JPH0739887B2 - Heat pump device - Google Patents

Heat pump device

Info

Publication number
JPH0739887B2
JPH0739887B2 JP13334486A JP13334486A JPH0739887B2 JP H0739887 B2 JPH0739887 B2 JP H0739887B2 JP 13334486 A JP13334486 A JP 13334486A JP 13334486 A JP13334486 A JP 13334486A JP H0739887 B2 JPH0739887 B2 JP H0739887B2
Authority
JP
Japan
Prior art keywords
refrigerant
separator
heat exchanger
main
expansion device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13334486A
Other languages
Japanese (ja)
Other versions
JPS62293045A (en
Inventor
茂夫 鈴木
雄二 吉田
和生 中谷
裕二 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13334486A priority Critical patent/JPH0739887B2/en
Publication of JPS62293045A publication Critical patent/JPS62293045A/en
Publication of JPH0739887B2 publication Critical patent/JPH0739887B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は熱ポンプ装置,特に暖冷房装置において、非共
沸混合冷媒を用い、主回路を流れる冷媒濃度を可変する
事により、常に負荷に適応した冷暖房能力を発生させる
熱ポンプ装置に関する。
The present invention relates to a heat pump device, particularly a heating / cooling device, in which a non-azeotropic mixed refrigerant is used, and the concentration of the refrigerant flowing in the main circuit is varied to constantly adapt to the load. The present invention relates to a heat pump device that generates cooling and heating capacity.

従来の技術 従来、熱ポンプ装置の能力を可変する方法として、冷媒
に非共沸混合冷媒を用い、分離器によって高沸点冷媒と
低沸点冷媒とに分離し、それによって主回路の冷媒組成
を変え能力を可変するものが提案されている。これは冷
媒組成が変わる事によりその吸込み比容積を変えて循環
量を変えるものであり、その分離方法として精留方式を
用い、圧縮回転数を変える方法にこのような方式を付加
するものが提案されている。
2. Description of the Related Art Conventionally, as a method of varying the capacity of a heat pump device, a non-azeotropic mixed refrigerant is used as a refrigerant, and a separator is used to separate a high boiling point refrigerant and a low boiling point refrigerant, thereby changing the refrigerant composition of the main circuit. A variable capacity is proposed. This is to change the suction specific volume by changing the refrigerant composition to change the circulation amount.The rectification method is used as the separation method, and a method to add such method to the method of changing the compression rotation speed is proposed. Has been done.

このような方法に対する先行発明として我々は第5図に
示すものを提案している。第5図において1は圧縮機、
2は四方弁、3は負荷側熱交換器、4は主絞り装置、5
は熱源側熱交換器であり主サイクルを構成している。
As a prior invention for such a method, we have proposed the one shown in FIG. In FIG. 5, 1 is a compressor,
2 is a four-way valve, 3 is a load side heat exchanger, 4 is a main throttle device, 5
Is a heat source side heat exchanger and constitutes the main cycle.

更にこの主サイクルに並列接続された副サイクルとし
て、負荷側熱交換器3と主絞り装置4の間と分離器6と
を接続する配管7と、分離器6の塔底部と主絞り装置4
と熱源側熱交換器5の間とを接続する配管8が設けられ
ている。また配管7と配管8には絞り装置9および10
が、逆止弁11および12と並列に設けられている。分離6
の塔頂より配管13と貯留器14、還流管15が環状に設けら
れており配管13には塔頂熱交換器16が付設されており、
又、配管7と配管8あるいは塔底部には塔底熱交換器17
が付設されている。更に貯留器14より配管8には配管18
が開閉自在な電磁弁19を介して設けられている。
Further, as a sub-cycle connected in parallel to the main cycle, a pipe 7 that connects the load-side heat exchanger 3 and the main expansion device 4 to the separator 6, a column bottom of the separation device 6 and the main expansion device 4 are connected.
A pipe 8 is provided to connect between the heat source side heat exchanger 5 and the heat source side heat exchanger 5. In addition, the expansion devices 9 and 10 are installed in the pipes 7 and 8.
Are provided in parallel with the check valves 11 and 12. Separation 6
A pipe 13 and a reservoir 14 and a reflux pipe 15 are provided in an annular shape from the top of the column, and a top heat exchanger 16 is attached to the pipe 13.
In addition, the bottom heat exchanger 17 is installed in the pipes 7 and 8 or at the bottom of the tower.
Is attached. Furthermore, from the reservoir 14 to the pipe 8 the pipe 18
Is provided via a solenoid valve 19 that can be opened and closed.

このような先行発明での作用様態は以下の如くである。
すなわち暖房時で電磁弁19が閉じている場合には負荷側
熱交換器3で凝縮した液冷媒の一部が逆止弁11を通って
分離器6に流入する。この時、サイクル中の高温源を用
いた塔底熱交換器17によって加熱され、主に冷媒中の低
沸点成分が気化してガス成分を発生して分離器6に入
る。分離器6に入ったガス成分は分離器6内を上昇し、
配管13を通り、サイクル中の低温源を用いた塔頂熱交換
器16により冷却液化されて貯留器14に貯留され、還流管
15より塔頂に液が還流される。塔頂に還流された液冷媒
は分離器6内を下降する間に上昇してくるガス成分と、
分離器6内に充填された充填材表面で気液接触熱交換を
行ない、結果として貯留器14内には低沸点成分が貯留さ
れ、それ故配管8より絞り装置10を通って熱源側熱交換
器5に入る冷媒は高沸点に富んだ冷媒となり、主サイク
ルを徐々に高沸点に富んだ冷媒組成とする事ができ、、
低暖房能力高効率運転が可能となる。
The mode of action in such a prior invention is as follows.
That is, when the solenoid valve 19 is closed during heating, part of the liquid refrigerant condensed in the load side heat exchanger 3 flows into the separator 6 through the check valve 11. At this time, it is heated by the bottom heat exchanger 17 using a high temperature source in the cycle, and mainly the low boiling point component in the refrigerant is vaporized to generate a gas component and enter the separator 6. The gas component entering the separator 6 rises in the separator 6,
Passing through the pipe 13, it is cooled and liquefied by the overhead heat exchanger 16 using a low temperature source in the cycle and stored in the reservoir 14, and the reflux pipe
From 15 the liquid is refluxed to the top of the tower. The liquid refrigerant refluxed to the top of the tower is a gas component that rises while descending in the separator 6,
Gas-liquid contact heat exchange is performed on the surface of the packing material filled in the separator 6, and as a result, low boiling point components are stored in the reservoir 14, and therefore the heat exchange on the heat source side through the expansion device 10 through the pipe 8. The refrigerant entering the vessel 5 becomes a high boiling point refrigerant, and the main cycle can be gradually made to have a high boiling point rich refrigerant composition,
Low heating capacity Highly efficient operation becomes possible.

また、主サイクルを低沸点成分に富んだ元の封入組成に
戻して高暖房能力運転をするには貯留器14より配管8に
接続する配管18の電磁弁19を開放する事により、配管7
より流入した冷媒は主に分離器6→貯留器14→配管18→
絞り10を通り、残り一部が分離器6の底部→配管8→絞
り10を通るものである。この時分離器6内で精留に必要
な塔頂からの液冷媒流下が阻害されて分離が停止し、結
果として主サイクル中は元の封入組成の低沸点成分に富
んだ冷媒組成とすることができる。
Further, in order to restore the main cycle to the original composition of the composition rich in low-boiling point components and operate with high heating capacity, the solenoid valve 19 of the pipe 18 connected to the pipe 8 from the reservoir 14 is opened, so that the pipe 7
The inflowing refrigerant is mainly from the separator 6 → the reservoir 14 → the pipe 18 →
It passes through the throttle 10, and the remaining part passes through the bottom of the separator 6 → the pipe 8 → the throttle 10. At this time, the flow of the liquid refrigerant from the top of the column necessary for rectification is hindered in the separator 6 and the separation is stopped, and as a result, the refrigerant composition rich in low boiling point components of the original enclosed composition is obtained during the main cycle. You can

なお冷房運転時は四方弁2を切換え、電磁弁19が閉じて
いる場合には熱源側熱交換器5で凝縮した液冷媒の一部
が逆止弁12を通って配管8より分離器6に流入する。こ
の時塔底熱交換器17を配管8も加熱できる構成としてい
ると、主に冷媒中の低沸点成分が気化してガス成分を発
生して分離器6に入り、暖房分離時と同じ作用で主サイ
クルを高沸点成分に富んだ冷媒組成とする事ができる。
When the cooling operation is performed, the four-way valve 2 is switched, and when the solenoid valve 19 is closed, a part of the liquid refrigerant condensed in the heat source side heat exchanger 5 passes through the check valve 12 to the separator 6 through the pipe 8. Inflow. At this time, if the bottom heat exchanger 17 is configured to be able to heat the pipe 8 as well, the low boiling point component in the refrigerant is mainly vaporized to generate a gas component and enters the separator 6, which has the same effect as during heating separation. The main cycle can have a refrigerant composition rich in high-boiling components.

また封入組成と同じ低沸点成分に富んだ冷媒組成で運転
する場合に電磁弁19を開放する事により、暖変時とは逆
に、分離器6内での冷媒下降流が増大し、上昇ガス流を
阻害して分離が停止し、結果として主サイクル中は元の
封入組成の低沸点成分に富んだ冷媒組成とすることがで
きる。
Also, when operating with a refrigerant composition rich in low boiling point components, which is the same as the enclosed composition, by opening the solenoid valve 19, the refrigerant downflow in the separator 6 increases and the rising gas rises, contrary to the time of warming. The flow is obstructed and the separation is stopped, resulting in a refrigerant composition rich in low boiling components of the original enclosed composition during the main cycle.

発明が解決しようとする問題点 以上述べた先行発明の熱ポンプ装置においては、基本的
に冷房時、暖房時共冷媒組成が可変でかつその可変が確
実に行なわれるものである。しかしながら、このような
分離作用は、本質的に物質交換であり、所望分離濃度に
到達するのに長時間要するものであった。分離時間を早
めるには、分離器での処理量を増加させれば良く、その
方法としては、分離器6に流入する冷媒量を増やし、塔
底熱交換器17での加熱量と塔頂熱交換器16での冷却量を
増加させる事により塔底での発生ガス量と、塔頂での凝
縮液量を増加させ、分離器6での処理量を増加させれば
良い。しかしながら、分離器6の塔径を固定して単純に
流入量を増加させると分離器6での最適な液流下と気体
上昇が維持されず、分離作用が停止してしまう。また加
熱量を単純に大きくすると、いわゆるフラッディング現
象が発生して分離作用が停止するとともに、加熱源とし
て主サイクルの高温源例えば圧縮機1の吐出ガス等を用
いた場合には、負荷側熱交換器3に入る冷媒温度が下
り、暖房時,冷房時に大きく能力ダウンするという問題
点がある。またこのように加熱量を大きくした場合には
冷却量も大きくする必要があり、そのため塔底熱交換器
17,塔頂熱交換器16が大きくなってしまうという問題点
を有している。
Problems to be Solved by the Invention In the heat pump device of the prior invention described above, basically, the composition of the co-refrigerant during cooling and heating is variable, and the variation is surely performed. However, such a separation action is essentially a substance exchange, which takes a long time to reach the desired separation concentration. In order to accelerate the separation time, it is sufficient to increase the amount of treatment in the separator. The method is to increase the amount of refrigerant flowing into the separator 6, and to increase the amount of heat in the bottom heat exchanger 17 and the heat of the top of the tower. The amount of gas generated at the bottom of the column and the amount of condensate at the top of the column may be increased by increasing the amount of cooling in the exchanger 16, and the amount of treatment in the separator 6 may be increased. However, if the column diameter of the separator 6 is fixed and the amount of inflow is simply increased, the optimum liquid flow and gas rise in the separator 6 are not maintained, and the separation action stops. Further, if the heating amount is simply increased, a so-called flooding phenomenon occurs and the separation action stops, and when a high temperature source of the main cycle such as the discharge gas of the compressor 1 is used as the heating source, heat exchange on the load side is performed. There is a problem in that the temperature of the refrigerant entering the vessel 3 decreases, and the capacity is greatly reduced during heating and cooling. In addition, when the heating amount is increased in this way, the cooling amount must also be increased. Therefore, the bottom heat exchanger
17, There is a problem that the overhead heat exchanger 16 becomes large.

問題点を解決するための手段 そこで本発明では、塔頂熱交換器の冷却源として吸入ガ
スを用いると共に分離作用時に分離器の冷却器となる塔
頂熱交換器入口冷媒が湿り状態となる様に、主絞り装置
の開度を所定時間大きくするものである。
Means for Solving the Problems In the present invention, therefore, an inlet gas is used as a cooling source of the overhead heat exchanger, and the refrigerant at the inlet of the overhead heat exchanger, which serves as a cooler of the separator during the separation operation, is in a wet state. In addition, the opening of the main throttle device is increased for a predetermined time.

作用 上記構成による本発明によれば、分離作用の開始時に主
絞り装置の開度を大きくして主サイクルを若干湿りのサ
イクルとし、冷却源を吸入ガスとした時の冷却器内冷媒
流れを気液二相とする事で熱伝達率を上げ、更に負荷側
熱交換器より分離器に流入する冷媒の過冷却度を抑え
て、分離器でのガス発生量を多くし、これらの作用によ
り所望の分離濃度までの分離時間を短縮する事ができる
ものである。
Action According to the present invention having the above-described configuration, the opening of the main expansion device is increased at the start of the separation action to make the main cycle a slightly moist cycle, and the refrigerant flow in the cooler when the cooling source is suction gas is controlled. By using two-phase liquid, the heat transfer coefficient is increased, and the degree of supercooling of the refrigerant flowing into the separator from the load side heat exchanger is suppressed to increase the gas generation amount in the separator, and these effects are desirable. The separation time up to the separation concentration of can be shortened.

実 施 例 本発明になる熱ポンプ装置の基本構成を第1図に示し、
1〜19は第5図の先行発明と同一構成要素である。本発
明の特徴とする所は、塔頂熱交換器16の冷却源として圧
縮機1の吸入ガスを接続すると共に、たとえば吸入温度
センサー20により主絞り装置4の開度を調整可能とした
ものであり、分離作用時の電磁弁19と主絞り装置4の動
作を第2図に示す。暖房運転について述べる。暖房負荷
が小さくなり、例えば負荷側熱交換器3の吸入温度セン
サー20により暖房能力低減の指令が制御回路(図示せ
ず)に入り、主サイクル濃度を高沸点冷媒組成に変える
場合、第2図に示すように開放されていた電磁弁19を閉
じるようにする。この場合分離作用は次の作用により進
行するものである。すなわち負荷側熱交換器3で凝縮し
た液冷媒の一部が逆止弁11を通って分離器6に流入す
る。この時サイクル中の高温源を用いた塔底熱交換器17
によって加熱され、主に冷媒中の低沸点成分が気化して
ガスを発生し分離器6に入る。分離器6に入ったガス成
分は分離器6内を上昇し、配管13を通り、サイクル中の
低温源として圧縮機1の吸入冷媒を用いた冷却器として
作用する塔頂熱交換器16により冷却液化されて貯留器14
に貯留され、電磁弁19が閉じているので還流管15より塔
頂に液が還流される。塔頂に還流された液冷媒は分離器
6内を下降する間に上昇してくるガス成分と分離器6内
に充填された充填材表面で気液接触熱交換を行ない、結
果として貯留器14内には低沸点成分が貯留され、それ故
配管8より絞り装置10を通って熱源側熱交換器5に入る
冷媒は高沸点に富んだ冷媒となり、主サイクルを徐々に
高沸点に富んだ冷媒組成とする事ができる。
Example The basic configuration of the heat pump device according to the present invention is shown in FIG.
1 to 19 are the same constituent elements as those of the prior invention of FIG. A feature of the present invention is that the suction gas of the compressor 1 is connected as a cooling source of the overhead heat exchanger 16 and the opening degree of the main expansion device 4 can be adjusted by, for example, a suction temperature sensor 20. FIG. 2 shows the operation of the solenoid valve 19 and the main throttle device 4 during the separation operation. The heating operation will be described. When the heating load becomes small and a command for heating capacity reduction is input to the control circuit (not shown) by the intake temperature sensor 20 of the load side heat exchanger 3, for example, and the main cycle concentration is changed to the high boiling point refrigerant composition, FIG. The solenoid valve 19 that has been opened is closed as shown in FIG. In this case, the separating action proceeds by the following action. That is, a part of the liquid refrigerant condensed in the load side heat exchanger 3 flows into the separator 6 through the check valve 11. At this time, the bottom heat exchanger using a high temperature source during the cycle 17
The low boiling point component in the refrigerant is mainly vaporized to generate gas and enter the separator 6. The gas component that has entered the separator 6 rises in the separator 6, passes through the pipe 13, and is cooled by the overhead heat exchanger 16 that functions as a cooler using the refrigerant sucked in the compressor 1 as a low temperature source during the cycle. Liquefied reservoir 14
And the electromagnetic valve 19 is closed, the liquid is refluxed from the reflux pipe 15 to the top of the tower. The liquid refrigerant recirculated to the top of the tower performs gas-liquid contact heat exchange between the gas components rising in the separator 6 while descending in the separator 6 and the surface of the packing material filled in the separator 6, and as a result, the reservoir 14 The low boiling point component is stored therein, and therefore the refrigerant that enters the heat source side heat exchanger 5 through the expansion device 10 from the pipe 8 becomes a high boiling point refrigerant, and the main cycle gradually becomes a high boiling point refrigerant. It can be a composition.

この時、本発明では分離作用時に、開始から所定時間の
間だけ、塔頂熱交換器16に入る冷媒が湿り状態となるよ
うに絞り装置4の開度を大きくするものであり、第3図
に主絞り装置4の開度を大きくした時と、小さくした時
のサイクルの動きをモリエル線図上に示している。分離
用の塔頂熱交換器16の熱源を圧縮機1の吸入ガスとし適
当な過熱度を確保する様に主絞り装置4の開度を小さく
した状態では、塔頂熱交換器16での入口冷媒状態Aは過
熱ガスとなるが、本発明では分離開始とともに主絞り装
置4の開度を大きくし、塔頂熱交換器16の入口冷媒状態
を湿り状態の点Bに移行させるものである。また分離器
6への入口冷媒状態は主絞り装置4の開度を小さくする
と点Cの過冷却の大きい点となるが、本発明の様に主絞
り装置4の開度を大きくする事により点Dの過冷却度の
小さい状態に移行する。また第2図の動作図に示す如く
主絞り装置4の開度を大きくするのは、分離開始より所
望濃度に達するまでの所定時間だけであり、その後の分
離作用を継続する間は主絞り装置4の開度を小さくし
て、サイクルとして最適な運転ができるようにしてい
る。
At this time, in the present invention, during the separation operation, the opening degree of the expansion device 4 is increased so that the refrigerant entering the overhead heat exchanger 16 is in a wet state for a predetermined time from the start. Further, the movement of the cycle when the opening of the main expansion device 4 is increased and when it is decreased is shown on the Mollier diagram. In the state in which the opening of the main expansion device 4 is made small so that the heat source of the separation top heat exchanger 16 is used as the suction gas of the compressor 1 to ensure an appropriate degree of superheat, the inlet at the top heat exchanger 16 Although the refrigerant state A becomes superheated gas, in the present invention, the opening degree of the main expansion device 4 is increased at the start of separation to shift the refrigerant state at the inlet of the overhead heat exchanger 16 to the wet point B. Further, the state of the refrigerant at the inlet to the separator 6 becomes a large point of the supercooling at the point C when the opening degree of the main expansion device 4 is made small, but it becomes a point by increasing the opening degree of the main expansion device 4 as in the present invention. Transition to a state in which the degree of supercooling of D is small. Further, as shown in the operation diagram of FIG. 2, the opening degree of the main expansion device 4 is increased only for a predetermined time from the start of the separation until the desired concentration is reached, and thereafter, the main expansion device 4 is continued while the separation action is continued. The opening of No. 4 is reduced so that optimum operation can be performed as a cycle.

このように分離開始時に主絞り装置4を開けて前述のよ
うにサイクルを移行させると次のような効果がある。
Thus, opening the main diaphragm device 4 at the start of separation and shifting the cycle as described above has the following effects.

すなわち、塔頂熱交換器16での入口冷媒状態を湿り状態
の点Bとする事により、塔頂熱交換器16での熱伝達率を
向上させる事ができ、分離作用時の処理量である還流量
を増加させ、分離時間の短縮が図れる。また分離器6へ
の冷媒入口状態を過冷却度の大きい点Cの状態から過冷
却度の小さい点Dに移行させる事により、分離器6入口
でのガス発生が容易になるし、発生ガス量を多くする事
ができ、結果として、処理量である還流量を増加させ、
分離時間の短縮が図れる。
That is, by setting the inlet refrigerant state in the overhead heat exchanger 16 to the wet state point B, the heat transfer coefficient in the overhead heat exchanger 16 can be improved, which is the processing amount at the time of separation action. The reflux amount can be increased and the separation time can be shortened. Further, by shifting the state of the refrigerant inlet to the separator 6 from the state of the point C where the degree of supercooling is large to the point D where the degree of supercooling is small, the gas generation at the inlet of the separator 6 is facilitated, and the amount of generated gas is increased. Can be increased, and as a result, the amount of reflux, which is a processing amount, is increased,
The separation time can be shortened.

第4図は、本発明の主絞り装置4の開度調整を応用した
場合の主サイクル濃度変化を開度調整しない場合の濃度
変化と比較して示したものであり、横軸は電磁弁19を閉
じて分離を開始させてからの経過時間であり、縦軸の下
段側は主サイクルの低沸点成分濃度を示し、上段側は主
絞り装置4の開度を示しており、実線が本発明の如く開
度調整をした場合、破線が開度調整をしない場合で、開
度調整により、所望濃度達成時間を約半分近くまで短く
できる事が確認されている。また第4図に示すように主
絞り装置4の開度は分離濃度到達後には小さくしてサイ
クルとして最適な運転ができるようにしているがこの状
態でも分離濃度が維持される事も確認されている。な
お、主絞り装置4の開度調整は電子制御膨張弁等で構成
するばかりでなく、抵抗の異なる2つの絞り装置を切換
える如く調整してもよいことはもちろんのことである。
FIG. 4 shows a change in concentration of the main cycle when the opening adjustment of the main throttle device 4 of the present invention is applied in comparison with a concentration change when the opening is not adjusted. Is the time that has elapsed since the start of separation and the lower side of the vertical axis indicates the low boiling point component concentration of the main cycle, and the upper side indicates the opening degree of the main expansion device 4, and the solid line indicates the present invention. It has been confirmed that, when the opening is adjusted as described above, the desired concentration achievement time can be shortened to about half by adjusting the opening when the broken line does not adjust the opening. Further, as shown in FIG. 4, the opening of the main expansion device 4 is made small after reaching the separation concentration so that optimum operation can be performed as a cycle, but it was also confirmed that the separation concentration is maintained even in this state. There is. Needless to say, the opening degree of the main expansion device 4 may be adjusted not only by using an electronically controlled expansion valve or the like but also by switching between two expansion devices having different resistances.

発明の効果 以上説明したように本発明による熱ポンプ装置において
は、分離作用開始時に所定時間の間、主絞り装置の開度
を大きくして冷却器入口冷媒を湿り状態とし、冷却器で
の熱伝達率を増加させて還流量を増加させ、更に分離器
入口冷媒の過冷却度を小さくして、分離器入口ガス発生
量を増加させて還流量を増やすという二重の作用により
所望サイクル濃度達成までの時間を大巾に短縮できると
いう効果を有するものである。
Effects of the Invention As described above, in the heat pump device according to the present invention, the opening of the main expansion device is increased for a predetermined time at the start of the separation operation to bring the refrigerant inlet refrigerant into a wet state, and heat in the cooler is increased. Achieving the desired cycle concentration by the dual action of increasing the transfer rate to increase the amount of reflux and further reducing the degree of supercooling of the refrigerant at the inlet of the separator to increase the amount of gas generated at the inlet of the separator to increase the amount of reflux. This has the effect of significantly shortening the time until.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す構成図、第2図は本発
明の主絞り装置開度の基本動作を示す図、第3図は主絞
り装置開度によるサイクル動作を示す図、第4図は主絞
り装置開度調整あり,なしでの分離濃度変化を示す図、
第5図は我々の先行発明の一実施例を示す図である。 1……圧縮機、3……負荷側熱交換器、4……主絞り装
置、5……熱源側熱交換器、6……分離器、14……分離
器、16……塔頂熱交換器、19……電磁弁。
FIG. 1 is a configuration diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing a basic operation of a main throttle device opening of the present invention, and FIG. 3 is a diagram showing a cycle operation according to a main throttle device opening, FIG. 4 is a diagram showing a separation concentration change with and without main throttle device opening adjustment,
FIG. 5 is a diagram showing an embodiment of our prior invention. 1 ... Compressor, 3 ... Load side heat exchanger, 4 ... Main throttle device, 5 ... Heat source side heat exchanger, 6 ... Separator, 14 ... Separator, 16 ... Tower heat exchange Container, 19 ... Solenoid valve.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】非共沸混合冷媒を封入し、圧縮機、負荷側
熱交換器、主絞り装置、熱源側熱交換器を環状に接続し
た主サイクルを構成し、上部に冷却器および貯留器を順
に接続して再びその上部に帰還する回路を構成し前記主
サイクル中の非共沸混合冷媒を分離する分離器と、一端
を前記負荷側熱交換器と前記絞り装置との間に接続し、
他端を前記分離器に接続し、途中に加熱手段を設けた第
1の配管と、一端を前記分離器の塔底部に接続し、他端
を前記絞り装置と前記熱源側熱交換器との間に接続した
第2の配管とを設け、冷却源として主サイクル中の前記
圧縮機吸入冷媒を用い、分離作用開始時の所定時間の
間、前記主絞り装置の開度を大きくし、前記冷却器の入
口での冷媒状態を湿り状態としたことを特徴とする熱ポ
ンプ装置。
1. A main cycle in which a non-azeotropic mixed refrigerant is sealed and a compressor, a load side heat exchanger, a main expansion device, and a heat source side heat exchanger are connected in an annular manner, and a cooler and a reservoir are provided in the upper part. And a separator for separating the non-azeotropic mixed refrigerant in the main cycle by constituting a circuit for returning to the upper portion again and connecting one end between the load side heat exchanger and the expansion device. ,
A first pipe having the other end connected to the separator and a heating means provided on the way, and one end connected to the tower bottom of the separator and the other end connected to the expansion device and the heat source side heat exchanger. And a second pipe connected between them, the compressor suction refrigerant in the main cycle is used as a cooling source, and the opening degree of the main expansion device is increased for a predetermined time at the start of the separation operation to perform the cooling. A heat pump device characterized in that the refrigerant state at the inlet of the vessel is in a wet state.
JP13334486A 1986-06-09 1986-06-09 Heat pump device Expired - Lifetime JPH0739887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13334486A JPH0739887B2 (en) 1986-06-09 1986-06-09 Heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13334486A JPH0739887B2 (en) 1986-06-09 1986-06-09 Heat pump device

Publications (2)

Publication Number Publication Date
JPS62293045A JPS62293045A (en) 1987-12-19
JPH0739887B2 true JPH0739887B2 (en) 1995-05-01

Family

ID=15102524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13334486A Expired - Lifetime JPH0739887B2 (en) 1986-06-09 1986-06-09 Heat pump device

Country Status (1)

Country Link
JP (1) JPH0739887B2 (en)

Also Published As

Publication number Publication date
JPS62293045A (en) 1987-12-19

Similar Documents

Publication Publication Date Title
JPH0739887B2 (en) Heat pump device
US4290272A (en) Means and method for independently controlling vapor compression cycle device evaporator superheat and thermal transfer capacity
JPH0646118B2 (en) Heat pump device
JPH0247668B2 (en) NETSUHONPUSOCHI
JPH0481708B2 (en)
JPH083887Y2 (en) Heat pump equipment
JPH0544582B2 (en)
JPH0577942B2 (en)
JPH0639979B2 (en) Refrigeration cycle equipment
JPH08145494A (en) Absorption type heat pump
JPH0739886B2 (en) Heat pump device
JPS636347A (en) Refrigeration cycle
JPH063336Y2 (en) Refrigeration cycle
CA1134157A (en) Means and method for independently controlling vapor compression cycle device evaporator superheat and thermal transfer capacity
JPS58104475A (en) Heat pump device
JP2512127B2 (en) Heat pump device
JPH0247670B2 (en) NETSUHONPUSOCHI
JPH0612201B2 (en) Heat pump device
JPH0264369A (en) Heat pump device
JP2506542Y2 (en) Absorption cold water heater
JPS6166054A (en) Heat pump device
JPH06103128B2 (en) Heat pump device
JPH0424616B2 (en)
JPS62261863A (en) Heat pump device
JPH0461260B2 (en)