JPH07174420A - Freezing device - Google Patents

Freezing device

Info

Publication number
JPH07174420A
JPH07174420A JP31963993A JP31963993A JPH07174420A JP H07174420 A JPH07174420 A JP H07174420A JP 31963993 A JP31963993 A JP 31963993A JP 31963993 A JP31963993 A JP 31963993A JP H07174420 A JPH07174420 A JP H07174420A
Authority
JP
Japan
Prior art keywords
refrigerant
lubricating oil
temperature
compressor
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31963993A
Other languages
Japanese (ja)
Inventor
Yukio Watanabe
幸男 渡邊
Shinji Watanabe
伸二 渡辺
Kanji Haneda
完爾 羽根田
Shigeto Yamaguchi
成人 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP31963993A priority Critical patent/JPH07174420A/en
Publication of JPH07174420A publication Critical patent/JPH07174420A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To change the composition of a refrigerant circulating through a freezing cycle and to improve efficiency by a method wherein when the amount of a refrigerant dissolved in lubricating oil is varied with the change of the temperature and the pressure of lubricating oil. CONSTITUTION:High-temperature high-pressure refrigerant steam compressed by a compressor 1 releases heat in a condenser 2 and condensed and liquefied. Thereafter, the refrigerant steam is reduced in pressure and expanded by a throttling device 3 and produces a gas-liquid two-phase refrigerant. The refrigerant absorbs heat in a vaporizer 4 for vaporization and gasification and turns into refrigerant steam and is sucked in the compressor 1 again. In this case, lubricating oil during a freezing cycle having characteristics differing with the change of temperature and pressure from those of the refrigerant is used. In this case, the temperature of lubricating oil in the compressor 1 is controlled by a lubricating oil temperature regulator 5. This constitution varies generation capacity by changing the composition of lubricating refrigerant and improves efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非共沸系混合冷媒を用
いた冷凍装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration system using a non-azeotropic mixed refrigerant.

【0002】[0002]

【従来の技術】近年、CFC及びHCFCフロンの規制
にともない冷凍装置の代替冷媒として混合冷媒が注目を
あびている。混合冷媒を用いた冷凍装置は、そのサイク
ル内部を循環する冷媒の組成比率を可変とすることによ
り、能力制御や性能改善を行うことができる。
2. Description of the Related Art In recent years, a mixed refrigerant has been attracting attention as an alternative refrigerant for a refrigerating apparatus in accordance with the regulations of CFC and HCFC. A refrigeration system using a mixed refrigerant can perform capacity control and performance improvement by varying the composition ratio of the refrigerant circulating inside the cycle.

【0003】従来、特に非共沸混合冷媒を用いた冷凍装
置のサイクル内部を循環する冷媒組成を可変とする方式
として、沸点の違いを利用した精留分離方式が用いられ
ている(例えば特開昭61−101757号公報)。
Conventionally, a rectification separation system utilizing a difference in boiling point has been used as a system for varying the composition of the refrigerant circulating in the cycle of a refrigerating apparatus using a non-azeotropic mixed refrigerant, for example (for example, Japanese Patent Laid-Open Publication No. 2000-242242). 61-101757).

【0004】以下図7を参照しながら、精留分離方式を
用いた冷凍装置の一例について説明する。
An example of a refrigerating apparatus using a rectification separation system will be described below with reference to FIG.

【0005】図7は従来例を示す冷凍サイクル図であ
る。図7において、31は圧縮機、32は凝縮器、33
は主絞り装置、34は蒸発器で環状に接続されて主回路
を構成している。一方、凝縮器32の出口と精留塔36
の入口とは配管40により接続され、加熱器35が配管
40と熱交換的に接続されている。また、精留塔36の
下部出口と主回路の蒸発器34の入口とは副絞り装置3
7を介して配管41,42により接続されている。ま
た、精留塔36の上部には冷却器38と貯溜器39とが
設けられ、貯溜器39は配管43,44により精留塔3
6と環状に接続されている。また、冷却器38と配管4
3とが熱交換的に接続されている。ここで加熱器35お
よび冷却器38の熱源は圧縮機31の吐出ガスおよび吸
入ガスを用いている。冷媒は沸点差を有する2種類の冷
媒からなる非共沸混合冷媒を用いる。精留塔36の内部
には充填材45が充填されている、以上のように構成さ
れた冷凍装置について、以下その動作について説明す
る。
FIG. 7 is a refrigeration cycle diagram showing a conventional example. In FIG. 7, 31 is a compressor, 32 is a condenser, and 33.
Is a main expansion device, and 34 is an evaporator connected in an annular shape to form a main circuit. On the other hand, the outlet of the condenser 32 and the rectification tower 36
Is connected to the inlet of the pipe 40 by a pipe 40, and the heater 35 is connected to the pipe 40 in a heat exchange manner. In addition, the lower outlet of the rectification column 36 and the inlet of the evaporator 34 of the main circuit are connected to the auxiliary expansion device 3
The pipes 41 and 42 are connected to each other via 7. Further, a cooler 38 and a reservoir 39 are provided above the rectification column 36, and the reservoir 39 is connected to the rectification column 3 by pipes 43 and 44.
It is connected to 6 in a ring shape. In addition, the cooler 38 and the pipe 4
3 and 3 are connected by heat exchange. Here, the heat source of the heater 35 and the cooler 38 uses the discharge gas and the suction gas of the compressor 31. As the refrigerant, a non-azeotropic mixed refrigerant composed of two kinds of refrigerants having different boiling points is used. The operation of the refrigerating apparatus configured as described above, in which the filling material 45 is filled in the rectification column 36, will be described below.

【0006】まず初めに精留分離をしない時について説
明する。凝縮器32から出た高圧液冷媒の一部が配管4
0により分岐される。この時、副絞り装置37の弁開度
を大きくすると配管40に分岐する分岐冷媒流量が増大
し、加熱器35の加熱不足となるため蒸気が発生せず、
精留塔36の下部入口より液冷媒が流入する。その結
果、精留作用が進行せず、液冷媒は精留塔36の内部を
上昇し、配管43を通って貯溜器39に入り、配管44
により再び精留塔36に戻る。そして副絞り装置37に
より減圧されて主回路側冷媒と合流する。
First, the case where rectification separation is not performed will be described. A part of the high-pressure liquid refrigerant discharged from the condenser 32 is the pipe 4
Branched by 0. At this time, if the valve opening of the sub expansion device 37 is increased, the flow rate of the branch refrigerant branched to the pipe 40 increases, and heating of the heater 35 becomes insufficient, so steam is not generated,
Liquid refrigerant flows in from the lower inlet of the rectification tower 36. As a result, the rectification action does not proceed, the liquid refrigerant rises inside the rectification tower 36, enters the reservoir 39 through the pipe 43, and the pipe 44
To return to the rectification tower 36 again. Then, the pressure is reduced by the sub expansion device 37 and merges with the main circuit side refrigerant.

【0007】このように、貯溜器39の内部の低沸点成
分の組成比率が上昇しないため、主回路の組成比率は冷
媒充填比率に等しくなる。
In this way, the composition ratio of the low boiling point components inside the reservoir 39 does not rise, so that the composition ratio of the main circuit becomes equal to the refrigerant charging ratio.

【0008】次に精留分離を行う場合について説明す
る。上記の状態から副絞り装置37の弁開度を小さくし
ていくと分岐冷媒流量が減少し、凝縮器32から出て分
岐された液冷媒は、加熱器35で加熱されて一部気化し
精留塔36の下部入口より流入する。このガス成分は精
留塔36の中の充填材45のすきまを上昇し、上部出口
より配管43を通って冷却器38へ入り、冷却液化され
て貯溜器39に入る。貯溜器39と精留塔36の戻り配
管44とはあらかじめ落差Aを設けてあり、その落差A
により貯溜器39から液冷媒の一部が配管44を通って
再び精留塔36に戻され充填材45のすきまを下降し、
途中上昇してくる蒸気と互いに気液接触を行い、熱交
換、物質移動により精留作用をなし、貯溜器39には低
沸点成分の多い冷媒が貯えられ、精留塔36の下部から
は低沸点成分の少ない冷媒が配管41、副絞り装置3
7、配管42を通って主回路に流入する。
Next, the case of performing rectification separation will be described. When the valve opening of the sub expansion device 37 is reduced from the above state, the flow rate of the branched refrigerant decreases, and the liquid refrigerant that has branched from the condenser 32 is heated by the heater 35 and partially vaporized. It flows in from the lower entrance of the distillation column 36. This gas component rises in the clearance of the packing material 45 in the rectification tower 36, enters the cooler 38 through the pipe 43 from the upper outlet, is cooled and liquefied, and enters the reservoir 39. A drop A is provided in advance between the reservoir 39 and the return pipe 44 of the rectification tower 36.
As a result, a part of the liquid refrigerant from the reservoir 39 is returned to the rectification tower 36 through the pipe 44, and the clearance of the packing material 45 is lowered.
It makes gas-liquid contact with vapor rising in the middle, and performs rectification by heat exchange and mass transfer. Refrigerant with many low boiling point components is stored in the reservoir 39, and the refrigerant from the bottom of the rectification tower 36 is low. The refrigerant having a small boiling point component is the pipe 41 and the auxiliary expansion device 3.
7. Flow into the main circuit through the pipe 42.

【0009】したがって、主回路の低沸点成分比率は低
下し、高沸点成分比率は上昇する。以上のように、副絞
り装置37の弁開度を制御することにより蒸気発生量を
調整して精留分離を行い、貯溜器39内部に貯えられる
冷媒組成比率を変化させることにより、主回路冷媒の組
成比率を可変とすることができる。
Therefore, the low boiling point component ratio of the main circuit decreases and the high boiling point component ratio increases. As described above, by controlling the valve opening of the auxiliary expansion device 37, the amount of steam generated is adjusted to perform rectification separation, and the composition ratio of the refrigerant stored in the reservoir 39 is changed, whereby the main circuit refrigerant is The composition ratio of can be made variable.

【0010】[0010]

【発明が解決しようとする課題】しかしながら上記のよ
うな構成では、以下のような課題があった。
However, the above structure has the following problems.

【0011】精留分離するためには加熱等を行い、精留
塔下部より冷媒蒸気を流入する必要があるが、加熱器に
は高温吐出冷媒を用いるので、暖房運転時には凝縮器入
口温度が低下するため、暖房能力が低下する。また、圧
縮機吸入スーパーヒート制御により吸入スーパーヒート
が大きくなると、冷却器による冷却量が減少し分離性能
が低下することが避けられなかった。
In order to perform rectification separation, it is necessary to perform heating and the like and to inject the refrigerant vapor from the lower part of the rectification tower. However, since a high-temperature discharge refrigerant is used for the heater, the temperature at the inlet of the condenser decreases during heating operation. Therefore, the heating capacity is reduced. Further, when the intake superheat is increased by controlling the compressor intake superheat, it is inevitable that the cooling amount by the cooler is decreased and the separation performance is deteriorated.

【0012】本発明は上記従来例の課題を解決するもの
で、潤滑油中への冷媒の溶解量が、潤滑油の温度、圧力
の変化につれて増減するとき、その変化特性が使用した
それぞれの冷媒に対して異なる特性をもつような潤滑油
を使用することにより、冷凍サイクル中を循環する冷媒
の組成を変化させ効率の向上を図ることを目的としたも
のである。
The present invention solves the above-mentioned problems of the prior art, and when the amount of the refrigerant dissolved in the lubricating oil increases or decreases as the temperature or pressure of the lubricating oil changes, the change characteristics of each refrigerant are used. The purpose of this is to improve the efficiency by changing the composition of the refrigerant circulating in the refrigeration cycle by using the lubricating oil having different characteristics.

【0013】[0013]

【課題を解決するための手段】上記課題を解決するため
に本発明の冷凍装置は、圧縮機、凝縮器、絞り装置、蒸
発器を環状に接続して冷凍サイクルを構成し、冷媒とし
て非共沸系冷媒を2種類以上混合して使用し、さらに潤
滑油中への冷媒の溶解量が、潤滑油の温度、圧力の変化
につれて増減するとき、その変化特性が使用したそれぞ
れの冷媒に対して異なる特性をもつような潤滑油を使用
し、さらに圧縮機内の潤滑油の温度を制御する潤滑油温
度調整器を備えたものである。
In order to solve the above-mentioned problems, a refrigeration system of the present invention comprises a compressor, a condenser, a throttle device, and an evaporator connected in a ring to form a refrigeration cycle, which is non-common as a refrigerant. When two or more types of boiling refrigerants are mixed and used, and when the amount of refrigerant dissolved in the lubricating oil increases or decreases with changes in the temperature and pressure of the lubricating oil, the change characteristics are Lubricating oils having different characteristics are used, and a lubricating oil temperature controller for controlling the temperature of the lubricating oil in the compressor is provided.

【0014】また、本発明の他の冷凍装置は、圧縮機、
凝縮器、絞り装置、蒸発器を環状に接続して冷凍サイク
ルを構成し、冷媒としてHFC32/HFC125/H
FC134aを用い、さらに潤滑油中への冷媒の溶解量
が、潤滑油の温度、圧力の変化につれて増減するとき、
その変化特性が使用したそれぞれの冷媒に対して異なる
特性をもつような潤滑油を使用し、さらに圧縮機内の潤
滑油の温度を制御する潤滑油温度調整器を備えたもので
ある。
Another refrigerating apparatus of the present invention is a compressor,
A condenser, an expansion device, and an evaporator are connected in a ring to form a refrigeration cycle, and HFC32 / HFC125 / H is used as a refrigerant.
When FC134a is used and the amount of the refrigerant dissolved in the lubricating oil increases or decreases as the temperature or pressure of the lubricating oil changes,
A lubricating oil temperature regulator is used which controls the temperature of the lubricating oil in the compressor by using the lubricating oil whose changing characteristics have different characteristics for the respective refrigerants used.

【0015】また、本発明の他の冷凍装置は、圧縮機、
凝縮器、絞り装置、蒸発器を環状に接続して冷凍サイク
ルを構成し、冷媒としてHFC32/HFC134aを
用い、さらに潤滑油中への冷媒の溶解量が、潤滑油の温
度、圧力の変化につれて増減するとき、その変化特性が
使用したそれぞれの冷媒に対して異なる特性をもつよう
な潤滑油を使用し、さらに圧縮機内の潤滑油の温度を制
御する潤滑油温度調整器を備えたものである。
Another refrigeration system of the present invention is a compressor,
A condenser, an expansion device, and an evaporator are annularly connected to form a refrigeration cycle, HFC32 / HFC134a is used as a refrigerant, and the amount of the refrigerant dissolved in the lubricating oil increases and decreases as the temperature and pressure of the lubricating oil change. In this case, a lubricating oil whose change characteristics have different characteristics for the respective refrigerants used is used, and a lubricating oil temperature controller for controlling the temperature of the lubricating oil in the compressor is further provided.

【0016】[0016]

【作用】本発明は上記構成により、次のような作用を有
する。
The present invention has the following functions due to the above-mentioned structure.

【0017】すなわち、圧縮機、凝縮器、絞り装置、蒸
発器を環状に接続して冷凍サイクルを構成し、冷媒とし
て非共沸系冷媒を2種類以上混合して使用し、さらに潤
滑油中への冷媒の溶解量が、潤滑油の温度、圧力の変化
につれて増減するとき、その変化特性が使用したそれぞ
れの冷媒に対して異なる特性をもつような潤滑油を使用
し、さらに圧縮機内の潤滑油の温度を制御する潤滑油温
度調整器を備え実際に冷凍サイクル内を循環している冷
媒の組成を変化させ能力制御や性能改善を行うことが可
能な冷凍装置を実現することができる。
That is, a compressor, a condenser, a throttle device, and an evaporator are connected in a ring to form a refrigeration cycle, and two or more non-azeotropic refrigerants are mixed and used as refrigerants. When the amount of dissolved refrigerant changes with changes in the temperature and pressure of the lubricating oil, use a lubricating oil whose change characteristics have different characteristics for each refrigerant used. It is possible to realize a refrigerating apparatus that includes a lubricating oil temperature controller that controls the temperature of [3] and that can control the capacity and improve the performance by actually changing the composition of the refrigerant circulating in the refrigeration cycle.

【0018】[0018]

【実施例】以下、本発明の実施例について図面を参考に
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0019】図1は本発明の冷凍装置の第1の実施例に
おける冷凍サイクル図である。同図において1は圧縮
機、2は凝縮器、3は絞り装置、4は蒸発器それぞれを
環状に接続して冷凍サイクルを構成している。5は潤滑
油温度調整器である。
FIG. 1 is a refrigerating cycle diagram in the first embodiment of the refrigerating apparatus of the present invention. In the figure, 1 is a compressor, 2 is a condenser, 3 is a throttle device, and 4 is an evaporator, each of which is connected in an annular shape to form a refrigeration cycle. 5 is a lubricating oil temperature controller.

【0020】図2(a)、(b)は潤滑油中へのそれぞ
れの冷媒の溶解率と温度、圧力の関係を示した線図の一
例である。
FIGS. 2 (a) and 2 (b) are examples of diagrams showing the relationship between the rate of dissolution of each refrigerant in lubricating oil and the temperature and pressure.

【0021】この冷凍サイクルにおいて、高能力冷媒量
α、低能力冷媒量βの非共沸混合冷媒を用いた暖房運転
の場合について説明する。圧縮機1で圧縮された高温高
圧の冷媒蒸気は、凝縮器2で放熱し、凝縮液化する。そ
の後、絞り装置3で減圧膨張されて気液二相の冷媒とな
り蒸発器4で吸熱して蒸発気化して冷媒蒸気となり再び
圧縮機1に吸入される。
In this refrigeration cycle, a heating operation using a high capacity refrigerant amount α and a low capacity refrigerant amount β of a non-azeotropic mixed refrigerant will be described. The high-temperature and high-pressure refrigerant vapor compressed by the compressor 1 radiates heat in the condenser 2 and is condensed and liquefied. Thereafter, the expansion device 3 decompresses and expands to become a gas-liquid two-phase refrigerant, which absorbs heat in the evaporator 4 and evaporates to vaporize to become a refrigerant vapor, which is again sucked into the compressor 1.

【0022】この時冷凍サイクル中の潤滑油は一部が冷
媒と共に冷凍サイクル中を循環しているが、大部分は圧
縮機1の内部に留まっている。その際圧縮機1の内部の
潤滑油の温度は潤滑油温度調整器により制御され、圧力
は運転条件により定まりそれぞれ図2(a)及び(b)
のP1,T1の状態にあり、冷媒はそれぞれ対応した量が
潤滑油中に溶解している、そのため実際に冷凍サイクル
内を循環している冷媒中の高能力冷媒量は(α−α1
となる。同様に低能力冷媒量は(β−β1)となる。
At this time, a part of the lubricating oil in the refrigeration cycle circulates in the refrigeration cycle together with the refrigerant, but most of it remains inside the compressor 1. At this time, the temperature of the lubricating oil inside the compressor 1 is controlled by the lubricating oil temperature regulator, and the pressure is determined by the operating conditions, and the pressures are as shown in FIGS.
In the P 1 and T 1 states, the corresponding amounts of the refrigerants are dissolved in the lubricating oil. Therefore, the amount of high-performance refrigerant in the refrigerant actually circulating in the refrigeration cycle is (α-α 1 )
Becomes Similarly, the low capacity refrigerant amount is (β-β 1 ).

【0023】次に冷房運転を行うと圧縮機1の内部の温
度、圧力は図2(a)及び(b)のP2,T2の状態に移
動し潤滑油中への冷媒の溶解量も変化し実際に冷凍サイ
クル内を循環している冷媒中の高能力冷媒量は(α−α
2)となり、低能力冷媒量は(β−β2)となる。
Next, when the cooling operation is performed, the temperature and pressure inside the compressor 1 move to the states of P 2 and T 2 in FIGS. 2A and 2B, and the amount of refrigerant dissolved in the lubricating oil is also changed. The amount of high-performance refrigerant in the refrigerant that changes and actually circulates in the refrigeration cycle is (α-α
2 ) and the low capacity refrigerant amount becomes (β-β 2 ).

【0024】図2(a)及び(b)で示されるα1
α2、β1、β2からわかるように暖房運転時の循環冷媒
の組成は高能力冷媒対低能力冷媒は(α−α1):(β
−β1)。一方冷房運転時の循環冷媒の組成は高能力冷
媒対低能力冷媒は(α−α2):(β−β2)となり暖房
運転時のほうが高能力冷媒の比率が高くなっている。一
般に空調機の場合、暖房運転で要求される冷凍能力は冷
房運転で要求される冷凍能力よりも大きいが本発明の冷
凍装置では、循環する冷媒の組成を変化させることによ
り発生能力を可変することができ、効率の向上を図るこ
とができる。
Α 1 shown in FIGS. 2A and 2B,
As can be seen from α 2 , β 1 and β 2 , the composition of the circulating refrigerant during heating operation is (α-α 1 ) :( β
1 ). On the other hand, the composition of the circulating refrigerant during the cooling operation is (α-α 2 ) :( β-β 2 ) for the high-performance refrigerant and the low-performance refrigerant, and the ratio of the high-performance refrigerant is higher during the heating operation. Generally, in the case of an air conditioner, the refrigerating capacity required in the heating operation is larger than the refrigerating capacity required in the cooling operation, but in the refrigerating apparatus of the present invention, the generating capacity can be changed by changing the composition of the circulating refrigerant. It is possible to improve efficiency.

【0025】次に本発明の第2の実施例について図面を
参照しながら説明する。図3は本発明の冷凍装置の第2
の実施例における冷凍サイクル図である。
Next, a second embodiment of the present invention will be described with reference to the drawings. FIG. 3 shows a second refrigeration system of the present invention.
It is a refrigerating cycle figure in the Example of.

【0026】同図において11は圧縮機、12は凝縮
器、13は絞り装置、14は蒸発器環状に接続して冷凍
サイクルを構成している。15は潤滑油温度調整器であ
る。
In the figure, reference numeral 11 is a compressor, 12 is a condenser, 13 is a throttle device, and 14 is an annular ring connected to an evaporator to form a refrigeration cycle. Reference numeral 15 is a lubricating oil temperature controller.

【0027】図4(a)〜(c)は潤滑油中への冷媒の
溶解率と温度、圧力の関係を示した線図の一例である。
FIGS. 4 (a) to 4 (c) are examples of diagrams showing the relationship between the rate of dissolution of the refrigerant in the lubricating oil and the temperature / pressure.

【0028】この冷凍サイクルにおいて、HFC32量
α、HFC125量β、HFC134a量γの暖房運転
の場合について先ず説明する。圧縮機11で圧縮された
高温高圧の冷媒蒸気は、凝縮器12で放熱し、凝縮液化
する。その後、絞り装置13で減圧膨張されて気液二相
の冷媒となり蒸発器14で吸熱して蒸発気化して冷媒蒸
気となり再び圧縮機11に吸入される。
In this refrigeration cycle, the case of heating operation with the HFC32 amount α, the HFC125 amount β, and the HFC134a amount γ will be described first. The high-temperature and high-pressure refrigerant vapor compressed by the compressor 11 radiates heat in the condenser 12 and is condensed and liquefied. Then, the expansion device 13 decompresses and expands to become a gas-liquid two-phase refrigerant, which absorbs heat in the evaporator 14 and evaporates to vaporize to become a refrigerant vapor, which is again sucked into the compressor 11.

【0029】この時冷凍サイクル中の潤滑油は一部が冷
媒と共に冷凍サイクル中を循環しているが、大部分は圧
縮機11の内部に留まっている。その際圧縮機11の内
部の潤滑油の温度は潤滑油温度調整器により制御され、
圧力は運転条件により定まりそれぞれ図4(a)〜
(c)のP1,T1の状態にあり、冷媒はそれぞれ対応し
た量が潤滑油中に溶解している、そのため実際に冷凍サ
イクル内を循環している冷媒中のHFC32量は(α−
α1)となる。同様にHFC125量は(β−β1)、H
FC134a量は(γ−γ1)となる。
At this time, a part of the lubricating oil in the refrigeration cycle circulates in the refrigeration cycle together with the refrigerant, but most of it remains inside the compressor 11. At that time, the temperature of the lubricating oil inside the compressor 11 is controlled by the lubricating oil temperature controller,
The pressure is determined by the operating conditions and is shown in Fig. 4 (a)-
In the state of P 1 and T 1 in (c), the corresponding amounts of the refrigerants are dissolved in the lubricating oil. Therefore, the amount of HFC32 in the refrigerant actually circulating in the refrigeration cycle is (α-
α 1 ). Similarly, the amount of HFC125 is (β-β 1 ), H
The FC134a amount is (γ-γ 1 ).

【0030】次に冷房運転を行うと圧縮機11の内部の
温度、圧力は図4(a)〜(c)のP2,T2の状態に移
動し潤滑油中への冷媒の溶解量も変化し実際に冷凍サイ
クル内を循環している冷媒中のHFC32量は(α−α
2)となる。同様にHFC125量は(β−β2)、HF
C134a量は(γ−γ2)となる。
Next, when the cooling operation is performed, the temperature and pressure inside the compressor 11 move to the states of P 2 and T 2 in FIGS. 4A to 4C, and the amount of the refrigerant dissolved in the lubricating oil is also changed. The amount of HFC32 in the refrigerant that has changed and actually circulated in the refrigeration cycle is (α-α
2 ) Similarly, the amount of HFC125 is (β-β 2 ), HF
The amount of C134a is (γ-γ 2 ).

【0031】図4(a)〜(c)で示されるα1、α2
β1、β2,γ1、γ2からわかるように暖房運転時の循環
冷媒の組成はHFC32対HFC125対HFC134
aは(α−α1):(β−β1):(γ−γ1)。一方冷
房運転時の循環冷媒の組成はHFC32対HFC125
対HFC134aは(α−α2):(β−β2):(γ−
γ2)となり暖房運転時のほうがHFC32の比率が高
くなっている。
Α 1 , α 2 , shown in FIGS. 4A to 4C,
As can be seen from β 1 , β 2 , γ 1 , and γ 2 , the composition of the circulating refrigerant during heating operation is HFC32: HFC125: HFC134.
a is (α-α 1 ) :( β-β 1 ) :( γ-γ 1 ). On the other hand, the composition of the circulating refrigerant during cooling operation is HFC32 vs. HFC125.
Against HFC134a is (α-α 2 ) :( β-β 2 ) :( γ-
γ 2 ) and the ratio of HFC32 is higher during heating operation.

【0032】冷媒の冷凍能力を比較すると能力の高い順
にHFC32、HFC124、HFC134aの順序で
あるから、循環冷媒の冷凍能力は暖房運転時のほうが高
能力である。
Comparing the refrigerating capacities of the refrigerants, the refrigerating capacity of the circulating refrigerant is higher during the heating operation because the refrigerating capacity of the circulating refrigerant is HFC32, HFC124, and HFC134a.

【0033】一般に空調機の場合、暖房運転で要求され
る冷凍能力は冷房運転で要求される冷凍能力よりも大き
いが本発明の冷凍装置では、循環する冷媒の組成を変化
させることにより発生能力を可変することができ、効率
の向上を図ることができる。
Generally, in the case of an air conditioner, the refrigerating capacity required for heating operation is larger than the refrigerating capacity required for cooling operation, but in the refrigerating apparatus of the present invention, the generating capacity is changed by changing the composition of the circulating refrigerant. It can be varied, and efficiency can be improved.

【0034】次に本発明の第3の実施例について図面を
参照しながら説明する。図5は本発明の冷凍装置の第3
の実施例における冷凍サイクル図である。
Next, a third embodiment of the present invention will be described with reference to the drawings. FIG. 5 shows a third refrigerating apparatus of the present invention.
It is a refrigerating cycle figure in the Example of.

【0035】同図において21は圧縮機、22は凝縮
器、23は絞り装置、24は蒸発器環状に接続して冷凍
サイクルを構成している。25は潤滑油温度調整器であ
る。
In the figure, 21 is a compressor, 22 is a condenser, 23 is a throttle device, and 24 is an annular evaporator connected to form a refrigeration cycle. 25 is a lubricating oil temperature controller.

【0036】図6(a)及び(b)は潤滑油中へのそれ
ぞれの冷媒の溶解率と温度、圧力の関係を示した線図の
一例である。
FIGS. 6 (a) and 6 (b) are examples of diagrams showing the relationship between the dissolution rate of each refrigerant in the lubricating oil and the temperature and pressure.

【0037】この冷凍サイクルにおいて、HFC32量
α、HFC134a量βの非共沸混合冷媒を用いた暖房
運転の場合についてまず説明する。圧縮機21で圧縮さ
れた高温高圧の冷媒蒸気は、凝縮器22で放熱し、凝縮
液化する。その後、絞り装置23で減圧膨張されて気液
二相の冷媒となり蒸発器24で吸熱して蒸発気化して冷
媒蒸気となり再び圧縮機21に吸入される。
In this refrigeration cycle, a case of heating operation using a non-azeotropic mixed refrigerant of HFC32 amount α and HFC134a amount β will be described first. The high-temperature and high-pressure refrigerant vapor compressed by the compressor 21 radiates heat in the condenser 22 and is condensed and liquefied. After that, the expansion device 23 decompresses and expands to become a gas-liquid two-phase refrigerant, which absorbs heat in the evaporator 24 and evaporates to become a refrigerant vapor, which is again sucked into the compressor 21.

【0038】この時冷凍サイクル中の潤滑油は一部が冷
媒と共に冷凍サイクル中を循環しているが、大部分は圧
縮機21の内部に留まっている。その際圧縮機21の内
部の潤滑油の温度は潤滑油温度調整器により制御され、
圧力は運転条件により定まりそれぞれ温度、圧力は図6
(a)及び(b)のP1,T1の状態にあり、冷媒はそれ
ぞれ対応した量が潤滑油中に溶解している、そのため実
際に冷凍サイクル内を循環している冷媒中のHFC32
量は(α−α1)となる。HFC134a量は(β−
β1)となる。
At this time, a part of the lubricating oil in the refrigeration cycle circulates in the refrigeration cycle together with the refrigerant, but most of it remains inside the compressor 21. At that time, the temperature of the lubricating oil inside the compressor 21 is controlled by the lubricating oil temperature controller,
The pressure depends on the operating conditions, and the temperature and pressure are shown in Fig. 6.
In the states of P 1 and T 1 of (a) and (b), the corresponding amounts of the refrigerants are dissolved in the lubricating oil, so that the HFC32 in the refrigerant actually circulating in the refrigeration cycle
The quantity is (α-α 1 ). The amount of HFC134a is (β-
β 1 ).

【0039】次に冷房運転を行うと圧縮機21の内部の
温度、圧力は図6(a)及び(b)のP2,T2の状態に
移動し潤滑油中への冷媒の溶解量も変化し実際に冷凍サ
イクル内を循環している冷媒中のHFC32量は(α−
α2)となり、HFC134a量は(β−β2)となる。
Next, when the cooling operation is performed, the temperature and pressure inside the compressor 21 move to the states of P 2 and T 2 in FIGS. 6A and 6B, and the amount of the refrigerant dissolved in the lubricating oil is also changed. The amount of HFC32 in the refrigerant that has changed and is actually circulating in the refrigeration cycle is (α-
α 2 ) and the amount of HFC134a becomes (β-β 2 ).

【0040】図6(a)及び(b)で示されるα1
α2、β1、β2からわかるように暖房運転時の循環冷媒
の組成はHFC32対HFC134aは(α−α1):
(β−β1)。一方冷房運転時の循環冷媒の組成はHF
C32対HFC134aは(α−α 2):(β−β2)と
なり暖房運転時のほうがHFC32の比率が高くなって
いる。冷媒の冷凍能力を比較すると能力の高い順にHF
C32、HFC134aであるから、循環冷媒の冷凍能
力は暖房運転時のほうが高能力である。
Α shown in FIGS. 6A and 6B1,
α2, Β1, Β2As you can see, the circulating refrigerant during heating operation
The composition of HFC32 vs. HFC134a is (α-α1):
(Β-β1). On the other hand, the composition of the circulating refrigerant during the cooling operation is HF.
C32 vs. HFC134a is (α-α 2): (Β-β2)When
The ratio of HFC32 becomes higher during heating operation
There is. Comparing the refrigerating capacity of refrigerants
Since it is C32 and HFC134a, the refrigerating capacity of the circulating refrigerant
The power is higher during heating operation.

【0041】一般に空調機の場合、暖房運転で要求され
る冷凍能力は冷房運転で要求される冷凍能力よりも大き
いが本発明の冷凍装置では、循環する冷媒の組成を変化
させることにより発生能力を可変することができ、効率
の向上を図ることができる。
Generally, in the case of an air conditioner, the refrigerating capacity required in the heating operation is larger than the refrigerating capacity required in the cooling operation, but in the refrigerating apparatus of the present invention, the generating capacity is changed by changing the composition of the circulating refrigerant. It can be varied, and efficiency can be improved.

【0042】[0042]

【発明の効果】上記実施例より明らかなように本発明の
冷凍装置は、圧縮機、凝縮器、絞り装置、蒸発器を環状
に接続して冷凍サイクルを構成し、冷媒として非共沸系
冷媒を2種類以上混合して使用し、さらに潤滑油中への
冷媒の溶解量が、潤滑油の温度、圧力の変化につれて増
減するとき、その変化特性が使用したそれぞれの冷媒に
対して異なる特性をもつような潤滑油を使用し、さらに
圧縮機内と凝縮器の温度を制御する潤滑油温度調整器を
備え実際に冷凍サイクル内を循環している冷媒の組成を
変化させ能力制御や性能改善を行うことが可能な冷凍装
置を実現することができる。
As is apparent from the above embodiments, the refrigerating apparatus of the present invention constitutes a refrigerating cycle by connecting a compressor, a condenser, a throttle device and an evaporator in a ring, and a non-azeotropic refrigerant as a refrigerant. When two or more kinds of refrigerants are mixed and used, and when the amount of the refrigerant dissolved in the lubricating oil increases or decreases with changes in the temperature and pressure of the lubricating oil, the change characteristics have different characteristics for each used refrigerant. Using such a lubricating oil, a lubricating oil temperature controller that controls the temperature of the compressor and the condenser is provided, and the composition of the refrigerant actually circulating in the refrigeration cycle is changed to perform capacity control and performance improvement. It is possible to realize a refrigeration system capable of performing the above.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における冷凍サイクル図FIG. 1 is a refrigeration cycle diagram according to a first embodiment of the present invention.

【図2】(a)は本発明の第1の実施例における潤滑油
中への高能力冷媒の溶解率と温度、圧力の関係を示した
線図 (b)は本発明の第1の実施例における潤滑油中への低
能力冷媒の溶解率と温度、圧力の関係を示した線図
FIG. 2A is a diagram showing the relationship between the dissolution rate of a high-performance refrigerant in lubricating oil and the temperature and pressure in the first embodiment of the present invention. FIG. 2B is the first embodiment of the present invention. Diagram showing the relationship between the rate of dissolution of low-performance refrigerant in lubricating oil and the temperature and pressure in the example

【図3】本発明の第2の実施例における冷凍サイクル図FIG. 3 is a refrigeration cycle diagram in the second embodiment of the present invention.

【図4】(a)は本発明の第2の実施例における潤滑油
中へのHFC32の溶解率と温度、圧力の関係を示した
線図 (b)は本発明の第2の実施例における潤滑油中へのH
FC125の溶解率と温度、圧力の関係を示した線図 (c)は本発明の第2の実施例における潤滑油中へのH
FC134aの溶解率と温度、圧力の関係を示した線図
FIG. 4A is a diagram showing the relationship between the dissolution rate of HFC32 in lubricating oil and the temperature and pressure in the second embodiment of the present invention, and FIG. 4B is the diagram of the second embodiment of the present invention. H into lubricating oil
The diagram (c) showing the relationship between the dissolution rate of FC125, temperature, and pressure is (H) in the lubricating oil in the second embodiment of the present invention.
Diagram showing the relationship between the dissolution rate of FC134a, temperature, and pressure

【図5】本発明の第3の実施例における冷凍サイクル図FIG. 5 is a refrigeration cycle diagram in the third embodiment of the present invention.

【図6】(a)は本発明の第3の実施例における潤滑油
中へのHFC32の溶解率と温度、圧力の関係を示した
線図 (b)は本発明の第3の実施例における潤滑油中へのH
FC134aの溶解率と温度、圧力の関係を示した線図
FIG. 6A is a diagram showing the relationship between the dissolution rate of HFC32 in lubricating oil and the temperature and pressure in the third embodiment of the present invention, and FIG. 6B is the diagram of the third embodiment of the present invention. H into lubricating oil
Diagram showing the relationship between the dissolution rate of FC134a, temperature, and pressure

【図7】従来の冷凍機における冷凍サイクル図FIG. 7 is a refrigeration cycle diagram of a conventional refrigerator.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 凝縮器 3 絞り装置 4 蒸発器 5 潤滑油温度調整器 1 Compressor 2 Condenser 3 Throttling device 4 Evaporator 5 Lubricating oil temperature controller

フロントページの続き (72)発明者 山口 成人 大阪府門真市大字門真1006番地 松下電器 産業株式会社内Continued Front Page (72) Inventor Yamaguchi Adult, 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】圧縮機、凝縮器、絞り装置、蒸発器を環状
に接続して冷凍サイクルを構成し、冷媒として塩素を含
まない非共沸系冷媒を2種類以上混合して使用し、さら
に潤滑油中への冷媒の溶解量が、潤滑油の温度、圧力の
変化につれて増減するとき、その変化特性が使用したそ
れぞれの冷媒に対して異なる特性をもつような潤滑油を
使用し、さらに圧縮機内の潤滑油の温度を制御する潤滑
油温度調整器を備えた冷凍装置。
1. A refrigeration cycle is constituted by connecting a compressor, a condenser, a throttle device, and an evaporator in a ring, and two or more kinds of non-azeotropic refrigerants containing no chlorine are mixed and used. When the amount of refrigerant dissolved in the lubricating oil increases or decreases as the temperature or pressure of the lubricating oil changes, use a lubricating oil whose change characteristics have different characteristics for each refrigerant used, and then compress A refrigeration system equipped with a lubricating oil temperature controller that controls the temperature of the lubricating oil inside the machine.
【請求項2】冷媒としてHFC32/HFC125/H
FC134aを用いた請求項1記載の冷凍装置。
2. HFC32 / HFC125 / H as a refrigerant
The refrigeration system according to claim 1, wherein FC134a is used.
【請求項3】冷媒としてHFC32/HFC134aを
用いた請求項1記載の冷凍装置。
3. The refrigerating apparatus according to claim 1, wherein HFC32 / HFC134a is used as the refrigerant.
JP31963993A 1993-12-20 1993-12-20 Freezing device Pending JPH07174420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31963993A JPH07174420A (en) 1993-12-20 1993-12-20 Freezing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31963993A JPH07174420A (en) 1993-12-20 1993-12-20 Freezing device

Publications (1)

Publication Number Publication Date
JPH07174420A true JPH07174420A (en) 1995-07-14

Family

ID=18112547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31963993A Pending JPH07174420A (en) 1993-12-20 1993-12-20 Freezing device

Country Status (1)

Country Link
JP (1) JPH07174420A (en)

Similar Documents

Publication Publication Date Title
JP3025676B2 (en) In-stage compression heat pump with variable refrigeration capacity
JP6177424B2 (en) Refrigeration cycle equipment
JP6279069B2 (en) Refrigeration cycle equipment
WO1990007683A1 (en) Trans-critical vapour compression cycle device
JP2004502126A (en) Regenerative refrigeration system using mixed refrigerant
JP4294351B2 (en) CO2 refrigeration cycle
US5752392A (en) Air conditioner and heat exchanger therefor
KR930004384B1 (en) Heat-pump apparatus
JPH0340297B2 (en)
KR101992781B1 (en) Lowest power control apparatus for refrigerant cycle
JPH07174420A (en) Freezing device
JPH07174421A (en) Freezing device
JPH07190513A (en) Freezer
JPH0336467A (en) High temperature heat pump
JPH08233386A (en) Heat exchanger
JP3601122B2 (en) Refrigeration equipment
JPH0868567A (en) Low-temperature generator
JP4000509B2 (en) Refrigeration cycle equipment using non-azeotropic refrigerant mixture
KR200318041Y1 (en) refrigerating system using needless heat
JP3448377B2 (en) Refrigeration system using non-azeotropic refrigerant mixture
JPH07310957A (en) Refrigeration system for fluid cooler
JPH0739889B2 (en) Heat pump device
JPH0239712B2 (en) TEIONSOCHI
JPH03247963A (en) Cryogenic refrigerator
JPH0264368A (en) Heat pump device