JPH083887Y2 - Heat pump equipment - Google Patents

Heat pump equipment

Info

Publication number
JPH083887Y2
JPH083887Y2 JP14125888U JP14125888U JPH083887Y2 JP H083887 Y2 JPH083887 Y2 JP H083887Y2 JP 14125888 U JP14125888 U JP 14125888U JP 14125888 U JP14125888 U JP 14125888U JP H083887 Y2 JPH083887 Y2 JP H083887Y2
Authority
JP
Japan
Prior art keywords
inlet
mixed refrigerant
refrigerant
azeotropic mixed
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14125888U
Other languages
Japanese (ja)
Other versions
JPH0262366U (en
Inventor
哲志 嶋谷
恵司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP14125888U priority Critical patent/JPH083887Y2/en
Publication of JPH0262366U publication Critical patent/JPH0262366U/ja
Application granted granted Critical
Publication of JPH083887Y2 publication Critical patent/JPH083887Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案はヒートポンプ装置に関し、特に作動媒体とし
て非共沸混合冷媒を用いたヒートポンプ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to a heat pump device, and more particularly to a heat pump device using a non-azeotropic mixed refrigerant as a working medium.

(従来の技術) 従来の非共沸混合冷媒を用いたヒートポンプ装置を第
2図に示す。
(Prior Art) A heat pump device using a conventional non-azeotropic mixed refrigerant is shown in FIG.

第2図において、1は圧縮機、2は凝縮器、3は絞り
装置、4は蒸発器であり、この圧縮機1、凝縮器2、絞
り装置3、蒸発器4で主サイクルを構成している。そし
て、凝縮器2の出口部と精留塔11の塔頂部とを配管12で
接続し、同じく精留塔11の塔頂部と蒸発器4の入口部と
を副絞り装置14を介して配管13で接続し、精留塔11の塔
底部に塔底貯留器15を環状に接続している。
In FIG. 2, 1 is a compressor, 2 is a condenser, 3 is a throttle device, 4 is an evaporator, and the compressor 1, the condenser 2, the throttle device 3 and the evaporator 4 constitute a main cycle. There is. Then, the outlet of the condenser 2 and the top of the rectification tower 11 are connected by a pipe 12, and the top of the rectification tower 11 and the inlet of the evaporator 4 are also connected by a pipe 13 via a sub-throttler 14. The column bottom reservoir 15 is annularly connected to the column bottom of the rectification column 11.

尚、配管17は塔底貯留器15を二方弁16、副絞り装置14
を介して蒸発器4の入口側に接続するものであり、18は
塔底貯留器15の近傍に付設された加熱源である。
In addition, the pipe 17 includes a bottom reservoir 15, a two-way valve 16, and a sub-throttle device 14.
The heating source 18 is connected to the inlet side of the evaporator 4 via the, and a heating source 18 is provided near the bottom reservoir 15.

かかる構成において、二方弁16の閉止時は凝縮器2で
液化された冷媒が高圧のまま配管12を経由して精留塔11
の塔頂部より流下し、一方塔底貯留器15にある液冷媒
は、加熱源18により加熱され気化し、精留塔11内を上昇
する。このとき、流下する液成分との精留作用により精
留塔11内部を上昇するガス成分は上方ほど低沸点冷媒に
富む。塔頂部に達したガス冷媒は配管13が常に開放され
ているため副絞り装置14を経由して主サイクル回路を流
れる冷媒と混合され、主サイクル回路を循環する冷媒そ
のものが低沸点冷媒に富んだ状態となる。
In such a configuration, when the two-way valve 16 is closed, the refrigerant liquefied in the condenser 2 remains at a high pressure and passes through the pipe 12 to the rectification column 11
On the other hand, the liquid refrigerant flowing down from the tower top part of the column bottom reservoir 15 is heated by the heating source 18 and vaporized, and rises in the rectification column 11. At this time, the gas component rising inside the rectification column 11 due to the rectification action with the liquid component flowing down is richer in the low boiling point refrigerant as it goes upward. The gas refrigerant reaching the tower top is mixed with the refrigerant flowing in the main cycle circuit via the sub expansion device 14 because the pipe 13 is always open, and the refrigerant itself circulating in the main cycle circuit is rich in low boiling point refrigerant. It becomes a state.

また、二方弁16の開放時は、精留塔11が配管17を通じ
て連通された高圧の凝縮器2と低圧の蒸発器4の入口に
介在することになるために、精留塔11の塔頂部から流下
している液冷媒の流速が増大し、精留塔11の塔底部で発
生するガス成分の上昇を抑え精留作用が停止され、主サ
イクル回路は封入した非共沸混合冷媒のままとなる(例
えば特開昭62−245053号公報参照)。
Further, when the two-way valve 16 is opened, the rectification column 11 is present at the inlets of the high-pressure condenser 2 and the low-pressure evaporator 4 which are communicated with each other through the pipe 17. The flow velocity of the liquid refrigerant flowing down from the top is increased, the rectification action is stopped by suppressing the rise of gas components generated at the bottom of the rectification column 11, and the main cycle circuit remains the enclosed non-azeotropic mixed refrigerant. (See, for example, Japanese Patent Laid-Open No. 62-245053).

(考案が解決しようとする問題点) ところが、この従来のヒートポンプ装置では、精留塔
11における非共沸混合冷媒の流入口が、その塔頂部に一
箇所しか設けられていないために、非共沸混合冷媒を所
望の組成比になるまで分離するのに長時間を要するとい
う問題があった。
(Problems to be solved by the invention) However, in this conventional heat pump device,
Since the inflow port of the non-azeotropic mixed refrigerant in 11 is provided only at one place on the tower top, there is a problem that it takes a long time to separate the non-azeotropic mixed refrigerant until the desired composition ratio is reached. there were.

即ち、非共沸混合冷媒を混合してヒートポンプサイク
ルを運転するときは、主サイクル中も貯留器15中も同じ
組成であるために、精留塔上部のみの入口である場合、
分離操作開始当初は精留塔11の塔底部も塔頂部も同じ液
組成となり、ほとんど精留作用のないまま主サイクルへ
混合冷媒が戻ってしまうからである。
That is, when operating the heat pump cycle by mixing the non-azeotropic mixed refrigerant, because it has the same composition in the main cycle and the reservoir 15, if only the inlet of the rectification column upper part,
This is because at the beginning of the separation operation, the column bottom and top of the rectification column 11 have the same liquid composition, and the mixed refrigerant returns to the main cycle with almost no rectification.

本考案はこのような従来装置の問題点に鑑み案出され
たものであり、精留塔への非共沸混合冷媒の流入位置を
可変することによって、非共沸混合冷媒の分離時間を短
縮し、もって装置全体の効率を良くしたヒートポンプ装
置を提供することを目的とするものである。
The present invention has been devised in view of such problems of the conventional apparatus, and shortens the separation time of the non-azeotropic mixed refrigerant by changing the inflow position of the non-azeotropic mixed refrigerant to the rectification column. Therefore, it is an object of the present invention to provide a heat pump device that improves the efficiency of the entire device.

(問題点を解決するための手段) 本考案によれば、圧縮機、凝縮器、絞り装置、及び蒸
発器を順次環状に接続すると共に、前記凝縮器の出口部
と蒸発器の入口部との間に非共沸混合冷媒を分離するた
めの精留塔を設けたヒートポンプ装置において、前記精
留塔に高低差のある入口部を複数個設けると共に、該複
数個の入口部と前記凝縮器との間に制御弁を設け、該制
御弁で非共沸混合冷媒の分離操作開始当初は非共沸混合
冷媒を精留塔内に流入させる流入口として低所の入口部
を選択すると共に、一定時間経過後は非共沸混合冷媒の
分離の進行に応じて流入口を順次高所の入口部へと切替
えることを特徴とするヒートポンプ装置が提供される。
(Means for Solving the Problems) According to the present invention, the compressor, the condenser, the expansion device, and the evaporator are sequentially connected in an annular shape, and the outlet of the condenser and the inlet of the evaporator are connected. In a heat pump device provided with a rectification tower for separating a non-azeotropic mixed refrigerant, a plurality of inlet sections having height differences are provided in the rectification tower, and the plurality of inlet sections and the condenser are provided. A control valve is provided between the control valve and at the beginning of the separation operation of the non-azeotropic mixed refrigerant with the control valve, the low inlet portion is selected as an inlet for introducing the non-azeotropic mixed refrigerant into the rectification column, Provided is a heat pump device characterized in that, after a lapse of time, the inlet is sequentially switched to the inlet at a high place in accordance with the progress of separation of the non-azeotropic mixed refrigerant.

(実施例) 以下、本考案を添付図面に基づき詳細に説明する。Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図は本考案に係わるヒートポンプ装置の一実施例
を示す概略構成図であり、1〜4は従来例と同一の構成
要素であり、この圧縮機1、凝縮器2、絞り装置3、蒸
発器4で主サイクルを構成している。
FIG. 1 is a schematic configuration diagram showing an embodiment of a heat pump device according to the present invention, in which 1 to 4 are the same constituent elements as in the conventional example, and a compressor 1, a condenser 2, a throttle device 3 and an evaporator are shown. The device 4 constitutes the main cycle.

本考案の主たる構成の相違は、精留塔11への非共沸混
合冷媒の流入高さを異ならしむることができるように高
低差のある複数個の、例えば2個の入口部を設けたこと
である。即ち、精留塔11のほぼ中間部には、低所の入口
部5aを設けており、精留塔11の塔頂部には高所の入口部
5bを設けている。
The main difference of the configuration of the present invention is that a plurality of, for example, two inlet portions with different heights are provided so that the inflow height of the non-azeotropic mixed refrigerant into the rectification column 11 can be made different. That is. That is, the lower part of the rectification tower 11 is provided with an inlet part 5a in the middle thereof, and the top part of the rectification column 11 is provided with an entrance part of the high place.
5b is provided.

そしてこの複数個の入口部5a,5bと凝縮器2の出口部
を制御弁6を介して接続しており、この制御弁6と精留
塔11の複数個の入口部5a,5bとは配管7a,7bによって接続
している。
The plurality of inlet portions 5a, 5b and the outlet portion of the condenser 2 are connected via a control valve 6, and the control valve 6 and the plurality of inlet portions 5a, 5b of the rectification column 11 are connected by piping. Connected by 7a and 7b.

前記制御弁6としては、例えば精留塔11の入口部を2
個設ける場合は、三方弁等が用いられ、精留塔11の入口
部を3個設ける場合は、四方弁等が用いられる。
As the control valve 6, for example, the inlet of the rectification tower 11 is
When providing three, a three-way valve or the like is used, and when providing three inlets of the rectification column 11, a four-way valve or the like is used.

このヒートポンプサイクルでは、例えば低温領域で高
い冷凍能力を得ることができる低沸点冷媒R22や高温領
域での冷媒の圧力を下げるため高沸点冷媒R114を混合し
た非共沸混合冷媒等が用いられる。
In this heat pump cycle, for example, a low boiling point refrigerant R22 that can obtain a high refrigerating capacity in a low temperature range, a non-azeotropic mixed refrigerant in which a high boiling point refrigerant R114 is mixed in order to reduce the pressure of the refrigerant in a high temperature range, and the like are used.

尚、第1図中、16は混合冷媒の分離操作と混合操作と
を選択して行わせるための二方弁であり、18は混合冷媒
の分離操作の際に、精留塔11から流下する非共沸混合冷
媒を加熱する加熱源である。
In FIG. 1, 16 is a two-way valve for selectively performing a mixed refrigerant separation operation and a mixing operation, and 18 flows down from the rectification column 11 during the mixed refrigerant separation operation. It is a heating source for heating the non-azeotropic mixed refrigerant.

次に、このヒートポンプサイクルの動作について説明
する。
Next, the operation of this heat pump cycle will be described.

まず、二方弁16を開放している時には、貯留器15に貯
留されていた高沸点成分(例えばR114)が配管17を経由
して主サイクル内に流入し、主サイクル内では高沸点冷
媒(例えばR114)と低沸点冷媒(例えばR22)が混合し
た状態で循環することとなる。
First, when the two-way valve 16 is opened, the high boiling point component (for example, R114) stored in the reservoir 15 flows into the main cycle via the pipe 17, and the high boiling point refrigerant ( For example, R114) and a low boiling point refrigerant (for example, R22) are circulated in a mixed state.

一方、二方弁16を閉止したときには、凝縮器2から出
た冷媒は、制御弁6を通過して精留塔11内に入り、精留
塔11で高沸点成分(例えばR114)が液化して貯留器15内
に貯留されると共に、低沸点成分(例えばR22)は精留
塔11内を気体のまま通過して配管13内に流入し、副絞り
部14部分を通って主サイクル内に戻る。従って、主サイ
クル内では低沸点成分(例えばR22)に富んだ状態で冷
媒が循環することとなる。
On the other hand, when the two-way valve 16 is closed, the refrigerant discharged from the condenser 2 passes through the control valve 6 and enters the rectification column 11, where the high boiling point component (eg R114) is liquefied. The low boiling point component (for example, R22) passes through the rectification column 11 as a gas and flows into the pipe 13, and passes through the sub-throttle portion 14 into the main cycle. Return. Therefore, in the main cycle, the refrigerant circulates in a state rich in low boiling point components (for example, R22).

この場合、非共沸混合冷媒の分離操作開始当初は、制
御弁6で精留塔11の複数の入口部5a,5bのうちの低所の
入口5aから非共沸混合冷媒を流入させるようにしている
ことから、精留塔が有効に利用され非共沸混合冷媒は精
留作用を強く受け、より低沸点成分(例えばR22)に富
んだ冷媒が配管13、副絞り装置14を通って主サイクルに
流入する。すなわち、分離操作開始当初は、主サイクル
中の冷媒の組成と精留塔11の塔頂部から発生する冷媒ガ
スの組成とは差が大きいために、主サイクル中の冷媒の
組成に近い冷媒が存在する精留塔11内の低所に冷媒を流
入させることにより、より効率的に精留を行うことがで
きる。主サイクル中の冷媒の組成は、徐々に低沸点成分
に富んでくるため、低沸点成分と高沸点成分が同一比で
存在する精留塔内の位置は、分離が進行するにしたがっ
て徐々に高所に移動する。このため、分離の進行にした
がって非共沸混合冷媒の流入位置を高所に移動させるこ
とにより、より効率的に精留を進めることができる。従
って高沸点冷媒と低沸点冷媒とは短時間で確実に分離し
てしまうと共に、一定時間経過し、主サイクル中の冷媒
がある程度低沸点成分(例えばR22)に富んだ状態とな
った後は、高所の入口部5bから非共沸混合冷媒を流入さ
せることからより精度の高い精留作用が行われ、主サイ
クル内は低沸点冷媒に著しく富んだ状態となる。
In this case, at the beginning of the separation operation of the non-azeotropic mixed refrigerant, the control valve 6 is made to flow the non-azeotropic mixed refrigerant through the low inlet 5a of the plurality of inlets 5a, 5b of the rectification tower 11. Therefore, the rectification column is effectively used, and the non-azeotropic mixed refrigerant is strongly subjected to the rectification action, and the refrigerant rich in the lower boiling point component (for example, R22) is mainly passed through the pipe 13 and the sub expansion device 14. Flow into the cycle. That is, at the beginning of the separation operation, since there is a large difference between the composition of the refrigerant in the main cycle and the composition of the refrigerant gas generated from the top of the rectification column 11, there is a refrigerant close to the composition of the refrigerant in the main cycle. By causing the refrigerant to flow into a low place in the rectification column 11, the rectification can be performed more efficiently. Since the composition of the refrigerant in the main cycle gradually becomes rich in low-boiling components, the position in the rectification column where low-boiling components and high-boiling components exist in the same ratio gradually increases as the separation proceeds. Move to another place. For this reason, by moving the inflow position of the non-azeotropic mixed refrigerant to a higher place as the separation proceeds, rectification can be proceeded more efficiently. Therefore, the high-boiling refrigerant and the low-boiling refrigerant are surely separated in a short time, and after a certain period of time, the refrigerant in the main cycle becomes rich in low-boiling components (for example, R22) to some extent, Since the non-azeotropic mixed refrigerant is caused to flow in from the inlet portion 5b at a high place, a more accurate rectification action is performed, and a low boiling point refrigerant is remarkably rich in the main cycle.

尚、上記実施例では、精留塔11の中間部と塔頂部の2
ケ所に非共沸混合冷媒の入口部を設けることについて述
べたが、この実施例に限定されるものではなく、例えば
精留塔11の塔底部、中間部、及び塔頂部の3ケ所に入口
部を設けて、低所の入口部から順次非共沸混合冷媒を精
留塔11に流入させるようにしても良く、更にそれ以上の
入口部を設けても良い。即ち、精留塔11の入口部を多数
設ければ設けるほど流入組成に応じた流入口を選択で
き、より精留塔を有効に利用できるため、非共沸混合冷
媒を短時間で確実に分離できることとなる。
In addition, in the above-mentioned embodiment, the two parts of the middle part and the top part of the rectification tower 11 are used.
Although it has been described that the inlet portion for the non-azeotropic mixed refrigerant is provided at each of the three places, the present invention is not limited to this embodiment. For example, the inlet portion is provided at three places of the bottom, middle, and top of the rectification column 11. May be provided to allow the non-azeotropic mixed refrigerant to sequentially flow into the rectification column 11 from the inlet at a low place, or more inlets may be provided. That is, the more inlets of the rectification tower 11 are provided, the more the inlet can be selected according to the inflow composition, and the rectification tower can be used more effectively, so that the non-azeotropic mixed refrigerant can be reliably separated in a short time. It will be possible.

(考案の効果) 以上のように、本考案に係わるヒートポンプ装置によ
れば、精留塔に高低差のある入口部を複数個設けると共
に、該複数個の入口部と前記凝縮器との間に制御弁を設
け、該制御弁で非共沸混合冷媒の分離操作開始当初は低
所の入口部から非共沸混合冷媒を流入させると共に、一
定時間経過後は高所の入口部から非共沸混合冷媒を精留
塔内に流入させるようにしたことから、非共沸混合冷媒
の分離時間を短縮できると共に、非共沸混合冷媒を精度
良く分離でき、もって装置全体の効率を良くしたヒート
ポンプ装置を提供することができる。
(Effects of the Invention) As described above, according to the heat pump device of the present invention, the rectification tower is provided with a plurality of inlets having different heights, and between the plurality of inlets and the condenser. A control valve is provided to allow the non-azeotropic mixed refrigerant to flow from the inlet at a low place at the beginning of the separation operation of the non-azeotropic mixed refrigerant with the control valve, and to non-azeotrope from the inlet at a high place after a certain period of time. Since the mixed refrigerant is allowed to flow into the rectification column, the separation time of the non-azeotropic mixed refrigerant can be shortened and the non-azeotropic mixed refrigerant can be separated with high accuracy, thereby improving the efficiency of the entire device. Can be provided.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案に係わるヒートポンプ装置の一実施例を
示す概略構成図、第2図は従来のヒートポンプ装置を示
す概略構成図である。 1……圧縮器、2……凝縮器 3……絞り装置、4……蒸発器 5a、5b……入口部、6……制御弁 11……精留塔
FIG. 1 is a schematic configuration diagram showing an embodiment of a heat pump device according to the present invention, and FIG. 2 is a schematic configuration diagram showing a conventional heat pump device. 1 ... Compressor, 2 ... Condenser 3 ... Throttling device, 4 ... Evaporator 5a, 5b ... Inlet, 6 ... Control valve 11 ... Fractionation tower

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】圧縮機、凝縮器、絞り装置、及び蒸発器を
順次環状に接続すると共に、前記凝縮器の出口部と蒸発
器の入口部との間に非共沸混合冷媒を分離するための精
留塔を設けたヒートポンプ装置において、前記精留塔に
高低差のある入口部を複数個設けると共に、該複数個の
入口部と前記凝縮器との間に制御弁を設け、該制御弁で
非共沸混合冷媒の分離操作開始当初は非共沸混合冷媒を
精留塔内に流入させる流入口として低所の入口部を選択
すると共に、一定時間経過後は非共沸混合冷媒の分離の
進行に応じて流入口を順次高所の入口部へと切替えるこ
とを特徴とするヒートポンプ装置。
1. A compressor, a condenser, a throttle device, and an evaporator are sequentially connected in an annular shape, and a non-azeotropic mixed refrigerant is separated between an outlet of the condenser and an inlet of the evaporator. In the heat pump device provided with the rectification tower, the rectification tower is provided with a plurality of inlet portions having height differences, and a control valve is provided between the plurality of inlet portions and the condenser, and the control valve is provided. At the beginning of the separation operation of the non-azeotropic mixed refrigerant, at the beginning of the operation to select the non-azeotropic mixed refrigerant, the low inlet is selected as the inlet for introducing the non-azeotropic mixed refrigerant, and after a certain period of time, the non-azeotropic mixed refrigerant is separated. The heat pump device is characterized in that the inlet is sequentially switched to the inlet of a high place according to the progress of the heat pump.
JP14125888U 1988-10-28 1988-10-28 Heat pump equipment Expired - Lifetime JPH083887Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14125888U JPH083887Y2 (en) 1988-10-28 1988-10-28 Heat pump equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14125888U JPH083887Y2 (en) 1988-10-28 1988-10-28 Heat pump equipment

Publications (2)

Publication Number Publication Date
JPH0262366U JPH0262366U (en) 1990-05-09
JPH083887Y2 true JPH083887Y2 (en) 1996-01-31

Family

ID=31406174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14125888U Expired - Lifetime JPH083887Y2 (en) 1988-10-28 1988-10-28 Heat pump equipment

Country Status (1)

Country Link
JP (1) JPH083887Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113915787B (en) * 2021-09-27 2023-03-03 河南科技大学 Low-temperature mixed working medium refrigerating system with double evaporation temperature positions

Also Published As

Publication number Publication date
JPH0262366U (en) 1990-05-09

Similar Documents

Publication Publication Date Title
US4840042A (en) Heat pump system
JPH083887Y2 (en) Heat pump equipment
CN206269417U (en) Air conditioner circulating system and air-conditioning
JPH0247668B2 (en) NETSUHONPUSOCHI
JPH0745982B2 (en) Heat pump device
JPH0544582B2 (en)
JPH0650198B2 (en) Refrigeration cycle circuit
JPH0577942B2 (en)
JPH0646118B2 (en) Heat pump device
JPH0652138B2 (en) Refrigeration cycle equipment
JPH0247667B2 (en) NETSUHONPUSOCHI
JPH0440622B2 (en)
JPH06103127B2 (en) Heat pump device
JPH0264370A (en) Heat pump device
JPH01107061A (en) Heat pump device
JPH01222162A (en) Heat pump system
JPH0239712B2 (en) TEIONSOCHI
JPH01107062A (en) Heat pump device
JPH01212863A (en) Hot-water supplying device
JPH01107053A (en) Heat pump device
JPH02178568A (en) Heat pump device
JPH0621725B2 (en) Heat pump device
JPH04260757A (en) Freezing cycle device
JPS62280557A (en) Heat pump type air conditioner
JPH0739887B2 (en) Heat pump device