JPS63279062A - Refrigeration cycle device - Google Patents

Refrigeration cycle device

Info

Publication number
JPS63279062A
JPS63279062A JP11301587A JP11301587A JPS63279062A JP S63279062 A JPS63279062 A JP S63279062A JP 11301587 A JP11301587 A JP 11301587A JP 11301587 A JP11301587 A JP 11301587A JP S63279062 A JPS63279062 A JP S63279062A
Authority
JP
Japan
Prior art keywords
refrigeration cycle
refrigerant
heat exchanger
boiling point
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11301587A
Other languages
Japanese (ja)
Other versions
JPH0756419B2 (en
Inventor
雄二 吉田
生駒 光博
和生 中谷
猛 富澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11301587A priority Critical patent/JPH0756419B2/en
Publication of JPS63279062A publication Critical patent/JPS63279062A/en
Publication of JPH0756419B2 publication Critical patent/JPH0756419B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、冷暖房や給湯または超低温装置などの、よシ
高温又は低温を得るだめの冷凍サイクル装置の改良に関
する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to improvements in refrigeration cycle devices for obtaining extremely high or low temperatures, such as air conditioning, hot water supply, or ultra-low temperature devices.

従来の技術 従来よシ高温又は低温を得るための冷凍サイクル装置と
して、複数個の冷凍サイクル装置をカスケード式に連結
した多元の冷凍サイクル装置が知られている。第2図は
これを冷暖房給湯装置として適用した例であシ、圧縮機
AI、常に凝縮器として作用する給湯用熱交換器A2、
減圧作用をなす膨張弁A3、常に蒸発器として作用する
水側熱交換器A4等を連結して上段の冷凍サイクルAを
構成している。次に圧縮機B6、四方弁B6、四方弁B
6の切換えによシ凝縮器又は蒸発器として作用する水側
熱交換器B7、減圧作用をなす膨張弁B8、四方弁B6
の切換えにより蒸発器又は凝縮器として作用する空気側
熱交換器B9等を連結して下段の冷凍サイクルBを構成
している。ここで上段の冷凍サイクルAにはフロン系の
単一冷媒R12が封入され、下段の冷凍サイクルBには
フロン系の単一冷媒R22が封入され、その水側熱交換
器A4及びBTは同一の蓄熱槽10中に配置され、熱交
換された水等を循環回路(図示せず)を通して冷暖房を
行う如く構成している。
2. Description of the Related Art Conventionally, as a refrigeration cycle apparatus for obtaining high or low temperature, a multi-component refrigeration cycle apparatus in which a plurality of refrigeration cycle apparatuses are connected in a cascade manner is known. Figure 2 shows an example in which this is applied as an air-conditioning/heating/hot water supply system.Compressor AI, hot water supply heat exchanger A2 which always acts as a condenser,
The upper stage refrigeration cycle A is constructed by connecting an expansion valve A3 that performs a pressure reducing action, a water side heat exchanger A4 that always functions as an evaporator, and the like. Next, compressor B6, four-way valve B6, four-way valve B
6, the water side heat exchanger B7 acts as a condenser or evaporator, the expansion valve B8 acts as a pressure reducer, and the four-way valve B6
A lower refrigeration cycle B is constructed by connecting the air side heat exchanger B9, which functions as an evaporator or a condenser, by switching between the two. Here, the upper refrigeration cycle A is filled with a fluorocarbon-based single refrigerant R12, and the lower refrigeration cycle B is filled with a fluorocarbon-based single refrigerant R22, and the water side heat exchangers A4 and BT are the same. It is arranged in a heat storage tank 10, and is configured so that heat-exchanged water and the like are passed through a circulation circuit (not shown) for heating and cooling.

かかる装置において夏期においては、主たる運転を冷凍
サイクルAで行い、水側熱交換器A4で冷水を作りなが
ら、その排熱を利用して給湯用熱交換器A2で給湯水を
作る。また冷房負荷が増大した時には、冷凍サイクルB
も運転し、水側熱交換器B7を蒸発器として作用させ冷
水を補助し、その排熱を凝縮器として作用する空気側熱
交換器B9から排出する。さらに冷房負荷が減少し冷水
温度が極端に下る時には、冷凍サイクルBを切換え、水
側熱交換器BTを凝縮器として作用させ加熱する。
In the summer season, this device mainly operates in the refrigeration cycle A, and while the water side heat exchanger A4 produces cold water, the exhaust heat is used to produce hot water in the hot water supply heat exchanger A2. Also, when the cooling load increases, the refrigeration cycle B
The water side heat exchanger B7 acts as an evaporator to supplement the cold water, and its waste heat is discharged from the air side heat exchanger B9, which acts as a condenser. Furthermore, when the cooling load decreases and the chilled water temperature drops extremely, the refrigeration cycle B is switched and the water side heat exchanger BT acts as a condenser to heat the water.

次に中間期においては一般に給湯モードのみであるので
、冷凍サイクルBを適宜運転して水側熱交換器B7で加
温しながら、冷凍サイクルAにより給湯運転を行う。
Next, in the intermediate period, since there is generally only hot water supply mode, the refrigeration cycle B is operated as appropriate and hot water is supplied by the refrigeration cycle A while being heated by the water side heat exchanger B7.

さらに冬期においては、冷凍サイクルBを連続運転して
加温しながら冷凍サイクルAによシ給湯運転を行いなが
ら、暖房負荷が増大した時には冷凍サイクルAを停止し
て暖房モードを優先させる。
Further, in the winter, while the refrigeration cycle B is continuously operated and heated, the refrigeration cycle A is operated to supply hot water, and when the heating load increases, the refrigeration cycle A is stopped and the heating mode is prioritized.

発明が解決しようとする問題点 上記従来例は、特に冬期の暖房負荷と給湯負荷の増大及
び高温給湯水を得たい要望に対して、2元の冷凍サイク
ル装置とすると共に、上段側には高沸点冷媒のR12と
下段側には低沸点冷媒の122を用いたものである。
Problems to be Solved by the Invention The above conventional example uses a dual refrigeration cycle device, and a high temperature A boiling point refrigerant R12 and a low boiling point refrigerant 122 are used in the lower stage.

しかしながら夏期や中間期においては、上段側の112
のフロ冷媒は冷却及び加熱能力が小さいため、下段側の
R22の冷凍サイクルBを運転する頻度が多く、不経済
な運転となる。また夏期の給湯モードにおいては、特に
給湯水をあまり高温化する必要はなく、温度変化幅も小
さくてよいため、この面からも不経済である。
However, during the summer and mid-season, the upper 112
Since the flow refrigerant has a small cooling and heating capacity, the refrigeration cycle B of R22 on the lower stage side is frequently operated, resulting in uneconomical operation. Furthermore, in the hot water supply mode during the summer, there is no need to raise the temperature of the hot water to a high temperature, and the range of temperature change may be small, which is also uneconomical.

本発明は、従来例で示した冷暖房給湯装置の不具合点を
解消するばかシでなく、冷暖房装置の特に暖房モードの
吹出し温度を一時的に高温化したい等のニーズに対し、
新しい冷凍サイクル構成を提案するものである。
The present invention does not merely solve the problems of the conventional air-conditioning/heating water heater, but also addresses the need to temporarily increase the air outlet temperature of the air-conditioning/heating system, especially in the heating mode.
This proposes a new refrigeration cycle configuration.

問題点を解決するための手段 本発明になる冷凍サイクル装置は、圧縮機、凝縮器、減
圧装置、蒸発器等から成る上段側の冷凍サイクルと、同
じく圧縮機、凝縮器、減圧装置、蒸発器等から成る下段
側の冷凍サイクルと、精留分離器を主たる構成要素とし
、精留分離器の底部を上段側減圧装置をバイパスして接
続し、精留分離器の頂部を下段側減圧装置゛をバイパス
して接続し、上段側蒸発器と下段側凝縮器を直接又は関
接に熱交換し、かかる冷凍サイクル中に低沸点冷媒と高
沸点冷媒から成る非共沸混合冷媒を封入することによっ
て構成される。
Means for Solving the Problems The refrigeration cycle device according to the present invention includes an upper refrigeration cycle consisting of a compressor, a condenser, a pressure reducing device, an evaporator, etc. The main components are a rectification separator and a lower refrigeration cycle consisting of By bypassing and connecting the upper stage evaporator and lower stage condenser to exchange heat directly or indirectly, and by enclosing a non-azeotropic mixed refrigerant consisting of a low boiling point refrigerant and a high boiling point refrigerant in the refrigeration cycle. configured.

作  用 かかる冷凍サイクル装置においては、上段側の冷凍サイ
クルのみを運転する場合には、低沸点冷媒と高沸点冷媒
の混合冷媒が循環し、単に高沸点冷媒のみを循環する場
合に比べて冷却及び加熱能力が増大し、下段側の冷凍サ
イクルは混合冷媒の余剰冷媒の貯留作用をなす。一方上
段側及び下段側の両方を運転する場合には、精留分離器
を介して接続されているため精留作用が起シ、底部と接
続された上段側冷凍サイクルには高沸点冷媒が濃縮して
循環し、頂部と接続した下段側冷凍サイクルには低沸点
冷媒が濃縮して循環し、上段側蒸発器と下段側凝縮器は
熱交換するため、上段側凝縮器ではよシ高温を、下段側
蒸発器ではよシ低温を得ることが可能となるものである
In such a refrigeration cycle device, when only the upper refrigeration cycle is operated, a mixed refrigerant of a low-boiling point refrigerant and a high-boiling point refrigerant is circulated, and cooling and cooling are improved compared to when only a high-boiling point refrigerant is circulated. The heating capacity increases, and the lower refrigeration cycle functions to store surplus refrigerant of the mixed refrigerant. On the other hand, when operating both the upper and lower stages, rectification occurs because they are connected via a rectification separator, and the high boiling point refrigerant is concentrated in the upper stage refrigeration cycle connected to the bottom. The low boiling point refrigerant is condensed and circulated in the lower refrigeration cycle connected to the top, and the upper evaporator and lower condenser exchange heat, so the upper condenser has higher temperature. The lower evaporator makes it possible to obtain a much lower temperature.

実施例 本発明になる冷凍サイクル装置を、最初に従来例と対比
した冷暖房給湯装置に適用した実施例で説明する。第1
図において、11〜20は従来例の1〜1oと同一の構
成要素であシ、精留分離器21をはさんで、その底部は
上段側の冷凍サイクルAの膨張弁A13をバイパスして
絞シ装置22゜23を介して接続され、その頂部は下段
側の冷凍サイクルBの膨張弁B1sをバイパスして絞シ
装置24.25を介して接続される。
Embodiment The refrigeration cycle device according to the present invention will first be described with reference to an embodiment in which it is applied to an air-conditioning/heating/hot-water supply device in comparison with a conventional example. 1st
In the figure, 11 to 20 are the same components as 1 to 1o in the conventional example, and a rectification separator 21 is sandwiched between them, and the bottom part bypasses the expansion valve A13 of the upper refrigeration cycle A and is throttled. The top part of the refrigeration cycle B bypasses the expansion valve B1s of the lower refrigeration cycle B and is connected via the throttle devices 24 and 25.

かかる冷凍サイクル装置において、たとえば高沸点冷媒
となるR12と低沸点冷媒となるR22から成る非共沸
混合冷媒を封入した場合について以下に説明する。上段
側の冷凍サイクル装置Aのみを運転する場合(たとえば
夏期の給湯冷房モード)には、下段側の冷凍サイクルB
は運転されず、精留分離器21の頂部からの液還流は行
われず、精留作用が起こらないため、下段側は単に混合
冷媒の余剰冷媒の貯留作用をなす。このため上段側の冷
凍サイクルAは封入された混合冷媒の濃度のままで運転
され、冷房用の冷却゛能力と給湯用の加熱能力が従来以
上に増大し、冷房負荷の増減によって下段側の冷凍サイ
クルBを運転する頻度が減少する。また下段側の冷凍サ
イクルBも合せて冷却運転を行う場合には、冷凍サイク
ルBでは圧縮機B16、四方弁B16、空気側熱交換器
B19を経た冷媒の一部は、絞シ装置25によシある程
度減圧されて気液二相状態となシ、特に液成分は精留分
離器21の頂部から降下する。一方上段側で運転される
冷凍サイクルAでも圧縮機A11、給湯用熱交換器12
を経た冷媒の一部は、絞シ装置22によシある程度減圧
されて気液二相状態となシ、特にガス成分は精留分離器
21の底部から上昇する。このとき精留分離器21内部
では、充填された充填材(図示せず)の表面を介して、
降下する液成分と上昇するガス成分の気液接触によシ精
留作用が起こる。このため上昇するガス成分は低沸点冷
媒の濃度が高まシ、絞シ装置24を介して冷凍サイクル
Bの低圧回路に循環するが、膨張弁B18を経由する冷
媒と合流して、冷凍サイクルBを循環する冷媒は低沸点
冷媒であるR22の濃度が高まる。逆に精留分離器21
で降下する液成分は高沸点冷媒の濃度が高まシ、絞シ装
置23を介して冷凍サイクルAの低圧回路に循環するが
、膨張弁A13を経由する冷媒と合流して、冷凍サイク
ルAを循環する冷媒は高沸点冷媒であるR12の濃度が
高まる。従って下段側の冷凍サイクルBによる冷却能力
を増大させることが可能となるものである。さらに下段
側の冷凍サイクルBも合せて加熱運転を行う場合(たと
えば冬場の給湯暖房モード)には、冷凍サイクルBでは
四方弁B1eが切換り、凝縮器として作用する水側熱交
換器B17を経た冷媒の一部は、絞シ装置24によシあ
る程度減圧されて気液二相状態となシ、特に液成分は精
留分離N21の頂部から降下する。従ってこの場合にも
同様に運転される冷凍サイクルAとの相互作用により精
留作用が起こシ、冷凍サイクルBでは低沸点冷媒である
R22の濃度が高まシ、冷凍サイクルAでは高沸点冷媒
であるR12の濃度が高まって、水側熱交換器A14と
B17が熱交換して給湯水を高温化しながら、給湯暖房
運転が可能となるものである。なお冷凍サイクルBのみ
を運転する場合(たとえば冬場の暖房優先モード)には
、冷凍サイクルA側が余剰冷媒の貯留作用をなし、冷凍
サイクルBは封入した混合冷媒の濃度のままで運転され
る。
In such a refrigeration cycle device, a case will be described below in which a non-azeotropic refrigerant mixture consisting of, for example, R12, which is a high boiling point refrigerant, and R22, which is a low boiling point refrigerant, is sealed. When operating only the upper refrigeration cycle device A (for example, hot water supply cooling mode in summer), the lower refrigeration cycle B
is not operated, liquid return from the top of the rectification separator 21 is not performed, and no rectification action occurs, so the lower stage side simply serves to store surplus refrigerant of the mixed refrigerant. For this reason, the upper stage refrigeration cycle A is operated with the same concentration of the enclosed mixed refrigerant, and the cooling capacity for air conditioning and the heating capacity for hot water supply are increased more than before, and the lower stage refrigeration cycle A is operated as the cooling load increases or decreases. Cycle B is operated less frequently. In addition, when the lower stage refrigeration cycle B is also subjected to cooling operation, in the refrigeration cycle B, a part of the refrigerant that has passed through the compressor B16, four-way valve B16, and air side heat exchanger B19 is passed through the throttling device 25. The pressure is reduced to some extent and a gas-liquid two-phase state is formed. In particular, the liquid component descends from the top of the rectification separator 21. On the other hand, in the refrigeration cycle A operated on the upper stage side, the compressor A11 and the hot water supply heat exchanger 12
A part of the refrigerant that has passed through is reduced in pressure to some extent by the throttling device 22 and becomes a gas-liquid two-phase state, and the gas component in particular rises from the bottom of the rectification separator 21. At this time, inside the rectification separator 21, through the surface of the packed filler (not shown),
Rectification occurs due to gas-liquid contact between the descending liquid component and the ascending gas component. Therefore, the rising gas component has a high concentration of low boiling point refrigerant, and is circulated through the throttling device 24 to the low pressure circuit of the refrigeration cycle B. However, it joins with the refrigerant passing through the expansion valve B18, and then flows through the refrigeration cycle B. The refrigerant that circulates has an increased concentration of R22, which is a low boiling point refrigerant. On the contrary, rectification separator 21
The liquid component that descends at high boiling point refrigerant concentration is circulated through the throttling device 23 to the low pressure circuit of the refrigeration cycle A, but it joins with the refrigerant passing through the expansion valve A13 to stop the refrigeration cycle A. The circulating refrigerant has an increased concentration of R12, which is a high boiling point refrigerant. Therefore, it is possible to increase the cooling capacity of the lower refrigeration cycle B. Furthermore, when the lower stage refrigeration cycle B is also subjected to heating operation (for example, hot water supply heating mode in winter), the four-way valve B1e in the refrigeration cycle B is switched, and the water passes through the water side heat exchanger B17, which acts as a condenser. A part of the refrigerant is depressurized to some extent by the throttling device 24 and becomes a gas-liquid two-phase state, and in particular, the liquid component descends from the top of the rectification separation N21. Therefore, in this case as well, a rectification effect occurs due to the interaction with refrigeration cycle A, which is operated in the same way. When the concentration of a certain R12 increases, the water-side heat exchangers A14 and B17 exchange heat to raise the temperature of the hot water supply, and hot water supply and heating operation becomes possible. Note that when only the refrigeration cycle B is operated (for example, heating priority mode in winter), the refrigeration cycle A side acts as a reservoir for surplus refrigerant, and the refrigeration cycle B is operated with the concentration of the enclosed mixed refrigerant unchanged.

次に本発明になる冷凍サイクル装置を、暖房モードの吹
出し温度を一時的に高温化したい等のニーズをもつ冷暖
房装置に適用した実施例で説明する。第3図において、
圧縮機A31、四方弁A32、四方弁A32の切換えに
よシ凝縮器又は蒸発器として作用する負荷側熱交換WA
33、減圧作用をなす膨張弁A34、四方弁A32の切
換えにょシ蒸発器又は凝縮器として作用する熱源側熱交
換器A35等を連結して上段の冷凍サイクルAを構成し
ている。また圧縮器Ba6、常に凝縮器として作用する
負荷側熱交換器B37、減圧作用をなす膨張弁B38、
常に蒸発器として作用する熱源側熱交換器B39等を連
結して下段の冷凍サイクルBを構成している。ここで上
段側の熱源側熱交換器A35と下段側の負荷側熱交換器
B37は一体的に空気熱交換器40として形成され、直
接的に熱交換可能とすると共に、循環ファン(図示せず
)によシ空気とも熱交換されるものである。さらに精留
分離器41をはさんで、その底部は上段側の冷凍サイク
ルAの膨張弁A34をバイパスして絞り装置42.43
を介して接続され、その頂部は下段側の冷凍サイクルB
の膨張弁Bssをバイパスして絞り装置44.45を介
して接続される。
Next, the refrigeration cycle device according to the present invention will be described using an example in which the refrigeration cycle device according to the present invention is applied to an air-conditioning device that has a need to temporarily increase the blowout temperature in heating mode. In Figure 3,
Compressor A31, four-way valve A32, load-side heat exchange WA that acts as a condenser or evaporator by switching four-way valve A32
33, an expansion valve A34 that acts to reduce pressure, a switching four-way valve A32, a heat source side heat exchanger A35 that acts as an evaporator or a condenser, etc. are connected to form the upper refrigeration cycle A. In addition, the compressor Ba6, the load side heat exchanger B37 that always acts as a condenser, the expansion valve B38 that acts as a pressure reduction,
A lower refrigeration cycle B is constructed by connecting the heat source side heat exchanger B39, which always acts as an evaporator. Here, the heat source side heat exchanger A35 on the upper stage side and the load side heat exchanger B37 on the lower stage are integrally formed as an air heat exchanger 40, and are capable of direct heat exchange, as well as a circulation fan (not shown). ) and also exchanges heat with the air. Furthermore, the rectification separator 41 is sandwiched between the bottom part and the expansion valve A34 of the refrigeration cycle A on the upper stage side.
The top is connected to the lower refrigeration cycle B.
The expansion valve Bss is bypassed and connected via the throttle device 44,45.

かかる冷凍サイクル装置において、高沸点冷媒と低沸点
冷媒から成る非共沸混合冷媒を封入した場合、通常の冷
暖房運転は冷凍サイクルAのみで行われる。次に暖房モ
ードの立上シ特等において吹出し温度を一時的に高温化
したいときには、冷凍サイクルBも同時に運転させると
、第1図の実施例の給湯暖房モードと同様に精留作用が
起こり、高沸点冷媒が循環する熱源側熱交換器A35と
低沸点冷媒が循環する負荷側熱交換器B37が熱交換し
て、上段側の負荷側熱交換器33での吹出し温度が高温
化できるものである。
In such a refrigeration cycle device, when a non-azeotropic mixed refrigerant consisting of a high boiling point refrigerant and a low boiling point refrigerant is sealed, normal heating and cooling operation is performed only in the refrigeration cycle A. Next, when you want to temporarily raise the blowout temperature during the start-up of the heating mode, if you also operate the refrigeration cycle B at the same time, a rectification effect will occur in the same way as in the hot water supply heating mode of the embodiment shown in Fig. 1. The heat source side heat exchanger A35 in which the boiling point refrigerant circulates and the load side heat exchanger B37 in which the low boiling point refrigerant circulates exchange heat, and the blowing temperature in the upper load side heat exchanger 33 can be raised to a high temperature. .

なお第1図及び第3図の実施例では、精留分離器との接
続方法の一例を示したものであシ、絞シ装置を可変とし
たシ、精留作用を促進するための付加手段を追加したも
のも本発明に含まれるものであシ、用途としても実施例
にこだわるものではなく、超低温装置等に適用してもよ
いことはもちろんのことである。
The embodiments shown in FIGS. 1 and 3 show an example of a method of connection with a rectification separator, and include a variable throttling device and additional means for promoting the rectification action. The present invention also includes additions of the following, and the application is not limited to the embodiments, and it goes without saying that the present invention may be applied to ultra-low temperature equipment and the like.

発明の効果 以上のように本発明になる冷凍サイクル装置は上段側の
凝縮器ではよシ高温化したシ、下段側の蒸発器ではよシ
低温化したシできるばかシでなく、精留分離をしないと
きには能力の増減を行って経済的な運転を行うことが可
能となるものである。
Effects of the Invention As described above, the refrigeration cycle device according to the present invention is not an idiot that can achieve a high temperature in the upper condenser and a low temperature in the lower evaporator, but can perform rectification separation. When not in use, it is possible to increase or decrease the capacity for economical operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の冷凍サイクル装置を冷暖房
給湯装置に適用した構成図、第2図は従来例の冷暖房給
湯装置の構成図、第3図は本発明の一実施例の冷凍ティ
クル装置を冷暖房装置に適用した構成図である。 11.15・・・・・・圧縮機、12・・・・・・給湯
用熱交換器、14,17・・・・・・水側熱交換器、1
9・・・・・・空気側熱交換器、13.18・・・・・
・膨張弁、21・・・・・・精留分離器、22.23.
24.25・・・・・・絞!7装置。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名22
.2j、24.25−絞り殻置 第1図 第2図 ゝ9
Fig. 1 is a block diagram of a refrigeration cycle device according to an embodiment of the present invention applied to an air-conditioning/heating/water supply system, Fig. 2 is a block diagram of a conventional air-conditioning/heating/water supply system, and Fig. 3 is a block diagram of a refrigeration cycle system according to an embodiment of the present invention. FIG. 2 is a configuration diagram in which a tickle device is applied to an air-conditioning device. 11.15...Compressor, 12...Hot water supply heat exchanger, 14,17...Water side heat exchanger, 1
9... Air side heat exchanger, 13.18...
- Expansion valve, 21... Rectification separator, 22.23.
24.25...Shibori! 7 devices. Name of agent: Patent attorney Toshio Nakao and 1 other person22
.. 2j, 24.25-Aperture shell placement Fig. 1 Fig. 2 ゝ9

Claims (1)

【特許請求の範囲】[Claims]  圧縮機,凝縮器,減圧装置,蒸発器等を具備する上段
側の冷凍サイクルと、同じく圧縮機,凝縮器,減圧装置
,蒸発器等を具備する下段側の冷凍サイクルと、精留分
離器を主たる構成要素とし、精留分離器の底部を前記上
段側冷凍サイクルの減圧装置をバイパスして接続し、前
記精留分離器の頂部を前記下段側冷凍サイクルの減圧装
置をバイパスして接続し、前記上段側冷凍サイクルの蒸
発器と下段側冷凍サイクルの凝縮器を直接又は関接に熱
交換し、低沸点冷媒と高沸点冷媒から成る非共沸混合冷
媒を封入したことを特徴とする冷凍サイクル装置。
The upper refrigeration cycle is equipped with a compressor, condenser, pressure reduction device, evaporator, etc., the lower refrigeration cycle is also equipped with a compressor, condenser, pressure reduction device, evaporator, etc., and a rectification separator. as main components, the bottom of the rectification separator is connected by bypassing the pressure reducing device of the upper refrigeration cycle, and the top of the rectification separator is connected by bypassing the pressure reducing device of the lower refrigeration cycle, A refrigeration cycle characterized in that the evaporator of the upper refrigeration cycle and the condenser of the lower refrigeration cycle directly or indirectly exchange heat, and a non-azeotropic mixed refrigerant consisting of a low boiling point refrigerant and a high boiling point refrigerant is sealed. Device.
JP11301587A 1987-05-08 1987-05-08 Refrigeration cycle equipment Expired - Lifetime JPH0756419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11301587A JPH0756419B2 (en) 1987-05-08 1987-05-08 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11301587A JPH0756419B2 (en) 1987-05-08 1987-05-08 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JPS63279062A true JPS63279062A (en) 1988-11-16
JPH0756419B2 JPH0756419B2 (en) 1995-06-14

Family

ID=14601298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11301587A Expired - Lifetime JPH0756419B2 (en) 1987-05-08 1987-05-08 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JPH0756419B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5186011A (en) * 1991-02-18 1993-02-16 Matsushita Electric Industrial Co., Ltd. Refrigerant cycling apparatus
JP2008232534A (en) * 2007-03-20 2008-10-02 Tokyo Electric Power Co Inc:The Vapor production system and vapor production method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5186011A (en) * 1991-02-18 1993-02-16 Matsushita Electric Industrial Co., Ltd. Refrigerant cycling apparatus
JP2008232534A (en) * 2007-03-20 2008-10-02 Tokyo Electric Power Co Inc:The Vapor production system and vapor production method

Also Published As

Publication number Publication date
JPH0756419B2 (en) 1995-06-14

Similar Documents

Publication Publication Date Title
US4635446A (en) Dehumidification apparatus
JPH0432669A (en) Heat pump system controlling method therefor
JPS63279062A (en) Refrigeration cycle device
JP2004144411A (en) Air conditioning equipment
KR19990027477A (en) Surging device of turbo chiller
JP2615491B2 (en) Cooling / heating hot water supply system
JPH06272978A (en) Air conditioner
JPS63163737A (en) Heat pump device
JPH0833254B2 (en) Heat pump system
JPS5872853A (en) Absorption air conditioner
JPS58104475A (en) Heat pump device
JPS63148058A (en) Air conditioner
JPS63156975A (en) Refrigeration cycle device
JPS62245053A (en) Heat pump device
JPH05312409A (en) Heat pump type hot water feeding machine
JPH04103966A (en) Freezing cycle device
JPS60165434A (en) Heat pump hot-water supplier both for room heating and cooling machine
JPS6259343A (en) Heat pump type air conditioner
JPH0195238A (en) Spot cooler
JPH056104B2 (en)
JPS62166246A (en) Air conditioner
JPH04263747A (en) Refrigerator cycle device
JPS6115053A (en) Outdoor-side heat exchanger for heat pump type air conditioner
JPS6310350B2 (en)
JPS63318454A (en) Method of operating heat pump