JPH0247670B2 - NETSUHONPUSOCHI - Google Patents

NETSUHONPUSOCHI

Info

Publication number
JPH0247670B2
JPH0247670B2 JP19079785A JP19079785A JPH0247670B2 JP H0247670 B2 JPH0247670 B2 JP H0247670B2 JP 19079785 A JP19079785 A JP 19079785A JP 19079785 A JP19079785 A JP 19079785A JP H0247670 B2 JPH0247670 B2 JP H0247670B2
Authority
JP
Japan
Prior art keywords
refrigerant
rectification
main circuit
boiling point
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19079785A
Other languages
Japanese (ja)
Other versions
JPS6252372A (en
Inventor
Shigeo Suzuki
Juji Yoshida
Kazuo Nakatani
Juji Mukai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19079785A priority Critical patent/JPH0247670B2/en
Priority to KR1019860002009A priority patent/KR890004867B1/en
Priority to EP86104022A priority patent/EP0196051B1/en
Priority to DE8686104022T priority patent/DE3675047D1/en
Priority to US06/844,065 priority patent/US4722195A/en
Publication of JPS6252372A publication Critical patent/JPS6252372A/en
Publication of JPH0247670B2 publication Critical patent/JPH0247670B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Central Heating Systems (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非共沸混合冷媒を用いた熱ポンプ装
置の冷凍サイクルに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a refrigeration cycle for a heat pump device using a non-azeotropic mixed refrigerant.

従来の技術 従来非共沸混合冷媒を用いた熱ポンプ装置は、
冷凍サイクル内部を循環する冷媒組成を可変する
ことにより、能力制御や性能改善を行うことがで
き、例えば特開昭59−157448号公報に示される第
2図の如き従来例が提案されている。第2図は非
共沸混合冷媒を用いた熱ポンプ装置を暖房装置と
して適用した実施例であり、1は圧縮機、2は三
方弁、3は高温側熱交換器、4,5は絞り装置、
6は三方弁、7は低温側熱交換器、8は冷媒精留
塔、9は精留塔加熱用熱交換器、10は高沸点液
溜め、11は精留塔冷却用絞り装置、12は精留
塔冷却用熱交換器、13は低沸点液溜め、14,
15は流量調節弁、16,17は逆止弁であり、
冷凍サイクル内部には非共沸混合冷媒が封入され
ている。
Conventional technology Conventional heat pump devices using non-azeotropic mixed refrigerants are
Capacity control and performance improvement can be achieved by varying the composition of the refrigerant circulating inside the refrigeration cycle. For example, a conventional example as shown in FIG. 2 of JP-A-59-157448 has been proposed. Figure 2 shows an example in which a heat pump device using a non-azeotropic mixed refrigerant is applied as a heating device, where 1 is a compressor, 2 is a three-way valve, 3 is a high temperature side heat exchanger, and 4 and 5 are throttle devices. ,
6 is a three-way valve, 7 is a low temperature side heat exchanger, 8 is a refrigerant rectification column, 9 is a heat exchanger for heating the rectification column, 10 is a high boiling point liquid reservoir, 11 is a throttle device for cooling the rectification column, 12 is a A heat exchanger for cooling the rectification tower, 13 is a low boiling point liquid reservoir, 14,
15 is a flow control valve, 16 and 17 are check valves,
A non-azeotropic mixed refrigerant is sealed inside the refrigeration cycle.

以上のように構成された熱ポンプ装置について
以下その動作を説明する。先ず、通常運転時の精
留なしにおいては三方弁2および6は第2図に図
示する方向に開いており、圧縮機1より吐出され
た冷媒蒸気は三方弁2、高温側熱交換器3、絞り
装置4、三方弁6、絞り装置5、低温側熱交換器
7、圧縮機1へと循環し、高温側熱交換器3で放
熱を、また低温側熱交換器7で吸熱を行う。サイ
クル内を循環する冷媒の濃度を変えるいわゆる精
留で分離する場合には先ず三方弁2を90°右方向
へ切り換え、圧縮機1から吐出される冷媒を三方
弁2、精留塔加熱用熱交換器9、精留塔冷却用絞
り装置11、精留塔冷却用熱交換器12、逆止弁
16、圧縮機1へと循環し、精留塔加熱用熱交換
器9にて高沸点液溜め10内の高沸点成分に富む
冷媒液を沸騰させ、精留塔冷却用熱交換器12に
て精留塔8で発生する低沸点成分に富む冷媒蒸気
を凝縮させ凝縮液を低沸点液溜め13に溜める。
低沸点液溜め13からあふれた液は精留塔8内を
流下し精留塔8内を上昇する冷媒蒸気と接触し精
留効果を高める。このようにして、精留分離を行
ない、低沸点液溜め13内には低沸点に富んだ冷
媒を、また高沸点液溜め10内には高沸点に富ん
だ冷媒を貯溜するものである。しかる後に、三方
弁2をもとへもどし三方弁6を図より90°右方向
へ切り換えるとともに流量調節弁14および15
を調節して高沸点成分に富む液と低沸点成分に富
む液とを所定の割合に混合し逆止弁17を介して
絞り装置5の方向へ流しその後三方弁6をもとへ
もどす。
The operation of the heat pump device configured as described above will be explained below. First, when there is no rectification during normal operation, the three-way valves 2 and 6 are open in the direction shown in FIG. It circulates to the expansion device 4, three-way valve 6, expansion device 5, low-temperature side heat exchanger 7, and compressor 1, and the high-temperature side heat exchanger 3 radiates heat, and the low-temperature side heat exchanger 7 absorbs heat. When separating by so-called rectification, which changes the concentration of the refrigerant circulating in the cycle, first switch the three-way valve 2 90 degrees to the right, and transfer the refrigerant discharged from the compressor 1 to the three-way valve 2, which uses heat for heating the rectifier. The high-boiling point liquid is circulated through the exchanger 9, the rectifying tower cooling throttle device 11, the rectifying tower cooling heat exchanger 12, the check valve 16, and the compressor 1, and the high boiling point liquid is passed through the rectifying tower heating heat exchanger 9. The refrigerant liquid rich in high boiling point components in the reservoir 10 is boiled, the refrigerant vapor rich in low boiling point components generated in the rectification column 8 is condensed in the heat exchanger 12 for cooling the rectification column, and the condensed liquid is stored as a low boiling point liquid reservoir. Save it to 13.
The liquid overflowing from the low boiling point liquid reservoir 13 flows down in the rectification column 8 and comes into contact with the refrigerant vapor rising in the rectification column 8 to enhance the rectification effect. In this manner, rectification separation is carried out, and a refrigerant rich in low boiling points is stored in the low boiling point liquid reservoir 13, and a refrigerant rich in high boiling points is stored in the high boiling point liquid reservoir 10. After that, return the three-way valve 2 to its original position, switch the three-way valve 6 90 degrees to the right from the figure, and open the flow rate control valves 14 and 15.
is adjusted to mix a liquid rich in high-boiling point components and a liquid rich in low-boiling point components at a predetermined ratio and flowed toward the expansion device 5 via the check valve 17, after which the three-way valve 6 is returned to its original position.

上記のような作用様態により、主回路での冷媒
濃度を可変し、主回路が低沸点成分に富む時には
高暖房能力を得、一方主回路が高沸点成分に富む
時には低暖房能力を得るように冷凍サイクルを制
御するものである。
With the mode of action described above, the refrigerant concentration in the main circuit is varied, and when the main circuit is rich in low boiling point components, high heating capacity is obtained, while when the main circuit is rich in high boiling point components, low heating capacity is obtained. It controls the refrigeration cycle.

発明が解決しようとする問題点 上記従来例の如き熱ポンプ装置においては、冷
媒組成の可変は基本的に可能であるが、以下の如
き不具合な点を生じるものであつた。
Problems to be Solved by the Invention Although it is basically possible to change the refrigerant composition in the heat pump device of the conventional example described above, the following problems occur.

そもそも、本従来例では、精留塔8を含む分離
器回路で冷媒を精留分離させる場合、三方弁2の
切換えにより精留塔8を駆動させる熱源としてい
る。そのため高温側熱交換器3には冷媒が流れ
ず、それ故暖房能力としては出力できず暖房装置
としてははなはだ不便である。
In the first place, in this conventional example, when a refrigerant is subjected to rectification separation in a separator circuit including a rectification column 8, switching of the three-way valve 2 is used as a heat source for driving the rectification column 8. Therefore, no refrigerant flows into the high-temperature side heat exchanger 3, and therefore no heating capacity can be output, which is extremely inconvenient as a heating device.

また、主回路の冷媒濃度の調整は、流量調整弁
14および15を調整して高沸点液溜め10内の
高沸点冷媒と、低沸点冷媒液溜め13内の低沸点
冷媒を任意の割合に混合して、主回路に供給する
ものであるが、この場合必要とする主回路濃度に
調整しようとすれば、主回路側の濃度と、高沸点
冷媒液溜め10内の冷媒濃度および低沸点冷媒液
溜め13内の冷媒濃度を検出し、さらにそれらの
濃度によつて、流量調整弁14,15の開度ある
いは開閉時間をコントロールしなければならない
というはなはだ繁雑な制御となるものである。ま
たこの時、主回路内を最適冷媒量に維持しようと
すれば、三方弁6や流量調整弁14,15を上述
したのと同様に制御しなければならず、これらの
点でも、サイクル上複雑な構成となるものであ
る。
The refrigerant concentration in the main circuit can be adjusted by adjusting the flow rate adjustment valves 14 and 15 to mix the high boiling point refrigerant in the high boiling point liquid reservoir 10 and the low boiling point refrigerant in the low boiling point refrigerant reservoir 13 in an arbitrary ratio. In this case, in order to adjust the main circuit concentration to the required concentration, the concentration on the main circuit side, the refrigerant concentration in the high boiling point refrigerant reservoir 10, and the low boiling point refrigerant liquid are This is a very complicated control process in which the refrigerant concentration in the reservoir 13 must be detected and the opening degree or opening/closing time of the flow rate regulating valves 14 and 15 must be controlled based on the detected concentration. Also, at this time, in order to maintain the optimum amount of refrigerant in the main circuit, the three-way valve 6 and the flow rate adjustment valves 14 and 15 must be controlled in the same way as described above, which also adds complexity to the cycle. The structure is as follows.

さらに精留分離の面から考えた場合、三方弁6
を開放して主回路に高沸点あるいは低沸点冷媒を
注入した後では、高沸点冷媒液溜め10と低沸点
冷媒液溜め13内のそれぞれの冷媒濃度が変化す
るため、次に三方弁2を開放して精留分離を行な
わせても、高沸点冷媒液溜め10と低沸点冷媒液
溜め13の精留分離後の濃度が前回精留分離時と
異なるといつた問題点を生じるものである。
Furthermore, when considering from the perspective of rectification separation, the three-way valve 6
After the high boiling point or low boiling point refrigerant is injected into the main circuit by opening the refrigerant, the refrigerant concentrations in the high boiling point refrigerant reservoir 10 and the low boiling point refrigerant reservoir 13 change, so the three-way valve 2 is then opened. Even if rectification separation is carried out, a problem arises in that the concentrations of the high boiling point refrigerant liquid reservoir 10 and the low boiling point refrigerant liquid reservoir 13 after the rectification separation are different from those during the previous rectification separation.

そこで本発明は、かかる従来の問題点を解決
し、非共沸混合冷媒を用いた熱ポンプ装置におい
て、暖房の出力停止なしに精留分離の確実性を増
して主回路を循環する冷媒組成の可変を確実に行
ない、さらにそれらの制御が容易に出来、主回路
側の冷媒調整が可能な冷凍サイクルを提供しよう
とするものである。
Therefore, the present invention solves such conventional problems and improves the refrigerant composition to circulate through the main circuit in a heat pump device using a non-azeotropic mixed refrigerant, increasing the reliability of rectification separation without stopping the heating output. The objective is to provide a refrigeration cycle in which the refrigerant can be reliably varied, easily controlled, and the refrigerant on the main circuit side can be adjusted.

問題点を解決するための手段 本発明になる熱ポンプ装置は、非共沸混合冷媒
の組成可変手段として精留作用を行う精留塔を用
い、主回路の熱源側熱交換器と主絞り装置間の経
路より分岐して精留塔の下部にはいる回路と、精
留塔の下部より副絞り装置を経て主回路の主絞り
装置と熱源側熱交換器間の経路にはいる回路とを
主回路に接続し、副絞り装置の最小抵抗を主絞り
装置の抵抗よりも大とした。また副絞り装置の抵
抗を変えることで主回路の冷媒濃度を可変し、封
入組成と同じ主回路冷媒濃度で運転する場合は副
絞り装置の抵抗を最小とするものである。
Means for Solving the Problems The heat pump device according to the present invention uses a rectifying column that performs a rectifying action as a means for varying the composition of a non-azeotropic mixed refrigerant, and a heat exchanger on the heat source side of the main circuit and a main throttling device. A circuit that branches off from the route between the two and enters the lower part of the rectifying column, and a circuit that enters the route between the main throttle device of the main circuit and the heat source side heat exchanger through the sub-throttle device from the bottom of the rectifying column. It was connected to the main circuit, and the minimum resistance of the sub-throttle device was made greater than the resistance of the main throttle device. Furthermore, the refrigerant concentration in the main circuit is varied by changing the resistance of the sub-throttling device, and when operating with the same main circuit refrigerant concentration as the sealed composition, the resistance of the sub-throttling device is minimized.

作 用 かかる冷凍サイクル上の構成を採用することに
より、主サイクルで暖房出力を得ながら精留作用
が行えると共に、副絞り装置の抵抗を主絞り装置
の抵抗よりも大ならしめているために、循環冷媒
の大部分が主回路側を流れ、精留塔での精留作用
を冷媒流れで乱すことがなく安定な精留作用が行
える。また、副絞り装置の抵抗を可変して、加熱
器での発生ガス量を調節することで精留分離の最
終濃度を可変でき、精留停止時には加熱器での発
生ガス量をなくすと共に精留塔での精留作用を冷
媒流れで乱すことによつて、確実な精留停止が可
能となるものである。
By adopting this configuration on the refrigeration cycle, rectification can be performed while obtaining heating output in the main cycle, and the resistance of the sub-throttle device is made greater than the resistance of the main throttling device, so that the circulation Most of the refrigerant flows through the main circuit, allowing stable rectification to occur without disturbing the flow of refrigerant in the rectifier. In addition, by changing the resistance of the sub-throttle device and adjusting the amount of gas generated in the heater, the final concentration of rectification separation can be varied.When rectification is stopped, the amount of gas generated in the heater is eliminated and the rectification is stopped. By disturbing the rectification action in the column with the flow of refrigerant, it is possible to reliably stop the rectification.

実施例 本発明になる熱ポンプ装置の実施例を、暖房装
置に適用した第1図の実施例をもつて説明する。
第1図において、18は圧縮機、19は負荷側熱
交換器、20は主絞り装置、21は熱源側熱交換
器で順次環状に接続されている。
Embodiment An embodiment of the heat pump device according to the present invention will be described using the embodiment shown in FIG. 1, which is applied to a heating device.
In FIG. 1, 18 is a compressor, 19 is a load side heat exchanger, 20 is a main throttling device, and 21 is a heat source side heat exchanger, which are connected in order in an annular manner.

一方、負荷側熱交換器19の高圧出口と充填材
22を充填した精留塔23の下部とは途中加熱器
24を介して接続され、精留塔23の下部と主回
路の熱源側熱交換器21の入口とは副絞り装置2
5を介して接続されている。精留塔23の上部に
は塔頂冷却器26と、塔頂貯溜器27とが設けら
れている。本実施例では加熱器24および冷却器
26の熱源は図示していないが、圧縮機18の吐
出ガスおよび吸入ガスを導き、精留作用の有無に
かかわらず常に冷媒を流す如く構成しているもの
である。
On the other hand, the high-pressure outlet of the load-side heat exchanger 19 and the lower part of the rectification column 23 filled with the filler 22 are connected via an intermediate heater 24, and the lower part of the rectification column 23 and the heat source side of the main circuit are exchanged. The inlet of the container 21 is the sub-squeezing device 2.
5. A top cooler 26 and a top reservoir 27 are provided at the top of the rectification column 23 . Although the heat sources of the heater 24 and the cooler 26 are not shown in this embodiment, they are configured so that the discharge gas and suction gas of the compressor 18 are guided, and the refrigerant always flows regardless of the presence or absence of rectification. It is.

かかる構成になるヒートポンプ装置において、
暖房運転での主回路冷媒濃度を可変する精留作用
時および主回路冷媒濃度を封入組成と同一にする
精留なし時についてその動作を説明する。
In a heat pump device having such a configuration,
The operation will be described with respect to the time of rectification to vary the main circuit refrigerant concentration in heating operation and the time of no rectification to make the main circuit refrigerant concentration the same as the sealed composition.

まず精留作用時には、負荷側熱交換器19から
出た高圧液冷媒の一部が、加熱器24で加熱され
て一部ガスが発生し精留塔23の下部に流入す
る。加熱器24で発生したガス成分は精留塔23
内を上昇し、冷却器26で凝縮液化し、貯溜器2
7から精留塔23上部に還流して精留塔23内を
下降する。その時上昇するガスと下降する液とが
物質、熱交換して精留作用をなし、貯溜器27に
は低沸点リツチの冷媒が貯溜される。そのため、
精留塔23下部からは高沸点リツチの冷媒が副絞
り装置25を通つて主回路側冷媒と合流し、熱源
側熱交換器21に流入するものである。この時副
絞り装置25の抵抗を主絞り装置20よりも大と
しているので、循環冷媒の大部分が主回路側を流
れ、精留塔23内に流入する冷媒は少なく、それ
故精留塔23内での精留作用を乱すことがなく安
定な精留が行なえるものである。またこの時副絞
り装置25の抵抗を可変にすると、加熱器24か
ら発生するガス量が変化し、例えば副絞り装置の
抵抗を小さくして精留器側への分岐流量を多くし
て発生ガス量を少なくすると、精留分離での分離
作用が進行せず、本実施例の如き、低沸点成分を
貯溜する方式では貯溜器27内の低沸点成分濃度
が高くなく、それ故主回路側濃度も低沸点成分の
多い冷媒組成となる。逆に副絞り装置の抵抗を大
きくして精留器側への分岐流量を少なくして発生
ガス量を多くすると、精留分離での分離作用が進
行し、貯溜器27内には低沸点な冷媒が貯溜さ
れ、結果として主回路側濃度を高沸点成分の多い
冷媒組成となるものである。
First, during rectification, a portion of the high-pressure liquid refrigerant discharged from the load-side heat exchanger 19 is heated by the heater 24 to generate some gas, which flows into the lower part of the rectification column 23 . The gas components generated in the heater 24 are sent to the rectification column 23
It rises inside the tank, condenses and liquefies in the cooler 26, and flows into the reservoir 2.
7 to the upper part of the rectifying column 23 and descending inside the rectifying column 23. At this time, the rising gas and the descending liquid exchange substances and heat to perform a rectifying action, and a low boiling point rich refrigerant is stored in the reservoir 27. Therefore,
From the lower part of the rectification column 23, the high-boiling point rich refrigerant passes through the sub-throttling device 25, merges with the main circuit side refrigerant, and flows into the heat source side heat exchanger 21. At this time, since the resistance of the sub-throttling device 25 is made larger than that of the main throttling device 20, most of the circulating refrigerant flows through the main circuit side, and only a small amount of refrigerant flows into the rectifying column 23. This allows for stable rectification without disturbing the rectification action within the tank. At this time, if the resistance of the sub-throttle device 25 is made variable, the amount of gas generated from the heater 24 will change.For example, by reducing the resistance of the sub-throttle device and increasing the branched flow rate to the rectifier side, the gas generated If the amount is reduced, the separation effect in rectification separation will not proceed, and in the method of storing low boiling point components as in this embodiment, the concentration of low boiling point components in the reservoir 27 will not be high, and therefore the concentration on the main circuit side will decrease. The refrigerant composition is also high in low boiling point components. On the other hand, if the resistance of the sub-throttle device is increased to reduce the branched flow rate to the rectifier side and increase the amount of generated gas, the separation action in rectification separation will proceed, and low boiling point gas will be present in the reservoir 27. The refrigerant is stored, and as a result, the concentration on the main circuit side becomes a refrigerant composition containing many high boiling point components.

また精留作用によつて主回路濃度が変わること
により、主回路側での最適冷媒量が変化する。主
回路を流れる冷媒が低沸点成分リツチの時には最
適冷媒量が多くなり、一方高沸点成分リツチの時
には最適冷媒量が少なくなり、本発明ではその分
の調整は貯溜器27内に低沸点成分を貯溜するこ
とにより、その密度差に比例して冷媒貯溜量を増
減させることで調整が可能となる。
Furthermore, as the main circuit concentration changes due to the rectification effect, the optimum amount of refrigerant on the main circuit side changes. When the refrigerant flowing through the main circuit is rich in low-boiling point components, the optimum amount of refrigerant increases; on the other hand, when it is rich in high-boiling point components, the optimum amount of refrigerant decreases. By storing the refrigerant, adjustment can be made by increasing or decreasing the amount of stored refrigerant in proportion to the density difference.

次に精留分離を停止して、主回路濃度を初期封
入冷媒組成で運転する場合には、副絞り装置25
を開けて、分岐流量を多くし、加熱器24での発
出ガス量をなしにすることで、精留作用が停止す
る。
Next, when the rectification separation is stopped and the main circuit concentration is operated with the initially charged refrigerant composition, the sub-throttle device 25
The rectifying action is stopped by opening the valve and increasing the branch flow rate to eliminate the amount of gas emitted by the heater 24.

このように、本発明では主回路で暖房運転しな
がらでも精留作用を行ない、主回路濃度を変えて
ゆくことができるものである。
In this way, in the present invention, the rectification action can be performed even during heating operation in the main circuit, and the concentration in the main circuit can be changed.

本実施例では暖房回路のみについて説明してい
るが、四方弁等を付加して冷房時にも精留作用を
行ない前述したのと同様の動作を行なわせること
は可能である。
In this embodiment, only the heating circuit is described, but it is possible to add a four-way valve or the like to perform the rectifying action even during cooling, and perform the same operation as described above.

また、本実施例では、精留して低沸点冷媒を貯
溜する場合について述べているが、たとえば分離
器下部に配置した貯溜器に高沸点冷媒を貯留する
冷凍サイクル(図示せず)の場合も同様の効果を
有するものである。
Furthermore, although this embodiment describes a case where a low-boiling point refrigerant is stored through rectification, it may also be applied to a refrigeration cycle (not shown) in which a high-boiling point refrigerant is stored in a reservoir placed at the bottom of a separator. It has similar effects.

発明の効果 本発明になる熱ポンプ装置は、非共沸混合冷媒
を用い、精留塔を主回路の高圧または中間圧と接
続すると共に、精留塔からの還りを主回路の低圧
に接続し副絞り装置の抵抗を主絞り装置の抵抗よ
りも大きくすることにより主回路での暖房運転を
しながら精留分離を確実に行なうことができる。
Effects of the Invention The heat pump device of the present invention uses a non-azeotropic mixed refrigerant, connects the rectification column to the high pressure or intermediate pressure of the main circuit, and connects the return from the rectification column to the low pressure of the main circuit. By making the resistance of the sub-throttle device larger than the resistance of the main throttle device, rectification separation can be reliably performed while heating operation is performed in the main circuit.

また所望主回路濃度に応じて副絞り装置の抵抗
を可変し、精留停止時には当該抵抗を小さくする
構成を付加することで、分岐流量を調整し分離濃
度を可変して主回路濃度を任意に設定できる。さ
らに分離濃度に応じて貯溜器での貯溜量を調整
し、主回路側冷媒量を最適に維持できるものであ
る。
In addition, by adding a configuration that changes the resistance of the sub-throttle device according to the desired main circuit concentration and reduces the resistance when rectification is stopped, the main circuit concentration can be adjusted as desired by adjusting the branch flow rate and varying the separation concentration. Can be set. Furthermore, the amount of refrigerant stored in the reservoir can be adjusted according to the separated concentration, and the amount of refrigerant on the main circuit side can be maintained at an optimum level.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における熱ポンプ装
置の原理図、第2図は従来例における熱ポンプ装
置の原理図である。 18……圧縮機、19……負荷側熱交換器、2
0……主絞り装置、21……熱源側熱交換器、2
3……精留塔、24……加熱器、25……副絞り
装置、26……塔頂冷却器、27……塔頂貯溜
器。
FIG. 1 is a principle diagram of a heat pump device according to an embodiment of the present invention, and FIG. 2 is a principle diagram of a conventional heat pump device. 18...Compressor, 19...Load side heat exchanger, 2
0... Main expansion device, 21... Heat source side heat exchanger, 2
3... Rectification column, 24... Heater, 25... Sub-throttling device, 26... Tower top cooler, 27... Tower top reservoir.

Claims (1)

【特許請求の範囲】 1 少なくとも圧縮機、負荷側熱交換器、主絞り
装置、熱源側熱交換器を環状接続した主回路と、
精留塔、塔頂冷却器、貯溜器、塔底加熱器を備え
た精留回路とを、主回路の負荷側熱交換器と主絞
り装置間の経路より分岐して精留塔の下部に接続
する回路と、精留塔下部より副絞り装置を経て主
回路の主絞り装置と熱源側熱交換器間の経路に接
続する回路とで接続すると共に、前記副絞り装置
の最小抵抗を前記主絞り装置の抵抗より大ならし
めたことを特徴とする熱ポンプ装置。 2 副絞り装置の抵抗を可変して主回路冷媒濃度
を変え、封入時と同一冷媒濃度で主回路を運転す
る場合は副絞り装置の抵抗を最小にしたことを特
徴とする特許請求の範囲第1項記載の熱ポンプ装
置。
[Claims] 1. A main circuit in which at least a compressor, a load-side heat exchanger, a main throttling device, and a heat source-side heat exchanger are connected in a ring;
A rectification circuit equipped with a rectification column, a tower top cooler, a reservoir, and a column bottom heater is branched from the path between the load-side heat exchanger and the main throttling device in the main circuit to the lower part of the rectification column. The connecting circuit is connected to the circuit that connects from the lower part of the rectifying column through the sub-throttle device to the path between the main throttling device of the main circuit and the heat source side heat exchanger, and the minimum resistance of the sub-throttling device is A heat pump device characterized in that the resistance is greater than that of a throttle device. 2. The main circuit refrigerant concentration is varied by varying the resistance of the sub-throttling device, and when the main circuit is operated with the same refrigerant concentration as when it was sealed, the resistance of the sub-throttling device is minimized. The heat pump device according to item 1.
JP19079785A 1985-03-25 1985-08-29 NETSUHONPUSOCHI Expired - Lifetime JPH0247670B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP19079785A JPH0247670B2 (en) 1985-08-29 1985-08-29 NETSUHONPUSOCHI
KR1019860002009A KR890004867B1 (en) 1985-03-25 1986-03-19 Haet pump with a reservoir storing higher pressure refrigerante of non-azeotropic mixture
EP86104022A EP0196051B1 (en) 1985-03-25 1986-03-24 Heat pump with a reservoir storing higher pressure refrigerant of non-azeotropic mixture
DE8686104022T DE3675047D1 (en) 1985-03-25 1986-03-24 HEAT PUMP WITH A CONTAINER FOR THE STORAGE OF THE REFRIGERANT WITH A HIGHER PARTIAL PRESSURE OF A NON-AZEOTROPIC MIXTURE.
US06/844,065 US4722195A (en) 1985-03-25 1986-03-25 Heat pump with a reservoir storing higher pressure refrigerant of non-azeotropic mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19079785A JPH0247670B2 (en) 1985-08-29 1985-08-29 NETSUHONPUSOCHI

Publications (2)

Publication Number Publication Date
JPS6252372A JPS6252372A (en) 1987-03-07
JPH0247670B2 true JPH0247670B2 (en) 1990-10-22

Family

ID=16263900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19079785A Expired - Lifetime JPH0247670B2 (en) 1985-03-25 1985-08-29 NETSUHONPUSOCHI

Country Status (1)

Country Link
JP (1) JPH0247670B2 (en)

Also Published As

Publication number Publication date
JPS6252372A (en) 1987-03-07

Similar Documents

Publication Publication Date Title
KR890004867B1 (en) Haet pump with a reservoir storing higher pressure refrigerante of non-azeotropic mixture
KR930000852B1 (en) Heat pump system
KR930004384B1 (en) Heat-pump apparatus
JPH0247670B2 (en) NETSUHONPUSOCHI
JPH0481708B2 (en)
JPH0246864B2 (en) NETSUHONPUSOCHI
JPH0264364A (en) Heat pump device
JPH02178568A (en) Heat pump device
JPH0461260B2 (en)
JPH0646118B2 (en) Heat pump device
JPH0544582B2 (en)
JPS62242769A (en) Refrigeration cycle device
JPH0238870B2 (en) NETSUHONPUSOCHI
JPH0526436Y2 (en)
JPH0461261B2 (en)
JPH0360031B2 (en)
JPS62242768A (en) Refrigeration cycle device
JPH0264369A (en) Heat pump device
JPH0739887B2 (en) Heat pump device
JPH0577942B2 (en)
JPH0833254B2 (en) Heat pump system
JPS636347A (en) Refrigeration cycle
JPS6166054A (en) Heat pump device
JPS6252371A (en) Heat pump device
JPH0621725B2 (en) Heat pump device