JPH04263747A - Refrigerator cycle device - Google Patents

Refrigerator cycle device

Info

Publication number
JPH04263747A
JPH04263747A JP2319991A JP2319991A JPH04263747A JP H04263747 A JPH04263747 A JP H04263747A JP 2319991 A JP2319991 A JP 2319991A JP 2319991 A JP2319991 A JP 2319991A JP H04263747 A JPH04263747 A JP H04263747A
Authority
JP
Japan
Prior art keywords
compressor
refrigerant
boiling point
refrigeration cycle
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2319991A
Other languages
Japanese (ja)
Other versions
JP2574545B2 (en
Inventor
Yuji Yoshida
雄二 吉田
Minoru Tagashira
実 田頭
Kazuo Nakatani
和生 中谷
Shozo Funakura
正三 船倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2319991A priority Critical patent/JP2574545B2/en
Priority to DE69206442T priority patent/DE69206442T2/en
Priority to EP92102570A priority patent/EP0499999B1/en
Priority to US07/836,430 priority patent/US5186011A/en
Publication of JPH04263747A publication Critical patent/JPH04263747A/en
Application granted granted Critical
Publication of JP2574545B2 publication Critical patent/JP2574545B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain higher temperature by a condenser and lower temperature by a vaporizer with an operation of high efficiency by a method wherein high boiling point, refrigerant at a high stage and low boiling point refrigerant at a low stage are separated without using a heat exchanger in the middle part of a multiple refrigeration cycle device, and suction and discharge temperatures of a compressor at the high stage are lowered so that two compressors are operated at a low compression ratio. CONSTITUTION:A first compressor 1, a second compressor 3, a condenser 4, a first pressure reducer 5, a rectifying separator 6, a second pressure reducer 8 connected to a top part of the rectifying separator 6 and a vaporizor 9 are connected in succession, and a discharge pipe 2 of the compressor 1 is bypassed and connected to the top part of the rectifying separator 6. A bottom part of the rectifying separator 6 is connected to the second compressor 3 in the rear-stream of a discharge bypass pipe 10, whereby a non-azeotrope refrigerant which comprises of a low boiling point refrigerant and a high boiling point refrigerant is sealed in.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、冷暖房や給湯または超
低温装置などの、より高温または低温を得る冷凍サイク
ル装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to refrigeration cycle devices for obtaining higher or lower temperatures, such as air conditioning, hot water supply, or ultra-low temperature devices.

【0002】0002

【従来の技術】近年、冷凍サイクル装置は、より高温ま
たはより低温が得られることが求められている。
2. Description of the Related Art In recent years, refrigeration cycle devices have been required to be able to operate at higher temperatures or lower temperatures.

【0003】従来、この種の冷凍サイクル装置として、
複数個の冷凍サイクル装置をカスケード式に連結した多
元の冷凍サイクル装置が知られている。この多元の冷凍
サイクル装置においては、通常、高段の冷凍サイクルに
沸点の高い冷媒成分(以下、高沸点冷媒という)が封入
され、低段の冷凍サイクルに沸点の低い冷媒成分(以下
、低沸点冷媒という)が封入され、高段の蒸発冷媒と低
段の凝縮冷媒を熱交換させる中間熱交換器を配置するよ
うに構成していた。
[0003] Conventionally, this type of refrigeration cycle device
A multi-component refrigeration cycle device in which a plurality of refrigeration cycle devices are connected in a cascade manner is known. In this multicomponent refrigeration cycle device, a refrigerant component with a high boiling point (hereinafter referred to as a high-boiling point refrigerant) is usually sealed in a high-stage refrigeration cycle, and a refrigerant component with a low boiling point (hereinafter referred to as a low-boiling point refrigerant) is enclosed in a low-stage refrigeration cycle. It was configured to include an intermediate heat exchanger that exchanges heat between the evaporative refrigerant in the higher stage and the condensed refrigerant in the lower stage.

【0004】このような冷凍サイクル装置では、高段の
冷凍サイクルに高沸点冷媒を封入しているため、高段の
凝縮器において蒸気圧を低くしながら高温を得ることが
でき、低段の冷凍サイクルに低沸点冷媒を封入している
ため、低段の蒸発器において負圧にすることなく低温を
得ることができる。
[0004] In such a refrigeration cycle device, since a high boiling point refrigerant is sealed in the high stage refrigeration cycle, a high temperature can be obtained while lowering the vapor pressure in the high stage condenser. Since the cycle is filled with a low boiling point refrigerant, low temperatures can be obtained without creating negative pressure in the low stage evaporator.

【0005】[0005]

【発明が解決しようとする課題】このような従来の冷凍
サイクル装置では、より高温または低温を得る目的には
適しているが、高段の冷凍サイクルに封入された高沸点
冷媒と、低段の冷凍サイクルに封入された低沸点冷媒を
分離するために、高段の蒸発冷媒と低段の凝縮冷媒を熱
交換させており、その結果、高段の蒸発温度は低段の凝
縮温度よりも低く、高段および低段の各冷凍サイクルに
配置された圧縮機は圧縮比の大きい状態で運転されるこ
とになり、効率の悪いという問題を有していた。
[Problems to be Solved by the Invention] Such conventional refrigeration cycle devices are suitable for the purpose of obtaining higher or lower temperatures, but the high boiling point refrigerant sealed in the high stage refrigeration cycle and the low stage refrigerant In order to separate the low boiling point refrigerant sealed in the refrigeration cycle, heat exchange is performed between the evaporating refrigerant in the high stage and the condensing refrigerant in the low stage, and as a result, the evaporation temperature in the high stage is lower than the condensing temperature in the lower stage. The compressors disposed in each of the high-stage and low-stage refrigeration cycles are operated at high compression ratios, resulting in a problem of poor efficiency.

【0006】また、最近の冷凍サイクル装置の利用形態
としては、高温給湯装置や超低温装置などの単機能の利
用だけでなく、高温給湯と冷暖房の両用兼用のように多
目的に利用できることが望まれている。このとき、多元
の冷凍サイクル装置においては、高段の凝縮器において
給湯と暖房の両機能を行わせることは可能であるが、高
沸点冷媒は加熱能力が低いため装置を大がかりにしなけ
ればならないという問題を有していた。
[0006]Furthermore, recent usage patterns of refrigeration cycle equipment include not only single-function usage such as high-temperature hot water supply equipment and ultra-low temperature equipment, but also multi-purpose usage such as dual use of high-temperature hot water supply and cooling/heating. There is. At this time, in multi-component refrigeration cycle equipment, it is possible to perform both hot water supply and heating functions in the high-stage condenser, but the high boiling point refrigerant has a low heating capacity, so the equipment must be large-scale. I had a problem.

【0007】本発明は上記課題を解決するもので、中間
部における熱交換器を用いることなく高段の高沸点冷媒
と低段の低沸点冷媒を分離し、高段の圧縮機の吸入およ
び吐出温度を低下しながら、2つの圧縮機を低圧縮比で
運転できるようにし、高効率な運転で、凝縮器ではより
高温を得るとともに蒸発器ではより低温を得ることが可
能とすることを第1の目的としている。
The present invention solves the above-mentioned problems by separating the high-boiling point refrigerant in the upper stage and the low-boiling point refrigerant in the lower stage without using a heat exchanger in the intermediate section, and by separating the high-stage high-boiling point refrigerant and the low-boiling point refrigerant in the lower stage, thereby reducing the suction and discharge of the high-stage compressor. The first objective is to be able to operate the two compressors at a low compression ratio while lowering the temperature, and with high efficiency operation, it is possible to obtain a higher temperature in the condenser and a lower temperature in the evaporator. The purpose is to

【0008】また、高段の高沸点冷媒と低段の低沸点冷
媒を混合し、高段の凝縮器において加熱能力を増大させ
るように冷媒の組成制御ができるようにすることを第2
の目的としている。
[0008] A second objective is to mix the high-boiling point refrigerant in the high stage and the low-boiling point refrigerant in the low stage, and to be able to control the composition of the refrigerant so as to increase the heating capacity in the high stage condenser.
The purpose is to

【0009】[0009]

【課題を解決するための手段】本発明は上記第1の目的
を達成するために、第1圧縮機、第2圧縮機、凝縮器、
第1減圧装置、精留分離器、精留分離器頂部に接続され
た第2減圧装置、蒸発器などを順に連結し、前記第1圧
縮機の吐出管をバイパスして前記精留分離器頂部に接続
し、前記精留分離器底部を前記第1圧縮機の吐出バイパ
ス管よりも後流側で前記第2圧縮機と接続し、低沸点冷
媒と高沸点冷媒から成る非共沸混合冷媒を封入したこと
を第1の課題解決手段としている。
[Means for Solving the Problems] In order to achieve the above first object, the present invention provides a first compressor, a second compressor, a condenser,
A first pressure reducing device, a rectifying separator, a second pressure reducing device connected to the top of the rectifying separator, an evaporator, etc. are connected in order, and the discharge pipe of the first compressor is bypassed to connect the top of the rectifying separator. , the bottom of the rectification separator is connected to the second compressor on the downstream side of the discharge bypass pipe of the first compressor, and a non-azeotropic mixed refrigerant consisting of a low boiling point refrigerant and a high boiling point refrigerant is supplied. Enclosing it is the first means of solving the problem.

【0010】また、第2の目的を達成するために、上記
第1の課題解決手段の第1圧縮機の吐出管をバイパスし
て精留分離器頂部に接続される回路と、精留分離器底部
から第1圧縮機の吐出バイパス管よりも後流側で第2圧
縮機と接続される回路に電磁弁を設けたことを第2の課
題解決手段としている。
[0010] In addition, in order to achieve the second object, a circuit that bypasses the discharge pipe of the first compressor of the first problem solving means and is connected to the top of the rectification separator; The second problem-solving means is that a solenoid valve is provided in a circuit connected from the bottom to the second compressor on the downstream side of the discharge bypass pipe of the first compressor.

【0011】[0011]

【作用】本発明は上記した課題解決手段により、精留分
離器の内部では非共沸混合冷媒の分離が起こり、頂部で
は低沸点冷媒が濃縮され、底部では高沸点冷媒が濃縮さ
れる。したがって、精留分離器の頂部に接続された第2
減圧装置、蒸発器、第1圧縮機、第1圧縮機の吐出管を
バイパスして精留分離器頂部に接続される第1の冷凍サ
イクルには濃縮された低沸点冷媒が循環する。また、高
沸点冷媒が濃縮される精留分離器底部からは第1圧縮機
の吐出バイパス管よりも後流側で第2圧縮機と接続して
いるので、連結された第1圧縮機からの低沸点冷媒と混
合されて、第2圧縮機の吸入温度を低下し、第2圧縮機
、凝縮器、第1減圧装置、精留分離器を接続した第2の
冷凍サイクルには、第1の冷凍サイクルよりも高沸点成
分の多い混合された組成の非共沸混合冷媒が循環する。 このようにして混合された組成の非共沸混合冷媒は、再
び精留分離器の内部で分離が起こり、頂部では低沸点冷
媒が濃縮され、底部では高沸点冷媒が濃縮される。
According to the present invention, the non-azeotropic mixed refrigerant is separated inside the rectification separator, the low-boiling refrigerant is concentrated at the top, and the high-boiling refrigerant is concentrated at the bottom. Therefore, the second
Concentrated low-boiling refrigerant is circulated through a first refrigeration cycle connected to the top of the rectification separator by bypassing the pressure reducing device, the evaporator, the first compressor, and the discharge pipe of the first compressor. In addition, since the bottom of the rectification separator where the high boiling point refrigerant is concentrated is connected to the second compressor on the downstream side of the discharge bypass pipe of the first compressor, the flow from the connected first compressor is A second refrigeration cycle is mixed with a low boiling point refrigerant to lower the suction temperature of the second compressor, and is connected to the second compressor, condenser, first pressure reducing device, and rectification separator. A non-azeotropic mixed refrigerant with a mixed composition containing more high boiling point components than in the refrigeration cycle is circulated. The non-azeotropic mixed refrigerant having the composition thus mixed undergoes separation again inside the rectification separator, with the low boiling point refrigerant being concentrated at the top and the high boiling point refrigerant being concentrated at the bottom.

【0012】したがって、従来の多元の冷凍サイクル装
置のような中間部における熱交換器を必要とせず、第1
の冷凍サイクルの低沸点冷媒と、第2の冷凍サイクルの
高沸点冷媒とに分離することができ、第2圧縮機の吸入
および吐出温度を低下させながら、2つの圧縮機を低圧
縮比で運転させることができ、高効率な運転で凝縮器で
はより高温と蒸発器ではより低温を得ることが可能とな
り、このような分離後の冷媒成分や蒸気圧は、最初に封
入される非共沸混合冷媒の組合せや組成、および各減圧
装置による圧力設定などによって任意に選択することが
できる。
[0012] Therefore, unlike the conventional multicomponent refrigeration cycle equipment, there is no need for an intermediate heat exchanger, and the first heat exchanger is not required.
The refrigerant can be separated into a low boiling point refrigerant in the second refrigeration cycle and a high boiling point refrigerant in the second refrigeration cycle, and the two compressors can be operated at a low compression ratio while lowering the suction and discharge temperatures of the second compressor. With highly efficient operation, it is possible to obtain higher temperatures in the condenser and lower temperatures in the evaporator, and the refrigerant components and vapor pressure after such separation are lower than those of the non-azeotropic mixture initially sealed. It can be arbitrarily selected depending on the combination and composition of refrigerants, the pressure settings of each pressure reducing device, etc.

【0013】また、第2の課題解決手段により、第1圧
縮機の吐出管をバイパスして精留分離器頂部に接続され
る回路や、精留分離器底部から第1圧縮機の吐出バイパ
ス管よりも後流側で第2圧縮機と接続される回路を閉止
すれば、精留分離器の内部での分離も停止され、封入さ
れた組成の非共沸混合冷媒が、第1圧縮機、第2圧縮機
、凝縮器、第1減圧装置、精留分離器、精留分離器頂部
に接続された第2減圧装置、蒸発器を循環し、分離時よ
りも低沸点成分の多い非共沸混合冷媒が凝縮器において
凝縮し、加熱能力を増大させることができ、このような
冷媒の組成制御も可能となる。
The second problem-solving means also provides a circuit that bypasses the discharge pipe of the first compressor and is connected to the top of the rectification separator, and a circuit that bypasses the discharge pipe of the first compressor and connects the discharge bypass pipe of the first compressor from the bottom of the rectification separator. If the circuit connected to the second compressor is closed on the downstream side, separation inside the rectification separator is also stopped, and the non-azeotropic mixed refrigerant of the enclosed composition is transferred to the first compressor, It circulates through the second compressor, condenser, first pressure reduction device, rectification separator, second pressure reduction device connected to the top of the rectification separator, and evaporator, and non-azeotropic with more low-boiling components than during separation. The mixed refrigerant is condensed in the condenser to increase the heating capacity, and it is also possible to control the composition of the refrigerant.

【0014】[0014]

【実施例】以下、本発明の一実施例を図1に基づいて説
明する。
[Embodiment] An embodiment of the present invention will be described below with reference to FIG.

【0015】図に示すように、第1圧縮機1は吐出管2
を第2圧縮機3に接続し、第2圧縮機3に凝縮器4、第
1減圧装置5を接続し、第1減圧装置5の出口配管は精
留分離器6の中部と接続している。冷却器7は精留分離
器6の頂部から導出される冷媒の凝縮を助けるためのも
のであり、精留分離器6の頂部に第2減圧装置8を接続
している。蒸発器9の出口配管は第1圧縮機1に連結し
ており、冷却器7の冷熱源は蒸発器9の出口配管などで
構成している。また、第1圧縮機1の吐出管2をバイパ
スする吐出バイパス管10は精留分離器6の頂部と接続
し、精留分離器6の底部は配管11により第1圧縮機1
の吐出バイパス管10よりも後流側の位置で第1圧縮機
1の吐出管2と接続しており、この結果、第2圧縮機3
とも接続されることになる。さらに、精留分離器6の底
部に貯留器12を設け、第1圧縮機1の吐出バイパス管
10は貯留器12の内部に設けた熱交換器13を経由し
て、精留分離器6の頂部と接続するように構成している
。さらに、第1圧縮機1の吐出バイパス管10と精留分
離器6の底部からの配管11中には、それぞれ電磁弁1
4、15が設けている。そして、上記冷凍サイクル装置
には低沸点冷媒と高沸点冷媒から成る非共沸混合冷媒を
封入している。
As shown in the figure, the first compressor 1 has a discharge pipe 2
is connected to the second compressor 3, the condenser 4 and the first pressure reducing device 5 are connected to the second compressor 3, and the outlet pipe of the first pressure reducing device 5 is connected to the middle part of the rectification separator 6. . The cooler 7 is used to help condense the refrigerant discharged from the top of the rectification separator 6, and a second pressure reducing device 8 is connected to the top of the rectification separator 6. The outlet pipe of the evaporator 9 is connected to the first compressor 1, and the cold heat source of the cooler 7 is constituted by the outlet pipe of the evaporator 9. Further, a discharge bypass pipe 10 that bypasses the discharge pipe 2 of the first compressor 1 is connected to the top of the rectification separator 6, and the bottom of the rectification separator 6 is connected to the first compressor 1 through a pipe 11.
is connected to the discharge pipe 2 of the first compressor 1 at a position on the downstream side of the discharge bypass pipe 10, and as a result, the second compressor 3
It will also be connected. Further, a reservoir 12 is provided at the bottom of the rectifying separator 6, and the discharge bypass pipe 10 of the first compressor 1 is connected to the rectifying separator 6 via a heat exchanger 13 provided inside the reservoir 12. It is configured to be connected to the top. Further, a solenoid valve 1 is provided in the discharge bypass pipe 10 of the first compressor 1 and the pipe 11 from the bottom of the rectification separator 6, respectively.
4 and 15 are provided. The refrigeration cycle device is sealed with a non-azeotropic mixed refrigerant consisting of a low boiling point refrigerant and a high boiling point refrigerant.

【0016】上記構成において動作を説明すると、精留
分離器6の内部では第1減圧装置5の出口配管から供給
される二相冷媒と、第1圧縮機1の吐出バイパス管10
から供給されるガス冷媒が貯留器12の内部に設けた熱
交換器13を経由して液化され精留分離器6の頂部に供
給される液冷媒と、第1圧縮機1の吐出バイパス管10
から供給されるガス冷媒により熱交換器13を通じて加
熱され気化する精留分離器6の底部に設けた貯留器12
中のガス冷媒により、精留作用によって非共沸混合冷媒
の分離が起こり、頂部では低沸点冷媒が濃縮され、底部
では高沸点冷媒が濃縮される。したがって、精留分離器
6の頂部から導出される冷媒の凝縮を助けるための冷却
器7、精留分離器6の頂部に接続された第2減圧装置8
、蒸発器9、第1圧縮機1、精留分離器6の頂部に接続
される第1圧縮機1の吐出バイパス管10で構成される
第1の冷凍サイクルには、濃縮された低沸点冷媒が循環
する。また、高沸点冷媒が濃縮され精留分離器6の底部
に設けた貯留器12は、第1圧縮機1の吐出バイパス管
10よりも後流側の位置で第1圧縮機1の吐出管2と配
管11により接続されるため、高沸点の液冷媒は連結さ
れた第1圧縮機1からの低沸点のガス冷媒と混合されて
第2圧縮機3の吸入温度を低下させ、第2圧縮機3、凝
縮器4、第1減圧装置5、精留分離器6で構成される第
2の冷凍サイクルには、第1の冷凍サイクルよりも高沸
点成分の多い混合された組成の非共沸混合冷媒が循環す
る。このようにして混合された組成の非共沸混合冷媒は
、再び精留分離器6の内部で分離が起こり、頂部では低
沸点冷媒が濃縮され、底部では高沸点冷媒が濃縮される
To explain the operation in the above configuration, inside the rectification separator 6, the two-phase refrigerant supplied from the outlet pipe of the first pressure reducing device 5 and the discharge bypass pipe 10 of the first compressor 1 are mixed.
The gas refrigerant supplied from the reservoir 12 is liquefied via the heat exchanger 13 provided inside the reservoir 12 and the liquid refrigerant is supplied to the top of the rectification separator 6, and the discharge bypass pipe 10 of the first compressor 1.
A reservoir 12 provided at the bottom of the rectification separator 6 is heated and vaporized through a heat exchanger 13 by the gas refrigerant supplied from the
The gas refrigerant inside causes the separation of the non-azeotropic refrigerant mixture by a rectification effect, concentrating the low-boiling refrigerant at the top and the high-boiling refrigerant at the bottom. Therefore, a cooler 7 for assisting condensation of the refrigerant drawn out from the top of the rectification separator 6, and a second pressure reducing device 8 connected to the top of the rectification separator 6.
, an evaporator 9, a first compressor 1, and a discharge bypass pipe 10 of the first compressor 1 connected to the top of the rectification separator 6. is circulated. In addition, a reservoir 12 in which the high boiling point refrigerant is concentrated and is provided at the bottom of the rectification separator 6 is located downstream of the discharge bypass pipe 10 of the first compressor 1 and is connected to the discharge pipe 2 of the first compressor 1. Since the high boiling point liquid refrigerant is mixed with the low boiling point gas refrigerant from the connected first compressor 1, the suction temperature of the second compressor 3 is lowered, and the second compressor 3. The second refrigeration cycle, which is composed of a condenser 4, a first pressure reduction device 5, and a rectification separator 6, contains a non-azeotropic mixture with a mixed composition containing more high-boiling components than the first refrigeration cycle. Refrigerant circulates. The non-azeotropic mixed refrigerant having the composition thus mixed undergoes separation again inside the rectification separator 6, with the low boiling point refrigerant being concentrated at the top and the high boiling point refrigerant being concentrated at the bottom.

【0017】したがって、従来の多元の冷凍サイクル装
置のような中間部における熱交換器を必要とせず、第1
の冷凍サイクル中の低沸点冷媒と、第2の冷凍サイクル
中の第1の冷凍サイクルよりも高沸点成分の多い組成の
非共沸混合冷媒とに分離することができるだけでなく、
第2圧縮機3の吸入および吐出温度を低下させながら、
第1圧縮機1の吐出圧力と第2圧縮機3の吸入圧力がほ
ぼ同一となり、第1圧縮機1および第2圧縮機3はそれ
ぞれ圧縮比の小さい状態で運転されることになり、高効
率な運転が可能で、しかも第2の冷凍サイクル中の凝縮
器4において蒸気圧を低くしながら高温を得ることがで
き、第1の冷凍サイクル中の蒸発器9において負圧にす
ることなく低温を得ることができる。なお、このような
分離後の冷媒成分や蒸気圧は、最初に封入される非共沸
混合冷媒の組合せや組成、および第1減圧装置5や第2
減圧装置8による圧力設定などによって任意に選択する
ことができ、精留分離器6の分離のための操作圧力が、
第1圧縮機1の吐出圧力や第2圧縮機3の吸入圧力とほ
ぼ同一の圧力レベルになるように、全体の冷凍サイクル
を上記のように構成することによって可能となる。
[0017] Therefore, unlike the conventional multicomponent refrigeration cycle equipment, there is no need for an intermediate heat exchanger, and the first heat exchanger is not required.
Not only can the refrigerant be separated into a low boiling point refrigerant in the second refrigeration cycle and a non-azeotropic mixed refrigerant having a composition containing more high boiling point components than in the first refrigeration cycle, but also
While reducing the suction and discharge temperatures of the second compressor 3,
The discharge pressure of the first compressor 1 and the suction pressure of the second compressor 3 are almost the same, and the first compressor 1 and the second compressor 3 are each operated with a small compression ratio, resulting in high efficiency. In addition, high temperatures can be obtained while lowering the vapor pressure in the condenser 4 in the second refrigeration cycle, and low temperatures can be achieved without creating a negative pressure in the evaporator 9 in the first refrigeration cycle. Obtainable. Note that the refrigerant components and vapor pressure after such separation depend on the combination and composition of the non-azeotropic mixed refrigerant initially sealed, as well as the first pressure reducing device 5 and the second pressure reducing device.
It can be arbitrarily selected by setting the pressure by the pressure reducing device 8, etc., and the operating pressure for separation of the rectification separator 6 is
This is possible by configuring the entire refrigeration cycle as described above so that the pressure level is approximately the same as the discharge pressure of the first compressor 1 and the suction pressure of the second compressor 3.

【0018】また、精留分離器6の頂部に接続される第
1圧縮機1の吐出バイパス管10中に設けた電磁弁14
や、精留分離器6の底部からの配管11中に設けた電磁
弁15を閉止すれば、精留分離器6の内部での分離も停
止されるため、封入された組成の非共沸混合冷媒が、第
1圧縮機1、吐出管2、第2圧縮機3、凝縮器4、第1
減圧装置5、精留分離器6、冷却器7、精留分離器6の
頂部に接続された第2減圧装置8、蒸発器9を循環し、
分離時よりも低沸点成分の多い非共沸混合冷媒が凝縮器
4において凝縮し、加熱能力を増大させることができ、
このような冷媒の組成制御も可能となる。
Further, a solenoid valve 14 provided in the discharge bypass pipe 10 of the first compressor 1 connected to the top of the rectification separator 6
Also, if the solenoid valve 15 installed in the pipe 11 from the bottom of the rectification separator 6 is closed, separation inside the rectification separator 6 is also stopped, so that the non-azeotropic mixture of the enclosed composition The refrigerant is supplied to the first compressor 1, the discharge pipe 2, the second compressor 3, the condenser 4, and the first
circulates through a pressure reduction device 5, a rectification separator 6, a cooler 7, a second pressure reduction device 8 connected to the top of the rectification separator 6, and an evaporator 9;
The non-azeotropic mixed refrigerant containing more low boiling point components than when separated is condensed in the condenser 4, and the heating capacity can be increased.
It also becomes possible to control the composition of the refrigerant.

【0019】なお、上記実施例では、第1減圧装置5の
出口配管は精留分離器6の中部と接続しているが、精留
分離器6と第1減圧装置5の出口配管の接続位置は精留
分離器6の頂部と底部の間であればよく、また、第1減
圧装置5や第2減圧装置8の絞り開度を可変とすること
も可能であり、冷却器7の冷熱源や熱交換器13の加熱
源は、第1減圧装置5から供給される二相冷媒による分
離を促進するための付加手段であれば、他の手段を用い
てもよい。また、原理的な冷凍サイクル装置の実施例と
して説明したが、冷暖房や給湯または超低温装置などに
適用してもよいことはもちろんである。
In the above embodiment, the outlet pipe of the first pressure reducing device 5 is connected to the middle part of the rectifying separator 6, but the connection position of the rectifying separator 6 and the outlet pipe of the first pressure reducing device 5 may be between the top and bottom of the rectification separator 6, and it is also possible to make the throttle opening of the first pressure reducing device 5 and the second pressure reducing device 8 variable, so that the cold source of the cooler 7 The heating source for the heat exchanger 13 may be any other means as long as it is an additional means for promoting separation by the two-phase refrigerant supplied from the first pressure reducing device 5. Although the present invention has been described as an example of a basic refrigeration cycle device, it goes without saying that it may be applied to air conditioning, hot water supply, ultra-low temperature devices, and the like.

【0020】[0020]

【発明の効果】以上の実施例から明らかなように本発明
によれば、第1圧縮機、第2圧縮機、凝縮器、第1減圧
装置、精留分離器、精留分離器頂部に接続された第2減
圧装置、蒸発器などを順に連結し、前記第1圧縮機の吐
出管をバイパスして前記精留分離器頂部に接続し、前記
精留分離器底部を前記第1圧縮機の吐出バイパス管より
も後流側で前記第2圧縮機と接続し、低沸点冷媒と高沸
点冷媒から成る非共沸混合冷媒を封入したから、精留分
離器の内部では非共沸混合冷媒の分離が起こり頂部では
低沸点冷媒が濃縮され、底部では高沸点冷媒が濃縮され
、蒸発器には濃縮された低沸点冷媒が循環し、凝縮器に
は高沸点冷媒が循環し、従来の多元の冷凍サイクル装置
のような中間部における熱交換器を必要とせず、第2圧
縮機の吸入および吐出温度を低下させて、高効率な運転
で凝縮器ではより高温と蒸発器ではより低温を得ること
ができる。
As is clear from the above embodiments, according to the present invention, the first compressor, the second compressor, the condenser, the first pressure reducing device, the rectification separator, and the connection to the top of the rectification separator are provided. A second pressure reducing device, an evaporator, etc. are connected in order, and the discharge pipe of the first compressor is bypassed and connected to the top of the rectification separator, and the bottom of the rectification separator is connected to the bottom of the first compressor. Since it is connected to the second compressor on the downstream side of the discharge bypass pipe and contains a non-azeotropic mixed refrigerant consisting of a low boiling point refrigerant and a high boiling point refrigerant, the non-azeotropic mixed refrigerant is mixed inside the rectification separator. Separation occurs, concentrating the low-boiling refrigerant at the top and concentrating the high-boiling refrigerant at the bottom, with the concentrated low-boiling refrigerant circulating in the evaporator and the high-boiling refrigerant circulating in the condenser, which is different from the traditional multi-component system. It does not require a heat exchanger in the middle like a refrigeration cycle device, and lowers the suction and discharge temperatures of the second compressor to achieve higher temperatures in the condenser and lower temperatures in the evaporator with highly efficient operation. Can be done.

【0021】また、第1圧縮機の吐出管をバイパスして
精留分離器頂部に接続される回路と、精留分離器底部か
ら第1圧縮機の吐出バイパス管よりも後流側で第2圧縮
機と接続される回路に電磁弁を設けたから、この電磁弁
により第1圧縮機の吐出管をバイパスして精留分離器頂
部に接続される回路や、精留分離器底部から第1圧縮機
の吐出バイパス管よりも後流側で第2圧縮機と接続され
る回路を閉止すれば、精留分離器の内部での分離が停止
され、封入された組成の非共沸混合冷媒が、第1圧縮機
、第2圧縮機、凝縮器、第1減圧装置、精留分離器、精
留分離器頂部に接続された第2減圧装置、蒸発器を循環
し、分離時よりも低沸点成分の多い非共沸混合冷媒が凝
縮器において凝縮し、加熱能力を増大させることができ
、さらに、このような冷媒の組成制御も可能となる。
[0021] Also, a circuit is connected to the top of the rectification separator by bypassing the discharge pipe of the first compressor, and a second circuit is connected from the bottom of the rectification separator to the downstream side of the discharge bypass pipe of the first compressor. Since a solenoid valve is provided in the circuit connected to the compressor, this solenoid valve can be used to bypass the discharge pipe of the first compressor and connect the circuit to the top of the rectification separator, or to connect the circuit from the bottom of the rectification separator to the first compressor. By closing the circuit connected to the second compressor on the downstream side of the discharge bypass pipe of the machine, separation inside the rectification separator is stopped, and the non-azeotropic mixed refrigerant with the enclosed composition is A component with a lower boiling point than that at the time of separation is circulated through the first compressor, the second compressor, the condenser, the first pressure reducing device, the rectification separator, the second pressure reduction device connected to the top of the rectification separator, and the evaporator. A non-azeotropic refrigerant mixture with a large amount of refrigerant is condensed in the condenser, increasing the heating capacity, and furthermore, it becomes possible to control the composition of such a refrigerant.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例の冷凍サイクル装置の構成図
FIG. 1 is a configuration diagram of a refrigeration cycle device according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1  第1圧縮機 2  吐出管 3  第2圧縮機 4  凝縮器 5  第1減圧装置 6  精留分離器 8  第2減圧装置 9  蒸発器 10  吐出バイパス管 1 First compressor 2 Discharge pipe 3 Second compressor 4 Condenser 5 First pressure reducing device 6 Rectification separator 8 Second pressure reducing device 9 Evaporator 10 Discharge bypass pipe

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  第1圧縮機、第2圧縮機、凝縮器、第
1減圧装置、精留分離器、精留分離器頂部に接続された
第2減圧装置、蒸発器などを順に連結し、前記第1圧縮
機の吐出管をバイパスして前記精留分離器頂部に接続し
、前記精留分離器底部を前記第1圧縮機の吐出バイパス
管よりも後流側で前記第2圧縮機と接続し、低沸点冷媒
と高沸点冷媒から成る非共沸混合冷媒を封入した冷凍サ
イクル装置。
Claim 1: A first compressor, a second compressor, a condenser, a first pressure reduction device, a rectification separator, a second pressure reduction device connected to the top of the rectification separator, an evaporator, etc. are connected in order, The discharge pipe of the first compressor is bypassed and connected to the top of the rectification separator, and the bottom of the rectification separator is connected to the second compressor on a downstream side of the discharge bypass pipe of the first compressor. A refrigeration cycle device that is connected to a refrigeration cycle and sealed with a non-azeotropic mixed refrigerant consisting of a low-boiling point refrigerant and a high-boiling point refrigerant.
【請求項2】  第1圧縮機の吐出管をバイパスして精
留分離器頂部に接続される回路と、精留分離器底部から
第1圧縮機の吐出バイパス管よりも後流側で第2圧縮機
と接続される回路に電磁弁を設けた請求項1記載の冷凍
サイクル装置。
Claim 2: A circuit connected to the top of the rectification separator by bypassing the discharge pipe of the first compressor, and a second circuit connected from the bottom of the rectification separator to the downstream side of the discharge bypass pipe of the first compressor. The refrigeration cycle device according to claim 1, further comprising a solenoid valve provided in the circuit connected to the compressor.
JP2319991A 1991-02-18 1991-02-18 Refrigeration cycle device Expired - Lifetime JP2574545B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2319991A JP2574545B2 (en) 1991-02-18 1991-02-18 Refrigeration cycle device
DE69206442T DE69206442T2 (en) 1991-02-18 1992-02-15 Refrigerant circuit device.
EP92102570A EP0499999B1 (en) 1991-02-18 1992-02-15 Refrigerant cycling apparatus
US07/836,430 US5186011A (en) 1991-02-18 1992-02-18 Refrigerant cycling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2319991A JP2574545B2 (en) 1991-02-18 1991-02-18 Refrigeration cycle device

Publications (2)

Publication Number Publication Date
JPH04263747A true JPH04263747A (en) 1992-09-18
JP2574545B2 JP2574545B2 (en) 1997-01-22

Family

ID=12104003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2319991A Expired - Lifetime JP2574545B2 (en) 1991-02-18 1991-02-18 Refrigeration cycle device

Country Status (1)

Country Link
JP (1) JP2574545B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107709895A (en) * 2015-08-28 2018-02-16 三菱重工制冷空调系统株式会社 The control method of refrigerating circulatory device and refrigerating circulatory device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107709895A (en) * 2015-08-28 2018-02-16 三菱重工制冷空调系统株式会社 The control method of refrigerating circulatory device and refrigerating circulatory device

Also Published As

Publication number Publication date
JP2574545B2 (en) 1997-01-22

Similar Documents

Publication Publication Date Title
US20070074536A1 (en) Refrigeration system with bypass subcooling and component size de-optimization
US3698202A (en) Control system for low temperature refrigeration system
US5186011A (en) Refrigerant cycling apparatus
JP2002081777A (en) Refrigeration cycle
CN110411047A (en) Refrigeration system
JPH01273959A (en) Air conditioner for vehicle
JPH04263747A (en) Refrigerator cycle device
JPH07103588A (en) Freezer-refrigerator
CN105972864A (en) Non-azeotropic mixed working medium heat pump air-conditioning system with concentration adjustable
JP2532754B2 (en) Refrigeration cycle equipment
JPH0833254B2 (en) Heat pump system
JPH1068560A (en) Refrigeration cycle device
JPH02213652A (en) Two-stage compression and freezing cycle type air conditioner
JPH01155149A (en) Refrigeration cycle device
JPH0861799A (en) Air conditioner
JPH0544582B2 (en)
JP3368692B2 (en) Refrigeration system using non-azeotropic refrigerant mixture
JPH04292749A (en) Two-stage compression refrigeration cycle device
JPS62261861A (en) Heat pump device
JPH0623625B2 (en) Refrigeration system using mixed refrigerant
JPH08210716A (en) Refrigerator
JPS6256418B2 (en)
JPS62237252A (en) Air conditioner
JPH0212344B2 (en)
JPH04103966A (en) Freezing cycle device