発器5と第1絞り装置4との間の配管
に接続されている。2. Description of the Related Art We have proposed a device as shown in FIG. 2 as a heat pump device that uses a non-azeotropic mixed refrigerant and stores a high boiling point refrigerant by composition separation to change the composition. In FIG. 2, 1 is a compressor, 2 is a condenser, 3 is a heater, 4 is a first expansion device, and 5 is an evaporator, and these are connected by piping to form a main circuit. 6 is a rectification separator filled with a packing material, the upper part of which is connected to a pipe between the condenser 2 and the heater 3 via a second expansion device 7, and the upper part of the rectification separator is also connected to the evaporator 5 by a pipe 8. And the compressor 1 are connected to a pipe. Further, a reservoir 9 having a built-in heater 3 is arranged below the rectification separator 6, and the lower portion of the reservoir 9 is connected to the evaporator 5 and the first expansion device 4 via an opening / closing valve 10. It is connected to the pipe between.
このようなヒートポンプ装置において非共沸混合冷媒を
封入し、組成を可変する方法について説明する。まず分
離なしモードでは開閉弁10を開放することにより、凝縮
器2で凝縮された液冷媒の一部が第2絞り装置7で低圧
まで減圧され気液二相の状態で精留分離器6を介して貯
留器9に入り一部は余剰冷媒としてそこに貯留され、残
りは開閉弁10を経由して蒸発器5に流入する。また凝縮
器2を出た液冷媒の残りは加熱器3、第1絞り装置4を
通り、開閉弁10を出た前記冷媒と合流して蒸発器5に流
入する。また、第2絞り装置7で減圧されて発生したガ
スは配管8を通り圧縮機1に吸引され、主回路は封入し
た状態の高沸点冷媒の富んだ混合冷媒の組成のまま運転
することになる。A method of enclosing a non-azeotropic mixed refrigerant in such a heat pump device and varying the composition will be described. First, in the non-separation mode, by opening the on-off valve 10, a part of the liquid refrigerant condensed in the condenser 2 is depressurized to a low pressure by the second expansion device 7, and the rectification separator 6 is operated in a gas-liquid two-phase state. A part of the refrigerant enters the reservoir 9 via the reservoir 9 and is stored there as an excess refrigerant, and the rest flows into the evaporator 5 via the on-off valve 10. The rest of the liquid refrigerant flowing out of the condenser 2 passes through the heater 3 and the first expansion device 4, merges with the refrigerant flowing out of the on-off valve 10, and flows into the evaporator 5. Further, the gas generated by being decompressed by the second expansion device 7 is sucked into the compressor 1 through the pipe 8, and the main circuit is operated with the composition of the mixed refrigerant rich in the high boiling point refrigerant in the sealed state. .
次に分離ありモードでは、開閉弁10を閉じることにより
加熱器3内を流れる高温の液冷媒を加熱源として貯留器
9内部の冷媒中、主に低沸点冷媒が気化され、精留分離
器6内部を上昇する。このとき凝縮器2で凝縮された液
冷媒の一部が第2絞り装置7で低圧まで減圧され気液二
相の状態になって精留分離器6上部に供給され、そのう
ちの液冷媒は精留分離器6を下降し、上昇する前記低沸
点冷媒ガスと精留分離器6内部で気液接触することによ
り精留作用が起こり、上昇する気体は低沸点冷媒の濃度
が高まり、逆に下降する液体は高沸点冷媒の濃度が高ま
り、貯留器9には高沸点冷媒が凝縮液の状態で貯留され
ることになる。一方、上昇した低沸点冷媒に富んだガス
は、第2絞り装置7で減圧され発生した前記ガスと共に
配管8を通り圧縮機1に吸引される。こうすることによ
り主回路は低沸点冷媒に富んだ混合冷媒の組成で運転で
きるものである。Next, in the separation mode, the low-boiling-point refrigerant in the refrigerant inside the reservoir 9 is mainly vaporized by using the high-temperature liquid refrigerant flowing in the heater 3 as a heating source by closing the on-off valve 10, and the rectification separator 6 Rise inside. At this time, a part of the liquid refrigerant condensed in the condenser 2 is decompressed to a low pressure by the second expansion device 7 to be in a gas-liquid two-phase state and supplied to the upper part of the rectification separator 6, where the liquid refrigerant is refined. A rectification action occurs by contacting the rising low boiling point refrigerant gas with the rising low boiling point refrigerant gas inside the rectification separator 6, and the rising gas increases the concentration of the low boiling point refrigerant, and conversely moves down. The concentration of the high-boiling-point refrigerant in the liquid is increased, and the high-boiling-point refrigerant is stored in the reservoir 9 as a condensed liquid. On the other hand, the gas rich in the low boiling point refrigerant that has risen is sucked into the compressor 1 through the pipe 8 together with the gas that is decompressed by the second expansion device 7 and generated. By doing so, the main circuit can be operated with the composition of the mixed refrigerant rich in the low boiling point refrigerant.
なお主回路の組成を元に戻すには、開閉弁10を開放する
と、貯留器9内の高沸点冷媒が主回路に混入して、主回
路は封入した状態の高沸点冷媒の富んだ混合冷媒の組成
となる。To restore the composition of the main circuit, open the on-off valve 10 to mix the high boiling point refrigerant in the reservoir 9 into the main circuit, and the main circuit is filled with the high boiling point refrigerant-rich mixed refrigerant. It becomes the composition of.
発明が解決しようとする課題 しかしながら、上記のようなヒートポンプ装置では、分
離ありモード、分離なしモードで主回路の冷媒量が大き
く変わら、過充填や冷媒不足により成績係数を高く維持
することが困難であった。DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention However, in the heat pump device as described above, the amount of refrigerant in the main circuit greatly changes in the mode with separation and the mode without separation, and it is difficult to maintain a high coefficient of performance due to overfilling or lack of refrigerant. there were.
すなわち、分離ありモードにおいて成績係数の高い適正
な冷媒量で運転した後、分離なしモードに切り換えた場
合、高沸点冷媒の飽和液で満たされていた貯留器内に主
回路を流れていた気液二相状態の低沸点冷媒が流入する
ため、貯留器内は気液混合の状態になり、貯留器で貯留
できる冷媒量が大きく減少する。そのために冷凍サイク
ルの主回路側の冷媒量が増加して過充填になり高圧が上
昇して圧縮機入力が増加し、成績係数が低下するという
問題を生じていた。In other words, when operating in the mode with separation with a proper amount of refrigerant having a high coefficient of performance and then switching to the mode without separation, the gas-liquid flowing through the main circuit in the reservoir filled with the saturated liquid of the high boiling point refrigerant. Since the low-boiling-point refrigerant in the two-phase state flows in, the inside of the reservoir is in a gas-liquid mixed state, and the amount of refrigerant that can be stored in the reservoir is greatly reduced. Therefore, there has been a problem that the amount of refrigerant on the main circuit side of the refrigeration cycle increases, overfilling occurs, the high pressure increases, the compressor input increases, and the coefficient of performance decreases.
また、逆に分離なしモードにおいて適正な冷媒量で運転
した後、分離ありモードに切り換えると、今度は主回路
側が冷媒不足になり、加熱能力の低下や成績係数の低下
などの問題を生じていた。On the contrary, when the mode was switched to the mode with separation after operating with an appropriate amount of refrigerant in the mode without separation, the main circuit side became out of refrigerant this time, causing problems such as deterioration of heating capacity and decrease of coefficient of performance. .
本発明は、分離あり、分離なしそれぞれのモードで貯留
器に貯留する冷媒量をほぼ等しくでき、主回路の冷媒量
を常に適正にし、成績係数の高い運転ができるヒートポ
ンプ装置を提供するものである。The present invention provides a heat pump device that can make the amount of refrigerant stored in a reservoir substantially equal in each mode with and without separation, always keep the amount of refrigerant in the main circuit appropriate, and operate with a high coefficient of performance. .
課題を解決するための手段 本発明のヒートポンプ装置は、非共沸混合冷媒を封入
し、圧縮機、凝縮器、第1絞り装置、蒸発器から主回路
を構成し、下部に加熱器および貯留器を設けた精留分離
器の上部を第2絞り装置と第1開閉弁との並列回路を介
して前記凝縮器と前記第1絞り装置との間の配管に接続
し、同じく前記精留分離器の上部を第2開閉弁を介して
前記第1絞り装置と前記蒸発器との間の配管、または前
記蒸発器と前記圧縮機との間の配管に接続し、さらに前
記貯留器を逆止弁を介して前記凝縮器と前記第1絞り装
置との間の配管上の前記並列回路の接続部よりも下流側
に接続して冷凍サイクルを構成し、前記精留分離器にお
いて精留分離作用をさせる運転においては前記第1開閉
弁を閉、前記第2開閉弁を開とし、精留分離作用をさせ
ない運転においては前記第1開閉弁を開、前記第2開閉
弁を閉とすることを特徴とするものである。Means for Solving the Problems A heat pump device of the present invention encloses a non-azeotropic mixed refrigerant, constitutes a main circuit from a compressor, a condenser, a first expansion device, and an evaporator, and has a heater and a reservoir at the bottom. Is connected to a pipe between the condenser and the first throttle device via a parallel circuit of a second throttle device and a first on-off valve, and the rectifier separator is also provided. Is connected to a pipe between the first expansion device and the evaporator or a pipe between the evaporator and the compressor via a second opening / closing valve, and further the reservoir is a check valve. Through a pipe to connect the condenser and the first expansion device to the downstream side of the connection portion of the parallel circuit to form a refrigeration cycle, and the rectification separation action is performed in the rectification separator. In the operation, the first on-off valve is closed and the second on-off valve is opened, and the rectification separation action is performed. In the operation in which the operation is not performed, the first opening / closing valve is opened and the second opening / closing valve is closed.
作用 本発明は上記構成により、分離なしモードでは貯留器を
高圧になるようにでき、高温高圧の液冷媒が一部主回路
より流入し、余剰冷媒として貯留器に貯留されながら主
回路に流出するので、主回路、貯留器とも封入した高沸
点に富んだ冷媒組成となり、この時、貯留器は液で満ち
ている状態となる。また、分離ありモードでは、貯留器
が低圧になるものの、精留分離器内部での気液接触によ
り精留作用で、貯留器は高沸点に富んだ冷媒の飽和液と
なるため、この時にも貯留器は液で満ちている状態とな
る。Action The present invention, with the above-described configuration, allows the reservoir to have a high pressure in the non-separation mode, and part of the high-temperature and high-pressure liquid refrigerant flows in from the main circuit and flows out into the main circuit while being stored in the reservoir as excess refrigerant. Therefore, both the main circuit and the reservoir are filled with a refrigerant composition rich in high boiling point. At this time, the reservoir is filled with the liquid. Moreover, in the separation mode, although the pressure of the reservoir becomes low, the rectification action by gas-liquid contact inside the rectification separator causes the reservoir to become a saturated liquid of the refrigerant with high boiling point. The reservoir is filled with liquid.
すなわち、いずれのモードにおいても貯留器内を冷媒液
で満たすことができるので、主回路内の冷媒量を常に適
正に保つことができ、成績係数を高く維持することがで
きるものである。That is, in any of the modes, the reservoir can be filled with the refrigerant liquid, so that the amount of the refrigerant in the main circuit can always be maintained appropriately and the coefficient of performance can be maintained high.
実 施 例 以下、本発明の一実施例を添付図面に基づいて説明す
る。Example Hereinafter, an example of the present invention will be described with reference to the accompanying drawings.
第1図は本発明の一実施例における熱ポンプ装置の構成
図であり、11は圧縮機、12は凝縮器、13は加熱器、14は
第1絞り装置、15は蒸発器であり、これらを配管接続す
ることにより主回路を構成している。16は充填材を充填
した精留分離器であり、その上部は第2絞り装置17と第
1開閉弁18との並列回路を介して凝縮器12と加熱器13と
の間の配管に接続し、同じく上部を第2開閉弁19を介し
て第1絞り装置14と蒸発器15との間の配管に接続してい
る。また、精留分離器16の下部には加熱器13を内蔵した
貯留器20を配しており、この貯留器20の下部は逆止弁21
を介して加熱器13と第1絞り装置14との間の配管に接続
している。FIG. 1 is a block diagram of a heat pump device according to an embodiment of the present invention, in which 11 is a compressor, 12 is a condenser, 13 is a heater, 14 is a first throttle device, and 15 is an evaporator. The main circuit is constructed by connecting the pipes. Reference numeral 16 is a rectification separator filled with a packing material, the upper part of which is connected to a pipe between the condenser 12 and the heater 13 through a parallel circuit of a second expansion device 17 and a first opening / closing valve 18. Similarly, the upper part is connected to the pipe between the first expansion device 14 and the evaporator 15 via the second opening / closing valve 19. Further, a reservoir 20 containing a heater 13 is arranged below the rectification separator 16, and a check valve 21 is provided below the reservoir 20.
Is connected to a pipe between the heater 13 and the first expansion device 14.
このような熱ポンプ装置において非共沸混合冷媒を封入
し、組成を可変する方法について説明する。まず分離な
しモードでは第1開閉弁18を開放し、第2開閉弁19を閉
止する。これにより、凝縮器12で凝縮した液冷媒の一部
が主回路より分岐して、高圧のまま第1開閉弁18および
精留分離器16を介して貯留器20に入り、貯留器内をほぼ
液で満たしながら逆止弁21を経由して主回路に流入す
る。また凝縮器12を出た液冷媒の残りは加熱器13を通
り、逆止弁21を出た前記冷媒と合流して第1絞り装置14
に流入し主回路を流れる。こうして主回路は封入した状
態の高沸点冷媒の富んだ混合冷媒の組成のまま運転する
ことになる。ここにおいて、加熱器13を流れる冷媒と貯
留器20内の冷媒とは同温度であり、貯留器20内の液冷媒
は状態が変化することはなく、貯留器20内は常に冷媒液
が満たされている。A method of enclosing a non-azeotropic mixed refrigerant in such a heat pump device and varying the composition will be described. First, in the non-separation mode, the first opening / closing valve 18 is opened and the second opening / closing valve 19 is closed. As a result, a part of the liquid refrigerant condensed in the condenser 12 is branched from the main circuit and enters the reservoir 20 via the first on-off valve 18 and the rectification separator 16 while maintaining a high pressure, and the inside of the reservoir is substantially closed. While filling with liquid, it flows into the main circuit via the check valve 21. The rest of the liquid refrigerant flowing out of the condenser 12 passes through the heater 13 and merges with the refrigerant flowing out of the check valve 21 to form the first expansion device 14
Flows into the main circuit. In this way, the main circuit is operated with the composition of the mixed refrigerant rich in the high boiling point refrigerant in the sealed state. Here, the refrigerant flowing through the heater 13 and the refrigerant in the reservoir 20 have the same temperature, the liquid refrigerant in the reservoir 20 does not change the state, and the reservoir 20 is always filled with the refrigerant liquid. ing.
次に分離ありモードでは、第1開閉弁18を閉止し、第2
開閉弁19を開放する。これにより、凝縮器12で凝縮され
た液冷媒の一部が第2絞り装置17で低圧まで減圧され気
液二相の状態になって精留分離器16上部に供給され、そ
のうちの液冷媒は精留分離器16を下降する。ここにおい
て精留分離器16、貯留器20内の冷媒は低温低圧になる。
一方、凝縮器12で凝縮された液冷媒の残りは加熱器13に
流入し貯留器20内の低温低圧の液冷媒と熱交換して、主
に低沸点冷媒が気化され、精留分離器16内部を上昇し、
下降する前記高沸点冷媒と気液接触することにより精留
作用が起こる。この結果、上昇する気体は低沸点冷媒の
濃度が高まり、逆に下降する液体は高沸点冷媒の濃度が
高まり、貯留器20には高沸点冷媒が凝縮液の状態で貯留
されることになる。上昇した低沸点冷媒に富んだガス
は、第2絞り装置17で減圧され発生したガスと共に第2
開閉弁19を通り蒸発器15に流入する。こうすることによ
り主回路は低沸点冷媒に富んだ混合冷媒の組成で運転で
きるものである。Next, in the separation mode, the first on-off valve 18 is closed and the second
The on-off valve 19 is opened. As a result, a part of the liquid refrigerant condensed in the condenser 12 is decompressed to a low pressure by the second expansion device 17 to be in a gas-liquid two-phase state and supplied to the upper portion of the rectification separator 16, where the liquid refrigerant is The rectification separator 16 is lowered. Here, the refrigerant in the rectification separator 16 and the reservoir 20 becomes low temperature and low pressure.
On the other hand, the rest of the liquid refrigerant condensed in the condenser 12 flows into the heater 13 and exchanges heat with the low-temperature low-pressure liquid refrigerant in the reservoir 20, mainly the low-boiling-point refrigerant is vaporized, and the rectification separator 16 Rising inside,
A rectification action occurs by gas-liquid contact with the descending high boiling point refrigerant. As a result, the rising gas has a higher concentration of the low-boiling-point refrigerant, while the descending liquid has a higher concentration of the high-boiling-point refrigerant, and the high-boiling-point refrigerant is stored in the reservoir 20 in a condensed state. The gas rich in the low-boiling-point refrigerant that has risen is decompressed by the second expansion device 17 and the second gas is generated together with the second gas.
It flows into the evaporator 15 through the on-off valve 19. By doing so, the main circuit can be operated with the composition of the mixed refrigerant rich in the low boiling point refrigerant.
ここにおいて貯留器20内は冷凍サイクルの低圧になって
いるが、高沸点冷媒の濃度が高いため、主回路側の乾き
度とは無関係に高沸点冷媒に富んだ飽和液で満たされ
る。この時の貯留量は、分離なしモードの時とあまり変
化なく、したがって、主回路の冷媒量は、分離あり、分
離なし、それぞれのモードでほぼ均一に保つことがで
き、過充填や冷媒不足になることがないため、初期の冷
媒量を適当に決めれば各モードで常に適正な冷媒量が保
て、成績係数の高い運転を行なうことができる。Here, the inside of the reservoir 20 is at a low pressure in the refrigeration cycle, but since the high boiling point refrigerant has a high concentration, it is filled with the saturated liquid rich in the high boiling point refrigerant regardless of the dryness on the main circuit side. The storage amount at this time is not much different from that in the non-separation mode, therefore the refrigerant amount in the main circuit can be kept almost uniform in each mode, with and without separation, and there is no overfilling or insufficient refrigerant. Therefore, if the initial amount of refrigerant is appropriately determined, an appropriate amount of refrigerant can be always maintained in each mode, and operation with a high coefficient of performance can be performed.
また、分離なしモードにおいて、精留分離器16、貯留器
20内の冷媒は高温高圧になっており、容器、配管などが
比較的高温になっているため、分離ありモードに切り換
えた場合、その顕熱によって加熱され、初期のガス発生
が容易になり分離に要する時間を短縮することができ
る。In the non-separation mode, the rectification separator 16 and the reservoir
Since the refrigerant in 20 is at high temperature and high pressure, and the container and piping are relatively hot, when the mode with separation is switched, it is heated by the sensible heat and the initial gas generation is facilitated and separation occurs. The time required for can be shortened.
なお、主回路の組成を元に戻すには、第1開閉弁18を開
放、第2開閉弁19を閉止すると、貯留器20内の高沸点冷
媒が主回路に混入して、主回路は封入した状態の高沸点
冷媒の富んだ混合冷媒の組成となる。In order to restore the composition of the main circuit, the first opening / closing valve 18 is opened and the second opening / closing valve 19 is closed. The high boiling point refrigerant in the reservoir 20 is mixed into the main circuit, and the main circuit is sealed. In this state, the composition of the mixed refrigerant rich in the high boiling point refrigerant is obtained.
本発明は上記実施例に示す外、種々の態様に構成するこ
とができる。The present invention can be configured in various modes other than those shown in the above embodiments.
例えば上記実施例において、加熱器13を凝縮器12と第1
絞り装置14との間の配管に設けたが、圧縮機11の吐出配
管を用いてもよいことはもちろんのことであり、この場
合には加熱源温度が高いため加熱器13を非常に小さくす
ることができる等の実用上の効果を有するものである。For example, in the above-described embodiment, the heater 13 is connected to the condenser 12 and the first
Although it is provided in the pipe between the expansion device 14, it is needless to say that the discharge pipe of the compressor 11 may be used. In this case, since the heating source temperature is high, the heater 13 is made very small. It is possible to obtain practical effects.
発明の効果 以上の説明より明らかなように、本発明のヒートポンプ
装置は、分離なしモードにおいても分離ありモードにお
いても貯留器に貯留される冷媒量があまり変化せず、主
回路の冷媒量を常に適正にすることができ、成績係数を
高く維持することができる。EFFECTS OF THE INVENTION As is clear from the above description, the heat pump device of the present invention does not change much the refrigerant amount stored in the reservoir in the non-separation mode or in the separation mode, and always maintains the refrigerant amount in the main circuit. It can be appropriate and the coefficient of performance can be maintained high.
また、分離なしモードで精留分離器、貯留器の容器、配
管などが比較的高温になっており、分離ありモードに切
り換えた場合、低圧となった冷媒がその顕熱によって加
熱され、初期のガス発生が容易になり、分離に要する時
間を短縮することができる。Further, in the non-separation mode, the rectification separator, the container of the reservoir, the piping, etc. are at a relatively high temperature. Gas generation becomes easier, and the time required for separation can be shortened.
また、加熱源として、温度の高い圧縮機の吐出ガス等を
用いると加熱器を非常に小さくできる等、実用上多大な
効果を発揮するものである。In addition, when a discharge gas of a compressor having a high temperature is used as a heating source, the heater can be made extremely small, which is very effective in practice.
第1図は本発明の一実施例における熱ポンプ装置の構成
図、第2図は従来例の熱ポンプ装置の構成図である。 11……圧縮機、12……凝縮器、13……加熱器、14……第
1絞り装置、15……蒸発器、16……精留分離器、17……
第2絞り装置、18……第1開閉弁、19……第2開閉弁、
20……貯留器、21……逆止弁。FIG. 1 is a block diagram of a heat pump device according to an embodiment of the present invention, and FIG. 2 is a block diagram of a conventional heat pump device. 11 ... Compressor, 12 ... Condenser, 13 ... Heater, 14 ... First throttling device, 15 ... Evaporator, 16 ... Fractionation separator, 17 ...
2nd throttle device, 18 ... 1st on-off valve, 19 ... 2nd on-off valve,
20 …… reservoir, 21 …… check valve.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 雄二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (56)参考文献 特開 昭63−6347(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yuji Yoshida 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) Reference JP-A 63-6347 (JP, A)
Claims (2)
器、第1絞り装置、蒸発器から主回路を構成し、下部に
加熱器および貯留器を設けた精留分離器の上部を第2絞
り装置と第1開閉弁との並列回路を介して前記凝縮器と
前記第1絞り装置との間の配管に接続し、同じく前記精
留分離器の上部を第2開閉弁を介して前記第1絞り装置
と前記蒸発器との間の配管、または前記蒸発器と前記圧
縮機との間の配管に接続し、さらに前記貯留器を逆止弁
を介して前記凝縮器と前記第1絞り装置との間の配管上
の前記並列回路の接続部よりも下流側に接続して冷凍サ
イクルを構成し、前記精留分離器において精留分離作用
をさせる運転においては前記第1開閉弁を閉、前記第2
開閉弁を開とし、精留分離作用をさせない運転において
は前記第1開閉弁を開、前記第2開閉弁を閉とすること
を特徴とするヒートポンプ装置。1. An upper part of a rectification separator in which a non-azeotropic mixed refrigerant is sealed, a main circuit is composed of a compressor, a condenser, a first expansion device and an evaporator, and a heater and a reservoir are provided in the lower part. Is connected to a pipe between the condenser and the first throttling device through a parallel circuit of a second throttling device and a first on-off valve, and the upper portion of the rectification separator is also passed through a second on-off valve. Is connected to a pipe between the first expansion device and the evaporator or a pipe between the evaporator and the compressor, and the reservoir is connected to the condenser and the first via a check valve. The first on-off valve in the operation of connecting the downstream side of the connection portion of the parallel circuit on the pipe between the first throttle device and the refrigeration cycle and performing the rectification separation action in the rectification separator. Close the second
A heat pump device characterized in that the first opening / closing valve is opened and the second opening / closing valve is closed in an operation in which the opening / closing valve is opened and the rectification separation action is not performed.
ことを特徴とする請求項1記載のヒートポンプ装置。2. The heat pump device according to claim 1, wherein the heating source of the heater is a refrigerant at the outlet of the condenser.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1058325A JPH0739889B2 (en) | 1989-03-10 | 1989-03-10 | Heat pump device |
US07/457,234 US5012651A (en) | 1988-12-28 | 1989-12-26 | Heat pump apparatus |
EP89313661A EP0377329B1 (en) | 1988-12-28 | 1989-12-28 | Heat pump apparatus |
DE68913707T DE68913707T2 (en) | 1988-12-28 | 1989-12-28 | Heat pump unit. |
EP92115912A EP0518394B1 (en) | 1988-12-28 | 1989-12-28 | Heat pump apparatus |
DE68926966T DE68926966T2 (en) | 1988-12-28 | 1989-12-28 | Heat pump unit |
KR1019890019820A KR930004384B1 (en) | 1988-12-28 | 1989-12-28 | Heat-pump apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1058325A JPH0739889B2 (en) | 1989-03-10 | 1989-03-10 | Heat pump device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02238261A JPH02238261A (en) | 1990-09-20 |
JPH0739889B2 true JPH0739889B2 (en) | 1995-05-01 |
Family
ID=13081141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1058325A Expired - Fee Related JPH0739889B2 (en) | 1988-12-28 | 1989-03-10 | Heat pump device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0739889B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110579043A (en) * | 2019-08-01 | 2019-12-17 | 广东工业大学 | Heat pump system capable of regulating non-azeotropic refrigerant and system optimization method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS636347A (en) * | 1986-06-27 | 1988-01-12 | 三菱電機株式会社 | Refrigeration cycle |
-
1989
- 1989-03-10 JP JP1058325A patent/JPH0739889B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH02238261A (en) | 1990-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR930000852B1 (en) | Heat pump system | |
EP0518394B1 (en) | Heat pump apparatus | |
JPH0739889B2 (en) | Heat pump device | |
JPH0745982B2 (en) | Heat pump device | |
JPH0737856B2 (en) | Heat pump device | |
JPH0531066B2 (en) | ||
JPH0264367A (en) | Heat pump device | |
JPH058350B2 (en) | ||
JPH0769084B2 (en) | Heat pump device | |
JPH0769083B2 (en) | Heat pump device | |
JPH0646118B2 (en) | Heat pump device | |
JPH0440622B2 (en) | ||
US2932172A (en) | Compression refrigerating system utilizing a free-piston compressor | |
JPH0264368A (en) | Heat pump device | |
JP2512127B2 (en) | Heat pump device | |
US2984987A (en) | Method of operating a combustiondriven compression-refrigerating system | |
JPH06103128B2 (en) | Heat pump device | |
JPH02146468A (en) | Heat pump apparatus | |
JPH07174420A (en) | Freezing device | |
JPH0760028B2 (en) | Refrigerator control device | |
JPH0354277B2 (en) | ||
JPH07174421A (en) | Freezing device | |
JPH03244970A (en) | Heat pump device | |
JPH0262791B2 (en) | ||
JPH0239712B2 (en) | TEIONSOCHI |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |