JPS62280557A - Heat pump type air conditioner - Google Patents

Heat pump type air conditioner

Info

Publication number
JPS62280557A
JPS62280557A JP12151986A JP12151986A JPS62280557A JP S62280557 A JPS62280557 A JP S62280557A JP 12151986 A JP12151986 A JP 12151986A JP 12151986 A JP12151986 A JP 12151986A JP S62280557 A JPS62280557 A JP S62280557A
Authority
JP
Japan
Prior art keywords
refrigerant
frequency
valve
heater
pressure reducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12151986A
Other languages
Japanese (ja)
Other versions
JPH0439586B2 (en
Inventor
克彦 藤原
下河 直樹
井本 匠
香美 雅彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12151986A priority Critical patent/JPS62280557A/en
Publication of JPS62280557A publication Critical patent/JPS62280557A/en
Publication of JPH0439586B2 publication Critical patent/JPH0439586B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は、非共沸混合冷媒を用い、周波数可変装置を具
備したヒートポンプ式空気調和機に関するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention Field of Industrial Application The present invention relates to a heat pump type air conditioner that uses a non-azeotropic mixed refrigerant and is equipped with a variable frequency device.

従来の技術 近年、ヒートポンプ式冷凍装置は非共沸混合冷媒を用い
て、能力変化できるものが開発されている。
BACKGROUND OF THE INVENTION In recent years, heat pump refrigeration systems that use non-azeotropic mixed refrigerants and whose capacity can be varied have been developed.

以下図面を参照しながら、上述した従来のヒートポンプ
式冷凍装置の一例について説明する。
An example of the conventional heat pump type refrigeration system mentioned above will be described below with reference to the drawings.

第5図は従来の非共沸混合冷媒を用いたヒートポンプ式
冷凍装置の回路構成図を示すものである。
FIG. 5 shows a circuit diagram of a conventional heat pump type refrigeration system using a non-azeotropic mixed refrigerant.

第5図において、1は圧縮機、2は四方弁、3は室外側
熱交換器、4,5は減圧装置、6は室内側熱交換器であ
る。また、4,5の減圧装置の間に導管7が分岐してお
り、この導管7は第1の冷媒容器8に接続されている。
In FIG. 5, 1 is a compressor, 2 is a four-way valve, 3 is an outdoor heat exchanger, 4 and 5 are pressure reducing devices, and 6 is an indoor heat exchanger. Further, a conduit 7 is branched between the pressure reducing devices 4 and 5, and this conduit 7 is connected to a first refrigerant container 8.

この第1の冷媒容器8は減圧装置5と室内側熱交換器6
とを接続する配管を包囲している。9は第2の冷媒容器
であり、室外側熱交換器3と減圧装置4とを接続する配
管を包囲し、開閉調整弁10を介して導管7に接続され
ている。この冷凍サイクルには非共沸混合冷媒を使用し
ている。
This first refrigerant container 8 includes a pressure reducing device 5 and an indoor heat exchanger 6.
It surrounds the piping that connects the A second refrigerant container 9 surrounds a pipe connecting the outdoor heat exchanger 3 and the pressure reducing device 4, and is connected to the conduit 7 via an on-off regulating valve 10. This refrigeration cycle uses a non-azeotropic mixed refrigerant.

以上のように構成されたヒートポンプ式冷凍装置につい
て、以下その動作について説明する。
The operation of the heat pump type refrigeration system configured as described above will be explained below.

まず、冷房運転時、冷媒は図示の実線矢印の方向に流れ
る。ここで、開閉調整弁10は閉塞されており、導管7
によって分流した冷媒は第1の冷媒容器8に至るが、第
1の冷媒容器8により包囲された減圧装置5と室内側熱
交換器6を結ぶ配管は冷房運転時低温であるから、第1
の冷媒容器8は冷却され、容器内部には高沸点成分が液
状で貯留され、冷凍サイクルは低沸点成分が流れる。
First, during cooling operation, the refrigerant flows in the direction of the solid arrow shown in the figure. Here, the on-off regulating valve 10 is closed, and the conduit 7
The refrigerant separated by the flow reaches the first refrigerant container 8, but since the piping connecting the pressure reducing device 5 surrounded by the first refrigerant container 8 and the indoor heat exchanger 6 is at a low temperature during cooling operation, the refrigerant flows into the first refrigerant container 8.
The refrigerant container 8 is cooled, high boiling point components are stored in liquid form inside the container, and low boiling point components flow through the refrigeration cycle.

一方、開閉調整弁1oが閉塞されている状態における暖
房運転時、冷媒は図示の破線矢印方向に流れる。ここで
、第1の冷媒容器8は室内側熱交換器6で液化した高温
冷媒により加熱されるため、第1の冷媒容器B内には冷
媒は液化貯留することなく冷凍サイクルを循環する。こ
の場合冷凍サイクル中の冷媒1l−j:混合冷媒が流れ
、冷房時の冷凍サイクルに比較すると暖房時の冷凍サイ
クル能力は向上する。
On the other hand, during heating operation in a state where the on-off regulating valve 1o is closed, the refrigerant flows in the direction of the dashed arrow shown in the figure. Here, since the first refrigerant container 8 is heated by the high-temperature refrigerant liquefied in the indoor heat exchanger 6, the refrigerant circulates through the refrigeration cycle without being liquefied and stored in the first refrigerant container B. In this case, the refrigerant 1l-j in the refrigeration cycle: a mixed refrigerant flows, and the refrigeration cycle capacity during heating is improved compared to the refrigeration cycle during cooling.

また、暖房運転時、暖房能力に余力が生じてきた時に開
閉調整弁1oを動作させれば、高沸点成分を第2の冷媒
容器9に導いて貯留し、暖房能力を低減できる(例えば
特公昭57−31056号公報)。
In addition, during heating operation, if the opening/closing adjustment valve 1o is operated when there is surplus heating capacity, the high boiling point components are guided to the second refrigerant container 9 and stored, thereby reducing the heating capacity (for example, 57-31056).

発明が解決しようとする問題点 しかしながら上記のような構成では、高沸点成分と低沸
点成分の混合比を可変し能力可変を行なうタイミング設
定が具体的でないという問題点を有していた。
Problems to be Solved by the Invention However, the above configuration has a problem in that timing settings for varying the mixing ratio of the high boiling point component and the low boiling point component to vary the capacity are not specific.

本発明は、上記問題点に鑑み、冷媒混合比率可変装置お
よび周波数可変装置を設け、圧縮機運転周波数により負
荷を的確に検知し冷房、暖房運転において効率良い能力
制御が可能なヒートポンプ式空気調和機を提供するもの
である。
In view of the above problems, the present invention provides a heat pump air conditioner that is equipped with a refrigerant mixing ratio variable device and a frequency variable device, and is capable of accurately detecting the load based on the compressor operating frequency and efficiently controlling the capacity in cooling and heating operations. It provides:

問題点を解決するための手段 上記問題点を解決するために本発明のヒートポンプ式空
気調和機は、非共沸混合冷媒を用い、周波数可変装置を
具備し、圧縮機、四方弁、室外熱交換器、主回路用減圧
器、室内熱交換器を順次連結して冷凍サイクルの主回路
を構成し、前記圧縮機の吐出側と四方弁の途中に加熱器
を設け、前記圧縮機の吸入側と四方弁の途中に冷却器を
設け、前記室外熱交換器と前記主回路用減圧器の中間と
充填材を詰めた精留塔の底部とを前記加熱器を貫通し逆
止弁を介して接続するとともに前記加熱器と逆止弁に並
列に減圧器を設け、前記逆止弁と前記精留塔底部との中
間と冷媒貯溜器の底部とを電磁開閉弁を介して接続し、
また、前記室内側熱交換器と前記主回路の減圧器の中間
と前記精留塔の底部とを前記加熱器を貫通し逆止弁を介
して接続するとともに前記加熱器と逆止弁に並列に減圧
器を設け、さらに前記精留塔の頂部と前記冷媒貯溜器の
頂部とを前記冷却器を貫通して接続し、前記精留塔の頂
部と前記冷媒貯溜器の底部とを接続して冷媒組成組成比
率可変サイクル全構成し、前記圧縮機の周波数を検出す
る周波数検出手段と、前記周波数検出手段による周波数
と設定周波数の犬、小を比較する比較手段と、前記比較
手段により設定周波数より大の場合、前記電磁開閉弁を
開く第1の出力モードに、また設定周波数より小の場合
、前記電磁開閉弁を閉じる第2の出力モードに移行する
移行手段と前記出力モードにより電磁開閉弁に電気信号
を出力する出力手段を具備したものである。
Means for Solving the Problems In order to solve the above problems, the heat pump type air conditioner of the present invention uses a non-azeotropic mixed refrigerant, is equipped with a variable frequency device, and has a compressor, a four-way valve, and an outdoor heat exchanger. A main circuit of the refrigeration cycle is constructed by sequentially connecting a main circuit pressure reducer, an indoor heat exchanger, and a heater is provided between the discharge side of the compressor and the four-way valve. A cooler is provided in the middle of the four-way valve, and the intermediate part of the outdoor heat exchanger and the main circuit pressure reducer is connected to the bottom of the rectification column packed with filler through the heater and via a check valve. At the same time, a pressure reducer is provided in parallel with the heater and the check valve, and an intermediate between the check valve and the bottom of the rectification column and the bottom of the refrigerant reservoir are connected via an electromagnetic shut-off valve,
Further, the indoor heat exchanger, an intermediate portion of the pressure reducer of the main circuit, and the bottom of the rectification column are connected through the heater and via a check valve, and are connected in parallel to the heater and the check valve. a pressure reducer is provided in the rectifier, further connecting the top of the rectification column and the top of the refrigerant reservoir through the cooler, and connecting the top of the rectification column and the bottom of the refrigerant reservoir. A variable refrigerant composition ratio cycle is configured as a whole, including a frequency detection means for detecting the frequency of the compressor, a comparison means for comparing the frequency detected by the frequency detection means and a set frequency, and a frequency detection means for comparing the frequency determined by the frequency detection means with a set frequency, and If the frequency is higher than the set frequency, the electromagnetic on-off valve is switched to the first output mode, and when the frequency is smaller than the set frequency, the electromagnetic on-off valve is switched to the second output mode. It is equipped with an output means for outputting an electrical signal.

作  用 本発明は上記した構成により、冷暖房とも負荷を的確に
つかみ、必要負荷に応じて非共沸混合冷媒の低沸点冷媒
成分を分離し、冷媒混合比率を変化させることにより、
幅広い効率の良い能力制御運転を可能にする。
Effect The present invention has the above-described configuration, accurately grasps the load for both heating and cooling, separates the low boiling point refrigerant component of the non-azeotropic mixed refrigerant according to the required load, and changes the refrigerant mixing ratio.
Enables a wide range of efficient capacity control operations.

実施例 以下本発明の一実施例のヒートポンプ式空気調和機につ
いて、図面を参照しながら説明する。
EXAMPLE Hereinafter, a heat pump type air conditioner according to an example of the present invention will be described with reference to the drawings.

第1図は本発明の冷凍サイクル図である。圧縮機11、
四方弁12、室外熱交換器13、主回路用減圧器14、
室内熱交換器15が直列に接続されている。また室外熱
交換器13と減圧器14の中間と精留塔16の底部とも
加熱器17を貫通し逆止弁18を介し接続するとともに
加熱器17と逆止弁18に並列に第1の減圧器19を設
け、また逆止弁18と精留塔16の底部との中間と冷媒
貯溜器20の底部とを電磁開閉弁21を介して接続し、
また室内熱交換器15と主回路の減圧器14の中間と精
留塔16の底部とを加熱器17を貫通し逆止弁22を介
して接続するとともに加熱器17と逆止弁22に並列に
減圧器23を設け、さらに精留塔16の頂部と冷媒貯溜
器20の頂部とを冷却器24を貫通し、精留塔16の頂
部と冷媒貯溜器2oの底部とを接続している。ここで本
発明における冷凍サイクルに使用する冷媒は沸点能力の
異なる複数の冷媒を混合した非共沸混合冷媒である。
FIG. 1 is a refrigeration cycle diagram of the present invention. compressor 11,
Four-way valve 12, outdoor heat exchanger 13, main circuit pressure reducer 14,
Indoor heat exchangers 15 are connected in series. In addition, the intermediate portion between the outdoor heat exchanger 13 and the pressure reducer 14 and the bottom of the rectification column 16 pass through the heater 17 and are connected via the check valve 18, and a first pressure reducer is connected in parallel to the heater 17 and the check valve 18. A container 19 is provided, and an intermediate between the check valve 18 and the bottom of the rectification column 16 is connected to the bottom of the refrigerant reservoir 20 via an electromagnetic on-off valve 21.
In addition, the intermediate between the indoor heat exchanger 15 and the main circuit pressure reducer 14 and the bottom of the rectification column 16 are connected through the heater 17 and via the check valve 22, and are connected in parallel to the heater 17 and the check valve 22. A pressure reducer 23 is provided at the top of the rectification column 16 and the top of the refrigerant reservoir 20, and a cooler 24 is passed through the top of the rectification column 16 and the top of the refrigerant reservoir 20 to connect the top of the rectification column 16 and the bottom of the refrigerant reservoir 2o. Here, the refrigerant used in the refrigeration cycle of the present invention is a non-azeotropic mixed refrigerant that is a mixture of a plurality of refrigerants having different boiling point capacities.

ここで第2図に示すブロック回路と第3図に示す制御回
路の関係について説明すると、第3図に示す周波数検出
装置27は第2図に示す周波数検知手段に相当し、第3
図に示すコンパレータ25は、第2図の比較手段に相当
し、第3図のマイクロコンピュータ26は第2図の移行
手段に相当し、第3図の出力回路28は第2図の出力手
段に相当している。
Now, to explain the relationship between the block circuit shown in FIG. 2 and the control circuit shown in FIG. 3, the frequency detection device 27 shown in FIG. 3 corresponds to the frequency detection means shown in FIG.
The comparator 25 shown in the figure corresponds to the comparison means in FIG. 2, the microcomputer 26 in FIG. 3 corresponds to the transition means in FIG. 2, and the output circuit 28 in FIG. 3 corresponds to the output means in FIG. It is equivalent.

次に上記構成からなる制御回路の動作について第1図か
ら第4図を参考に説明する。
Next, the operation of the control circuit having the above configuration will be explained with reference to FIGS. 1 to 4.

暖房運転時、圧縮機周波数を周波数検出装置27で検出
しそれをマイクロコンピュータ26に記憶された設定周
波数と比較し設定周波数より大きい場合、冷媒は第2図
中の実線の矢印の如く流れ、電磁開閉弁21が開いてい
るため、冷媒貯溜器20の中の冷媒も主回路と同様に流
れるため冷媒貯溜器2oの中の冷媒の組成も主回路の組
成と異ならず、高沸点成分と低沸点成分の混合した状態
で高能力が得られる。
During heating operation, the compressor frequency is detected by the frequency detection device 27 and compared with the set frequency stored in the microcomputer 26. If the frequency is higher than the set frequency, the refrigerant flows as shown by the solid arrow in FIG. Since the on-off valve 21 is open, the refrigerant in the refrigerant reservoir 20 also flows in the same way as in the main circuit, so the composition of the refrigerant in the refrigerant reservoir 2o is not different from that in the main circuit, and is composed of high boiling point components and low boiling point components. High capacity can be obtained with a mixture of components.

一方、圧縮機周波数が低下して設定周波数より小さくな
ると、電磁開閉弁21が閉じて冷媒は点線の矢印の如く
流れる。室内熱交換器15を出た過冷却のとれた冷媒の
一部は加熱器17へ入り吐出ガスにより加熱されガス成
分を発生させ精留塔16に入る。精留塔16に入った冷
媒のガス成分は塔中を上昇していき冷却器24に入り、
ここで吸入ガスにより冷却液化され冷媒貯溜器20に導
びかれその一部は精留塔の頂部に還流され塔中を上昇し
てくるガス成分と気液接触を行ない物質移動および熱交
換を行なう。このサイクルを繰り返すことにより冷媒貯
溜器20の中の冷媒は低沸点成分が多くなり主回路を流
れる冷媒の組成は高沸点成分が多い状態になり能力およ
び消費電力とも小さくなり効率の良い能力制御ができる
。冷房運転時においても同様である。
On the other hand, when the compressor frequency decreases and becomes smaller than the set frequency, the electromagnetic on-off valve 21 closes and the refrigerant flows as indicated by the dotted arrow. A portion of the subcooled refrigerant leaving the indoor heat exchanger 15 enters the heater 17 and is heated by the discharged gas to generate gas components, which then enter the rectification column 16. The gas components of the refrigerant that entered the rectification column 16 rise through the column and enter the cooler 24.
Here, it is cooled and liquefied by the suction gas and guided to the refrigerant reservoir 20, and a part of it is refluxed to the top of the rectification column where it comes into gas-liquid contact with the gas components rising in the column, thereby performing mass transfer and heat exchange. . By repeating this cycle, the refrigerant in the refrigerant reservoir 20 will have more low-boiling point components, and the composition of the refrigerant flowing through the main circuit will be in a state where there are many high-boiling point components, reducing both capacity and power consumption, allowing efficient capacity control. can. The same holds true during cooling operation.

以上のように本実施例によれば、周波数検出袋#27を
設は圧縮機運転周波数の大小により非共沸混合冷媒の比
率を可変することにより負荷が大きく高周波数で運転す
る時は主回路の冷媒は高沸点、低沸点成分の混合した状
態で高能力を得ることができ、また負荷が小さく低周波
数で運転する時は低沸点成分の冷媒が分離貯溜され主回
路の冷媒は高沸点成分の多い状態になり小能力、小消費
電力を得ることができ効率の良い能力制御を容易に行な
うことができる。
As described above, according to this embodiment, the frequency detection bag #27 is installed to vary the ratio of the non-azeotropic mixed refrigerant depending on the magnitude of the compressor operating frequency. A refrigerant with high boiling point and low boiling point components can be mixed to achieve high capacity, and when the load is small and operation is performed at low frequency, the refrigerant with low boiling point components is separated and stored, and the refrigerant in the main circuit is mixed with high boiling point components. As a result, small capacity and low power consumption can be obtained, and efficient capacity control can be easily performed.

発明の効果 以上のように本発明は、非共沸混合冷媒を用い、周波数
可変装置を具備し、圧縮機、四方弁、室外熱交換器、主
回路用減圧器、室内熱交換器を順次連結して冷凍サイク
ルの主回路を構成し、前記圧縮機の吐出側と四方弁の途
中に加熱器を設け、前記圧縮機の吸入側と四方弁の途中
に冷却器を設け、前記室外熱交換器と前記主回路用減圧
器の中間と充填材を詰めた精留塔の底部とを前記加熱器
を貫通し逆止弁を介して接続するとともに前記加熱器と
逆止弁に並列に第1の減圧器を設け、前記逆止弁と前記
精留塔底部との中間と冷媒貯溜器の底部とを電磁開閉弁
を介して接続し、また前記室内熱交換器と前記主回路の
減圧器の中間と前記精留塔の底部とを前記加熱器を貫通
し逆止弁を介して接続するとともに前記加熱器と逆止弁
に並列に減圧器を設け、さらに前記精留塔の頂部と前記
冷媒貯溜器の頂部とを前記冷却器を貫通して接続し、前
記精留塔の頂部と前記冷媒貯溜器の底部とを接続して冷
媒組成比率可変サイクルを構成し、前記圧縮機の周波数
を検出する周波数検出手段と前記周波数検出手段による
周波数と設定周波数の犬、小を比較する比較手段と、前
記比較手段により設定周波数より大の場合前記電磁開閉
弁を開く出力モードに、また設定周波数より小の場合前
記電磁開閉弁を閉じる出力モードに移行する移行手段と
前記出力モードにより電磁開閉弁に電気信号を出力する
出力手段を具備することにより冷房、暖房運転とも負荷
を的確につかみ、必要負荷に応じて非共沸混合冷媒の低
沸点成分の分離あるいは混合を行ない主回路の流れる冷
媒の混合比率を可変することにより幅広い効率の良い能
力制御運転を容易に行なうことができる。
Effects of the Invention As described above, the present invention uses a non-azeotropic mixed refrigerant, is equipped with a frequency variable device, and sequentially connects a compressor, a four-way valve, an outdoor heat exchanger, a main circuit pressure reducer, and an indoor heat exchanger. to constitute the main circuit of the refrigeration cycle, a heater is provided between the discharge side of the compressor and the four-way valve, a cooler is provided between the suction side of the compressor and the four-way valve, and the outdoor heat exchanger The middle of the pressure reducer for the main circuit and the bottom of the rectification column filled with filler are connected through the heater and via a check valve, and a first A pressure reducer is provided, and an intermediate between the check valve and the bottom of the rectification column is connected to the bottom of the refrigerant reservoir via an electromagnetic shut-off valve, and a pressure reducer is provided between the indoor heat exchanger and the main circuit pressure reducer. and the bottom of the rectification column are connected to each other through a check valve passing through the heater, and a pressure reducer is provided in parallel to the heater and the check valve, and the top of the rectification column and the refrigerant storage The top of the rectifier is connected through the cooler, the top of the rectifier is connected to the bottom of the refrigerant reservoir to form a refrigerant composition ratio variable cycle, and the frequency of the compressor is detected. a frequency detection means; a comparison means for comparing the frequency of the frequency detected by the frequency detection means with a set frequency; By providing a transition means for shifting to an output mode in which the electromagnetic on-off valve is closed, and an output means for outputting an electric signal to the electromagnetic on-off valve in the output mode, it is possible to accurately grasp the load in both cooling and heating operations and respond to the required load. By separating or mixing the low boiling point components of the non-azeotropic mixed refrigerant and varying the mixing ratio of the refrigerant flowing through the main circuit, a wide range of efficient capacity control operations can be easily performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例におけるヒートポンプ式空気
調和機の冷凍サイクル図、第2図は同ブロック図、第3
図は同制御回路図、第4図は同フローチャート図、第5
図は従来のヒートポンプ式空気調和機の冷凍サイクル図
である。 16・・・・・精留塔、17・・・・・加熱器、18.
22・・・・・逆止弁、19.23・・・・・・減圧器
、20・・・・・冷媒貯溜器、21・・・・電磁開閉弁
、24・・・・冷却器、25・・・・・・コンパレータ
、26・・・・・・マイクロコンピュータ、2ア・・・
・・周波数検出−装置。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図 z6°°°コンパレータ Z8・−出力回路 第3図 第4図
Fig. 1 is a refrigeration cycle diagram of a heat pump air conditioner according to an embodiment of the present invention, Fig. 2 is a block diagram of the same, and Fig.
The figure is the same control circuit diagram, Figure 4 is the same flow chart, and Figure 5 is the same control circuit diagram.
The figure is a refrigeration cycle diagram of a conventional heat pump type air conditioner. 16... Rectification column, 17... Heater, 18.
22...Check valve, 19.23...Reducer, 20...Refrigerant reservoir, 21...Solenoid shut-off valve, 24...Cooler, 25 ...Comparator, 26...Microcomputer, 2A...
...Frequency detection-equipment. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
Figure z6°°° Comparator Z8 - Output circuit Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 非共沸混合冷媒を用い、周波数可変装置を具備し、圧縮
機、四方弁、室外熱交換器、主回路用減圧器、室内熱交
換器を順次連結して冷凍サイクルの主回路を構成し、前
記圧縮機の吐出側と四方弁の途中に加熱器を設け、前記
圧縮機の吸入側と四方弁の途中に冷却器を設け、前記室
外熱交換器と前記主回路用減圧器の中間と充填材を詰め
た精留塔の底部とを前記加熱器を貫通し逆止弁を介して
接続するとともに前記加熱器と逆止弁に並列に第1の減
圧器を設け、前記逆止弁と前記精留塔底部との中間と冷
媒貯溜器の底部とを電磁開閉弁を介して接続し、また前
記室内熱交換器と前記主回路の減圧器の中間と前記精留
塔の底部とを前記加熱器を貫通し逆止弁を介して接続す
るとともに前記加熱器と逆止弁に並列に減圧器を設け、
さらに前記精留塔の頂部と前記冷媒貯溜器の頂部とを前
記冷却器を貫通して接続し、前記精留塔の頂部と前記冷
媒貯溜器の底部とを接続して冷媒組成比率可変サイクル
を構成し、前記圧縮機の周波数を検出する周波数検出手
段と、前記周波数検出手段による周波数と設定周波数の
大、小を比較する比較手段と、前記比較手段により設定
周波数より大の場合、前記電磁開閉弁を開く第1の出力
モードに、また設定周波数より小の場合、前記電磁開閉
弁を閉じる第2の出力モードに移行する移行手段と前記
出力モードにより電磁開閉弁に電気信号を出力する出力
手段を具備したヒートポンプ式空気調和機。
Using a non-azeotropic mixed refrigerant, equipped with a variable frequency device, the main circuit of the refrigeration cycle is constructed by sequentially connecting a compressor, four-way valve, outdoor heat exchanger, main circuit pressure reducer, and indoor heat exchanger, A heater is provided between the discharge side of the compressor and the four-way valve, a cooler is provided between the suction side of the compressor and the four-way valve, and a heater is provided between the outdoor heat exchanger and the main circuit pressure reducer and the filling A first pressure reducer is provided in parallel to the heater and the check valve, and a first pressure reducer is provided in parallel to the heater and the check valve. The middle of the bottom of the rectification tower and the bottom of the refrigerant reservoir are connected via an electromagnetic on-off valve, and the middle of the indoor heat exchanger and the pressure reducer of the main circuit and the bottom of the rectification tower are connected to the bottom of the rectification tower. A pressure reducer is provided in parallel to the heater and the check valve, and is connected to the heater through the check valve.
Further, the top of the rectification column and the top of the refrigerant reservoir are connected through the cooler, and the top of the rectification column and the bottom of the refrigerant reservoir are connected to form a variable refrigerant composition ratio cycle. a frequency detecting means for detecting the frequency of the compressor; a comparing means for comparing the frequency detected by the frequency detecting means with a set frequency; Transition means for shifting to a first output mode for opening the valve and, if the frequency is lower than a set frequency, for shifting to a second output mode for closing the electromagnetic on-off valve; and output means for outputting an electrical signal to the electromagnetic on-off valve in accordance with the output mode. A heat pump air conditioner equipped with
JP12151986A 1986-05-27 1986-05-27 Heat pump type air conditioner Granted JPS62280557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12151986A JPS62280557A (en) 1986-05-27 1986-05-27 Heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12151986A JPS62280557A (en) 1986-05-27 1986-05-27 Heat pump type air conditioner

Publications (2)

Publication Number Publication Date
JPS62280557A true JPS62280557A (en) 1987-12-05
JPH0439586B2 JPH0439586B2 (en) 1992-06-30

Family

ID=14813227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12151986A Granted JPS62280557A (en) 1986-05-27 1986-05-27 Heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JPS62280557A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01256767A (en) * 1988-04-07 1989-10-13 Matsushita Electric Ind Co Ltd Heat pump type air conditioner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200465671Y1 (en) * 2012-10-09 2013-03-05 주식회사 제이아이씨 helmet with air pad

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01256767A (en) * 1988-04-07 1989-10-13 Matsushita Electric Ind Co Ltd Heat pump type air conditioner

Also Published As

Publication number Publication date
JPH0439586B2 (en) 1992-06-30

Similar Documents

Publication Publication Date Title
JPS62280557A (en) Heat pump type air conditioner
JPS62280555A (en) Heat pump type air conditioner
JPS62280554A (en) Heat pump type air conditioner
JPS62280556A (en) Heat pump type air conditioner
JPH01256767A (en) Heat pump type air conditioner
JPH01134171A (en) Heat pump type air conditioner
JPS63163737A (en) Heat pump device
JPS61190257A (en) Heat pump type refrigerator
JPS63105370A (en) Heat pump type air conditioner
JPH0731092Y2 (en) Refrigeration equipment
JPS58104475A (en) Heat pump device
JPH0244152A (en) Refrigerator
JPH0833254B2 (en) Heat pump system
JPH02178568A (en) Heat pump device
JPH0244151A (en) Refrigerator
JPS63129253A (en) Heat pump device
JPS62237252A (en) Air conditioner
JPS63279062A (en) Refrigeration cycle device
JPS61190248A (en) Refrigeration cycle
JPH02171555A (en) Freezing device
JPH01269878A (en) Controller for refrigerating device
JPH0760024B2 (en) Refrigeration equipment
JPS62261864A (en) Heat pump device
JPS62228845A (en) Heat pump device
JPS58129163A (en) Hot-water supply and air-conditioning system