JPH0262791B2 - - Google Patents

Info

Publication number
JPH0262791B2
JPH0262791B2 JP19079685A JP19079685A JPH0262791B2 JP H0262791 B2 JPH0262791 B2 JP H0262791B2 JP 19079685 A JP19079685 A JP 19079685A JP 19079685 A JP19079685 A JP 19079685A JP H0262791 B2 JPH0262791 B2 JP H0262791B2
Authority
JP
Japan
Prior art keywords
refrigerant
separator
rectification
heat exchanger
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19079685A
Other languages
Japanese (ja)
Other versions
JPS6252380A (en
Inventor
Shigeo Suzuki
Juji Yoshida
Kazuo Nakatani
Juji Mukai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19079685A priority Critical patent/JPS6252380A/en
Publication of JPS6252380A publication Critical patent/JPS6252380A/en
Publication of JPH0262791B2 publication Critical patent/JPH0262791B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非共沸混合冷媒を用いた熱ポンプ装
置の冷凍サイクルに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a refrigeration cycle for a heat pump device using a non-azeotropic mixed refrigerant.

従来の技術 従来非共沸混合冷媒を用いた熱ポンプ装置は、
冷凍サイクル内部を循環する冷媒組成を可変にす
ることにより、能力制御や性能改善を行うことが
でき、第2回の如き従来例が提案されている。第
2回は非共沸混合冷媒を用いた熱ポンプ装置を冷
暖房装置として適用した実施例であり、圧縮機
1、逆止弁2、負荷側熱交換器3、主絞り装置
4、熱源側熱交換器5、アキユムレータ6等を順
次環状に接続し、主サイクル回路を構成してい
る。また主絞り装置4のバイパスとして、副絞り
装置7,8、充填材9を充填した分離器10、貯
溜器11等を連結した副サイクル回路を構成し、
分離器10の下部には加熱器12、上部には冷却
器13を配置している。
Conventional technology Conventional heat pump devices using non-azeotropic mixed refrigerants are
By varying the composition of the refrigerant circulating inside the refrigeration cycle, capacity control and performance improvement can be achieved, and conventional examples such as the second one have been proposed. The second part is an example in which a heat pump device using a non-azeotropic mixed refrigerant is applied as an air-conditioning device. The exchanger 5, accumulator 6, etc. are sequentially connected in a ring to form a main cycle circuit. In addition, as a bypass of the main expansion device 4, a sub cycle circuit is configured in which the sub expansion devices 7, 8, a separator 10 filled with a filler 9, a reservoir 11, etc. are connected,
A heater 12 is placed at the bottom of the separator 10, and a cooler 13 is placed at the top.

加熱器12の加熱用熱源としては、本実施例で
は図示していないが、例えば圧縮機1からの吐出
ガスや電気ヒータ、又冷却器13の冷却用熱源と
しては圧縮機1の吸入ガスや、低温の外気で冷却
する如く構成され、冷凍サイクル内部には非共沸
混合冷媒が封入されている。
Although not shown in this embodiment, the heat source for heating the heater 12 may be, for example, the discharge gas from the compressor 1 or an electric heater, and the heat source for cooling the cooler 13 may be the suction gas of the compressor 1, The refrigeration cycle is configured to be cooled with low-temperature outside air, and a non-azeotropic mixed refrigerant is sealed inside the refrigeration cycle.

かかる熱ポンプ装置の作用様態を暖房運転時を
中心に説明すると、主成分冷媒と主成分冷媒より
低沸点な冷媒を封入し、低沸点成分が入つている
ことで循環量を増大させて高能力を得る場合に
は、加熱および冷却を停止する事により、分離作
用を停止せしめ、よつて封入した非共沸混合冷媒
とほぼ等しい組成の混合冷媒が、主には圧縮機1
→四方弁2→負荷側熱交換器3→主絞り装置4→
熱源側交換器5→四方弁2→アキユムレータ6→
圧縮機1の順に循環し、一部は負荷側熱交換器3
からバイパスして、副絞り装置7→分離器10下
部→配管14→副絞り装置8→熱源側熱交換器5
と循環し、余剰冷媒を貯溜器11内に貯溜し、低
沸点冷媒を含んだ混合冷媒となつて、負荷側熱交
換器3において高暖房能力を出力する事が可能で
ある。
The mode of operation of such a heat pump device will be explained mainly during heating operation.The main component refrigerant and the refrigerant with a lower boiling point than the main component refrigerant are sealed, and the low boiling point component increases the circulation amount and achieves high capacity. In order to obtain a refrigerant mixture, heating and cooling are stopped to stop the separation action, and a refrigerant mixture having almost the same composition as the enclosed non-azeotropic refrigerant mixture is mainly used in the compressor 1.
→Four-way valve 2→Load side heat exchanger 3→Main throttle device 4→
Heat source side exchanger 5 → four-way valve 2 → accumulator 6 →
It circulates in the order of compressor 1, and part of it circulates in load side heat exchanger 3.
Bypass from the sub-throttling device 7 → lower part of the separator 10 → piping 14 → sub-throttling device 8 → heat source side heat exchanger 5
The excess refrigerant is stored in the storage device 11 and becomes a mixed refrigerant containing a low boiling point refrigerant, allowing the load-side heat exchanger 3 to output high heating capacity.

一方能力を低減させる場合には、分離器回路の
加熱器12および冷却器13で加熱、冷却を行な
うように、例えば吐出ガス、吸入ガスを加熱器1
2、冷却器13に流す事により、副絞り装置7を
通過した冷媒は加熱器12で加熱されて低沸点成
分が気化し、分離器10内を上昇し、冷却器13
で凝縮液下して貯溜器11に貯溜されて一部は分
離器10上部に還流し、分離器10内を下降す
る。この時、分離器10内で上昇するガスと下降
する液冷媒とが、充填材9により気液接触を行な
い、熱および物質交換が行なわれ、いわゆる精留
作用がなされるものである。それ故、貯溜器11
内には低沸点リツチな冷媒が貯溜され、一方分離
器10下部の冷媒サイクルは高沸点リツチな冷媒
組成になり、負荷側熱交換器3での暖房能力が低
減できるものである。
On the other hand, when reducing the capacity, for example, the discharge gas and suction gas are transferred to the heater 12 and the cooler 13 of the separator circuit for heating and cooling.
2. By flowing the refrigerant through the cooler 13, the refrigerant that has passed through the sub-throttle device 7 is heated by the heater 12, and low boiling point components are vaporized, rising in the separator 10, and flowing into the cooler 13.
The condensed liquid is collected in the reservoir 11, and a part of the condensate is refluxed to the upper part of the separator 10, and then descends inside the separator 10. At this time, the gas rising in the separator 10 and the liquid refrigerant descending come into gas-liquid contact through the filler 9, and heat and mass exchange takes place, resulting in a so-called rectification effect. Therefore, reservoir 11
A low-boiling point rich refrigerant is stored therein, while the refrigerant cycle in the lower part of the separator 10 has a high boiling point rich refrigerant composition, so that the heating capacity of the load-side heat exchanger 3 can be reduced.

なお冷房運転時は、四方弁2を切換える事によ
り、図の破線で示す如く暖房時と逆方向に冷媒が
流れるものであり、精留作用によつて冷媒組成を
変える場合は暖房時と同じく加熱、冷却を行なう
事により精留がなされて、主サイクル濃度を高沸
点成分リツチとする事ができるものである。
In addition, during cooling operation, by switching the four-way valve 2, the refrigerant flows in the opposite direction to that during heating, as shown by the broken line in the figure, and when the refrigerant composition is changed by rectification, heating is performed in the same way as during heating. By performing cooling, rectification is performed, and the main cycle concentration can be made rich in high boiling point components.

発明が解決しようとする問題点 上記従来例の如き熱ポンプ装置においては、冷
媒組成の可変は基本的に可能であり、分離回路を
冷房時、暖房時共中間圧に維持するように構成し
ているので、たとえば以下の如き冷凍サイクル
上、あるいは精留作用上不具合な点を生じるもの
であつた。
Problems to be Solved by the Invention In a heat pump device such as the conventional example described above, it is basically possible to change the refrigerant composition, and the separation circuit is configured to maintain an intermediate pressure during both cooling and heating. As a result, the following problems have been caused in terms of the refrigeration cycle or the rectification process, for example.

たとえば、分離器回路は中間圧力であるため
に、分離器内でガス成分が発生する場合がある
が、主サイクル条件の変動によつてその中間圧力
も変動し、分離器内のガス体積が大きく変動する
ものである。それ故貯溜器11内に貯溜される冷
媒量が大きく変動し、主サイクル側の冷媒量が最
適な状態に維持されず、能力、EERが大きく減
少するものである。また中間圧力の変動により加
熱器12での発生ガス量が大きく変動し、確実な
精留がなされないばかりか、場合によつてはフラ
ツデイング等が生じて精留そのものがなされない
事も生じるものであつた。
For example, the separator circuit is at intermediate pressure, so gas components may be generated within the separator, but fluctuations in the main cycle conditions will cause the intermediate pressure to fluctuate, resulting in a large gas volume within the separator. It is subject to change. Therefore, the amount of refrigerant stored in the reservoir 11 fluctuates greatly, and the amount of refrigerant on the main cycle side is not maintained at an optimal state, resulting in a large decrease in capacity and EER. Furthermore, due to fluctuations in the intermediate pressure, the amount of gas generated in the heater 12 fluctuates greatly, which not only prevents reliable rectification, but also causes flattening or the like in some cases, causing the rectification itself to fail. It was hot.

更に、本従来例では、精留作用のありなしを加
熱器、冷却器のON−OFFにより行なつている
が、分離器内圧力が中間圧力であると、冷媒中に
含まれているガス成分が、加熱なしでも発生して
おり、分離器10内を上昇するものである。この
時、冷却器での冷却が停止されているとしても例
えば暖房時の低外気温条件では、冷却器13、貯
溜器11、分離器10等が冷却されており、自然
に精留作用が働いてしまい更に外気温の変動によ
り主サイクル回路の冷媒組成が安定しないという
問題点もあつた。
Furthermore, in this conventional example, the presence or absence of rectification is controlled by turning on and off the heater and cooler, but if the pressure inside the separator is intermediate pressure, the gas components contained in the refrigerant is generated even without heating and rises inside the separator 10. At this time, even if the cooling in the cooler is stopped, for example, under low outside temperature conditions during heating, the cooler 13, reservoir 11, separator 10, etc. are being cooled, and the rectifying action is naturally activated. Moreover, there was also the problem that the refrigerant composition in the main cycle circuit was unstable due to fluctuations in outside temperature.

そこで本発明は、かかる従来の問題点を解決
し、非共沸混合冷媒を用いた熱ポンプ装置におい
て、主回路の冷媒量を最適に維持するとともに、
精留作用の確実性を増して主回路を循環する冷媒
組成の可変を確実に行ない、サイクル能力、
EERを向上させる冷凍サイクルを提供しようと
するものである。
Therefore, the present invention solves such conventional problems and maintains the amount of refrigerant in the main circuit at an optimum level in a heat pump device using a non-azeotropic mixed refrigerant.
By increasing the reliability of the rectifying action and reliably varying the composition of the refrigerant circulating in the main circuit, the cycle capacity and
The aim is to provide a refrigeration cycle that improves EER.

問題点を解決するための手段 本発明になる熱ポンプ装置は、非共沸混合冷媒
の組成可変手段として精留作用を行う分離器を用
い、分離器に入る冷媒は、冷房時共、常に高圧液
冷媒であるように凝縮器出口から逆止弁、絞りの
並列回路を通過して分離器に入るように構成して
いる。
Means for Solving the Problems The heat pump device according to the present invention uses a separator that performs a rectifying action as a means for varying the composition of a non-azeotropic mixed refrigerant, and the refrigerant entering the separator is always at high pressure during cooling. As a liquid refrigerant, it is constructed so that it passes through a parallel circuit of a check valve and a throttle from the condenser outlet and enters the separator.

作 用 かかる冷凍サイクル上の構成を採用することに
より、分離器、貯溜器内が液冷媒で満され、それ
故主回路側冷媒量が適当な状態に維持されると共
に、加熱量、冷媒量をコントロールすれば常に最
適な精留がなされ、確実な主回路の組成可変が行
なわれると共に、精留作用の停止等も確実になる
ものである。
Effect By adopting such a configuration on the refrigeration cycle, the separator and reservoir are filled with liquid refrigerant, so the amount of refrigerant on the main circuit side is maintained at an appropriate state, and the amount of heating and refrigerant is reduced. If controlled, optimal rectification will always be achieved, the composition of the main circuit will be reliably varied, and the rectification action will be stopped reliably.

実施例 本発明になる熱ポンプ装置の実施例を、冷暖房
装置に適用した第1図の実施例をもつて説明す
る。第1図において1〜6,9,10,11,1
2,13は第2図に示した従来例と同一の構成要
素である。第1図において特徴とする所は、冷暖
房時高圧液冷媒ラインとなる高圧配管より、分離
器10側に流れる逆止弁15又は16を通り、加
熱器12に高圧液冷媒が流入し、分離器10から
主回路に入る冷媒は副絞り装置17又は18を通
過する如く構成し、更に本実施例では貯溜器11
より第3の副絞り装置19を通つて電磁弁20,
21を介して、冷暖房時共低圧側に導く回路を構
成している事である。本実施例では加熱器12及
び冷却器13の熱源は図示していないが、圧縮機
1の吐出ガス及び吸入ガスを導き、精留作用の有
無にかかわらず常に冷媒を流す如く構成している
ものである。
Embodiment An embodiment of the heat pump device according to the present invention will be explained using the embodiment shown in FIG. 1, which is applied to an air-conditioning device. In Figure 1, 1 to 6, 9, 10, 11, 1
Reference numerals 2 and 13 are the same components as in the conventional example shown in FIG. The characteristic feature of FIG. 1 is that the high-pressure liquid refrigerant flows from the high-pressure piping, which becomes the high-pressure liquid refrigerant line during cooling and heating, to the separator 10 side through the check valve 15 or 16, and flows into the heater 12. The refrigerant entering the main circuit from 10 passes through a sub-throttling device 17 or 18, and furthermore, in this embodiment, the refrigerant enters the main circuit from the reservoir 11.
and the solenoid valve 20 through the third sub-throttle device 19.
21 to form a circuit that leads to the low pressure side during both cooling and heating. Although the heat sources of the heater 12 and cooler 13 are not shown in this embodiment, they are configured so that the discharge gas and suction gas of the compressor 1 are guided, and the refrigerant always flows regardless of the presence or absence of rectification. It is.

かかる構成になるヒートポンプ装置において、
暖房時の精留作用時および精留なし時について説
明する。
In a heat pump device having such a configuration,
A description will be given of when rectification is applied and when there is no rectification during heating.

まず精留作用時には、図の実線で示すように負
荷側熱交換器3から出た高圧液冷媒の一部が、逆
止弁15を通つて加熱器12で加熱されて、一部
ガスが発生して分離器10の下部に流入する。加
熱器12で発生したガス成分は分離器10内を上
昇し、冷却器13で凝縮液化し、貯溜器11から
分離器10上部に還流して分離器10内を下降
し、その時上昇ガスと物質、熱交換して精留作用
をなし、貯溜器11には低沸点リツチの冷媒が貯
溜され、分離器10下部からは高沸点リツチの冷
媒が副絞り装置18を通つて主回路側冷媒と合流
し、熱源側熱交換器5に流入するものである。一
方精留なし時には、加熱されて分離器10に入つ
た冷媒が、一部は副絞り装置18へ流れるもの
と、一部は分離器10内を上昇して貯溜器11下
部から、第3の副絞り装置19を通過し、電磁弁
20を通過して主回路側と合流するものとに分れ
る。この時副絞り装置18と第3の副絞り装置1
9は、第3の副絞り装置19を抵抗小にしておけ
ばより精留作用の停止を確実にできるものであ
る。この時、分離回路の圧力は、主回路の高圧あ
るいはそれより若干低い値ぐらいに維持されてお
り、それ故加熱器12で発生するガス以外は全て
液冷媒で満された状態となり、中間圧力にする時
のような冷媒量の大きな変動はなく、主回路側冷
媒量を適当な値に維持できるものである。また精
留作用を行なわせて主回路を高沸点リツチとした
場合、主回路側が低沸点リツチの場合より、主回
路に必要な最適冷媒量は減少するが、その分の調
整は貯溜器11内に低沸点成分を貯溜する事によ
り、その密度差に比例して冷媒貯溜量を増加させ
る事で、調整が可能となるものである。また中間
圧力の場合には圧力の少しの変動で発生ガス量が
大きく変わり、分離器10内に入るガス量自身も
大きく変わり、それ故精留作用が不安定となり主
回路側濃度が変動するという問題点があつたが、
本発明によれば、加熱量を固定しておけば、加熱
器12で発生するガス量の変動は小さく、安定し
た精留が行なえるものである。
First, during rectification, a part of the high-pressure liquid refrigerant discharged from the load-side heat exchanger 3 passes through the check valve 15 and is heated by the heater 12, as shown by the solid line in the figure, and some gas is generated. and flows into the lower part of the separator 10. The gas component generated in the heater 12 rises in the separator 10, is condensed and liquefied in the cooler 13, flows back from the reservoir 11 to the upper part of the separator 10, and descends in the separator 10, at which time the rising gas and substances are , performs a rectifying action by exchanging heat, and a low boiling point rich refrigerant is stored in the reservoir 11, and a high boiling point rich refrigerant flows from the lower part of the separator 10 through the sub-throttle device 18 and joins with the main circuit side refrigerant. However, it flows into the heat source side heat exchanger 5. On the other hand, when there is no rectification, part of the heated refrigerant that enters the separator 10 flows to the sub-throttling device 18, and part rises inside the separator 10 and flows from the lower part of the reservoir 11 to the third refrigerant. It passes through the sub-diaphragm device 19, passes through the electromagnetic valve 20, and is divided into two parts: one that passes through the sub-diaphragm device 19, and one that passes through the electromagnetic valve 20 and merges with the main circuit side. At this time, the sub-throttle device 18 and the third sub-throttle device 1
9, if the resistance of the third sub-throttle device 19 is reduced, the rectification action can be stopped more reliably. At this time, the pressure in the separation circuit is maintained at the high pressure of the main circuit or at a value slightly lower than that, and therefore, except for the gas generated in the heater 12, everything is filled with liquid refrigerant, and the pressure is reduced to an intermediate pressure. There are no large fluctuations in the amount of refrigerant as there would be when the main circuit is used, and the amount of refrigerant on the main circuit side can be maintained at an appropriate value. In addition, when the main circuit is made high boiling point rich by rectification, the optimum amount of refrigerant required for the main circuit is reduced compared to when the main circuit side is low boiling point rich, but the adjustment for this amount is made in the reservoir 11. Adjustment is possible by storing low boiling point components in the refrigerant and increasing the amount of refrigerant stored in proportion to the density difference. In addition, in the case of intermediate pressure, the amount of gas generated changes greatly with a small change in pressure, and the amount of gas itself entering the separator 10 also changes greatly, resulting in unstable rectification and fluctuations in the concentration on the main circuit side. Although there were some problems,
According to the present invention, if the amount of heating is fixed, fluctuations in the amount of gas generated by the heater 12 are small and stable rectification can be performed.

また精留作用を停止して主回路濃度を冷媒封入
時の状態に戻す時には、前述したように単に電磁
弁20を開放する事により加熱冷却を入れた状態
でも、分離器10に入つた冷媒の一部が分離器1
0内を上昇して流れ、精留作用を行なう時の分離
器10上部から下部への液降下を阻止し、確実に
精留作用が停止するものであるが、本発明では高
圧液冷媒を加熱器12に流入させているために、
精留作用停止時に加熱を停止するだけでも、分離
器10に入る中間圧力の時に発生していたような
ガス成分がなくそれ故、分離器10内での精留を
停止させる事ができる。このような場合、本実施
例で構成している第3の絞り装置19、電磁弁2
0,21等によつて構成される構成要素は除く事
ができる。
Furthermore, when stopping the rectification action and returning the main circuit concentration to the state when the refrigerant was charged, the refrigerant that has entered the separator 10 can be Part is separator 1
0, and prevents the liquid from falling from the upper part to the lower part of the separator 10 during the rectifying action, thereby reliably stopping the rectifying action. However, in the present invention, the high-pressure liquid refrigerant is heated. Because it is flowing into the vessel 12,
By simply stopping the heating when the rectifying action is stopped, the rectification within the separator 10 can be stopped because there are no gas components that would have been generated at intermediate pressures entering the separator 10. In such a case, the third throttle device 19 and the solenoid valve 2 configured in this embodiment
Components constituted by 0, 21, etc. can be excluded.

冷房時は暖房時と逆の図の破線で示す冷媒流れ
となり、精留あり、なしの動作は暖房時と同様で
あるので説明は省く。
During cooling, the refrigerant flow is as shown by the broken line in the diagram, which is the opposite of that during heating, and the operation with and without rectification is the same as during heating, so a description will be omitted.

また、本実施例では、精留して低沸点冷媒を貯
溜する場合について述べているが、たとえば分離
器下部に配置した貯溜器に高沸点冷媒を貯溜する
冷凍サイクル(図示せず)の場合も同様の効果を
有するものである。
Furthermore, although this embodiment describes the case where a low-boiling point refrigerant is stored through rectification, it may also be applied to a refrigeration cycle (not shown) in which a high-boiling point refrigerant is stored in a reservoir placed at the bottom of a separator. It has similar effects.

発明の効果 本発明になる熱ポンプ装置は、非共沸混合冷媒
を用い、分離器内圧力を冷暖房時共高圧に維持す
るように、凝縮器出口から逆止弁、絞りの並列回
路のうち逆止弁を通過して加熱器に入り、分離器
からの冷媒は、主回路の低圧側に合流する逆止
弁、絞りの並列回路のうちの絞りを通過するよう
構成する事によつて、分離器と主回路側の冷媒量
を安定に維持できるとともに、安定な精留が確保
される。また精留停止には、加熱を停止するだけ
でも精留を停止することも可能となるなど、能
力、EERを確保しながら、安定した冷凍サイク
ルを形成できるという多大の効果を有するもので
ある。
Effects of the Invention The heat pump device of the present invention uses a non-azeotropic mixed refrigerant, and in order to maintain the internal pressure of the separator at high pressure during cooling and heating, the The refrigerant passes through the stop valve and enters the heater, and the refrigerant from the separator is separated by passing through the throttle in the parallel circuit of the check valve and throttle, which joins the low-pressure side of the main circuit. The amount of refrigerant in the container and main circuit can be maintained stably, and stable rectification can be ensured. In addition, stopping the rectification has the great effect of making it possible to form a stable refrigeration cycle while ensuring capacity and EER, such as being able to stop the rectification simply by stopping heating.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の非共沸混合冷媒を用いた熱ポ
ンプ装置の実施例を示す原理図、第2図は従来の
非共沸混合冷媒を用いた熱ポンプ装置の実施例を
示す原理図である。 1……圧縮機、3……負荷側熱交換器、4……
主絞り装置、5……熱源側熱交換器、10……分
離器、11……貯溜器、12……加熱器、13…
…冷却器、15,16……逆止弁、17,18…
…副絞り装置。
Fig. 1 is a principle diagram showing an embodiment of a heat pump device using a non-azeotropic mixed refrigerant of the present invention, and Fig. 2 is a principle diagram showing an embodiment of a heat pump device using a conventional non-azeotropic mixed refrigerant. It is. 1...Compressor, 3...Load side heat exchanger, 4...
Main throttling device, 5... Heat source side heat exchanger, 10... Separator, 11... Reservoir, 12... Heater, 13...
...Cooler, 15, 16...Check valve, 17, 18...
...Sub-diaphragm device.

Claims (1)

【特許請求の範囲】[Claims] 1 少くとも圧縮機、四方弁、負荷側熱交換器、
主絞り装置、熱源側熱交換器、アキユムレータを
環状接続した主回路と、充填塔、塔頂冷却器、塔
頂貯溜器、塔底加熱器を備えた分離器回路とを、
暖房時凝縮器となる負荷側熱交換器出口の高圧液
冷媒、および冷房時凝縮器となる熱源側熱交換器
の高圧液冷媒から分岐して、それぞれ分離器側に
しか流れない逆止弁と、副絞り装置の並列回路と
で接続するとともに非共沸混合冷媒を封入したこ
とを特徴とする熱ポンプ装置。
1 At least a compressor, a four-way valve, a load-side heat exchanger,
A main circuit in which a main throttling device, a heat source side heat exchanger, and an accumulator are connected in a ring, and a separator circuit equipped with a packed column, a tower top cooler, a tower top reservoir, and a tower bottom heater,
A check valve that branches off the high-pressure liquid refrigerant at the outlet of the load-side heat exchanger that serves as the condenser for heating, and the high-pressure liquid refrigerant of the heat source-side heat exchanger that serves as the condenser for cooling, and flows only to the separator side. A heat pump device characterized in that the heat pump device is connected to a parallel circuit of a sub-throttling device and is sealed with a non-azeotropic mixed refrigerant.
JP19079685A 1985-08-29 1985-08-29 Heat pump device Granted JPS6252380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19079685A JPS6252380A (en) 1985-08-29 1985-08-29 Heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19079685A JPS6252380A (en) 1985-08-29 1985-08-29 Heat pump device

Publications (2)

Publication Number Publication Date
JPS6252380A JPS6252380A (en) 1987-03-07
JPH0262791B2 true JPH0262791B2 (en) 1990-12-26

Family

ID=16263883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19079685A Granted JPS6252380A (en) 1985-08-29 1985-08-29 Heat pump device

Country Status (1)

Country Link
JP (1) JPS6252380A (en)

Also Published As

Publication number Publication date
JPS6252380A (en) 1987-03-07

Similar Documents

Publication Publication Date Title
KR890004867B1 (en) Haet pump with a reservoir storing higher pressure refrigerante of non-azeotropic mixture
US5186012A (en) Refrigerant composition control system for use in heat pumps using non-azeotropic refrigerant mixtures
KR930000852B1 (en) Heat pump system
KR930004384B1 (en) Heat-pump apparatus
JPH0262791B2 (en)
JPH0311388B2 (en)
US6584788B1 (en) Apparatus and method for improved performance of aqua-ammonia absorption cycles
JPH0264364A (en) Heat pump device
JPH0481708B2 (en)
JP2512127B2 (en) Heat pump device
JPH0440622B2 (en)
JPS61276664A (en) Heat pump device
JPH02238261A (en) Heat pump apparatus
JPH0264369A (en) Heat pump device
JPH0531066B2 (en)
JPS6166054A (en) Heat pump device
JPS636346A (en) Refrigeration cycle
JPH0371622B2 (en)
JPH0247670B2 (en) NETSUHONPUSOCHI
JPH0264370A (en) Heat pump device
JPS62228845A (en) Heat pump device
JPS60162157A (en) Refrigeration cycle
JPH058350B2 (en)
JPH0440623B2 (en)
JPH0739886B2 (en) Heat pump device