JPS6252372A - Heat pump device - Google Patents

Heat pump device

Info

Publication number
JPS6252372A
JPS6252372A JP60190797A JP19079785A JPS6252372A JP S6252372 A JPS6252372 A JP S6252372A JP 60190797 A JP60190797 A JP 60190797A JP 19079785 A JP19079785 A JP 19079785A JP S6252372 A JPS6252372 A JP S6252372A
Authority
JP
Japan
Prior art keywords
refrigerant
rectification
main circuit
boiling point
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60190797A
Other languages
Japanese (ja)
Other versions
JPH0247670B2 (en
Inventor
茂夫 鈴木
雄二 吉田
和生 中谷
裕二 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19079785A priority Critical patent/JPH0247670B2/en
Priority to KR1019860002009A priority patent/KR890004867B1/en
Priority to EP86104022A priority patent/EP0196051B1/en
Priority to DE8686104022T priority patent/DE3675047D1/en
Priority to US06/844,065 priority patent/US4722195A/en
Publication of JPS6252372A publication Critical patent/JPS6252372A/en
Publication of JPH0247670B2 publication Critical patent/JPH0247670B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Central Heating Systems (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非共沸混合冷媒を用いた熱ポンプ装置の冷凍
サイクルに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a refrigeration cycle for a heat pump device using a non-azeotropic mixed refrigerant.

−従来の技術 従来非共沸混合冷媒を用いた熱ポンプ装置は、冷凍サイ
クル内部を循環する冷媒組成を可変することにより、能
力制御や性能改善を行う事ができ、例えば特開昭59−
157448号公報に示される第2図の如き従来例が提
案されている。第2図は非共沸混合冷媒を用いた熱ポン
プ装置を暖房装置として適用した実施例であシ、1は圧
縮機、2は三方弁、jは高温側熱交換器、4.6は絞シ
装置、6は三方弁、7は低温側熱交換器、8は冷媒精留
塔、9は精留塔加熱用熱交換器、1oは高沸点液溜め、
11は精留塔冷却用熱交換器、12は精留塔冷却用熱交
換器、13は低沸点液溜め、14゜16は流量調節弁、
16.17は逆上弁であり、冷凍サイクル内部には非共
沸混合冷媒が封入されている。
-Prior art A conventional heat pump device using a non-azeotropic mixed refrigerant can control capacity and improve performance by varying the composition of the refrigerant circulating inside the refrigeration cycle.
A conventional example as shown in FIG. 2 has been proposed in Japanese Patent No. 157448. Figure 2 shows an example in which a heat pump device using a non-azeotropic mixed refrigerant is applied as a heating device, where 1 is a compressor, 2 is a three-way valve, j is a high temperature side heat exchanger, and 4.6 is a throttle. 6 is a three-way valve, 7 is a low temperature side heat exchanger, 8 is a refrigerant rectification column, 9 is a heat exchanger for heating the rectification column, 1o is a high boiling point liquid reservoir,
11 is a heat exchanger for cooling the rectification tower, 12 is a heat exchanger for cooling the rectification tower, 13 is a low boiling point liquid reservoir, 14° and 16 are flow rate control valves,
16 and 17 are reverse valves, and a non-azeotropic mixed refrigerant is sealed inside the refrigeration cycle.

以上のように構成された熱ポンプ装置について以下その
動作を説明する。先ず、通常運転時の精留なしにおいて
は三方弁2及び6は第2図に図示する方向に開いておシ
、圧縮機1よp吐出された冷媒蒸気は三方弁2.高温側
熱交換器3.絞り装置4.三方弁6.絞シ装置5.低温
側熱交換器7゜圧縮機1へと循環し、高温側熱交換器3
で放熱をまた低温側熱交換器7で吸熱を行う。サイクル
内を循環する冷媒の濃度を変えるいわゆる精留で分離す
る場合には先ず三方弁2を90右方向へ切シ換え、圧縮
機1から吐出される冷媒を三方弁2゜精留塔加熱用熱交
換器9.精留塔冷却用絞り装置11、精留塔冷却用熱交
換器12.逆止弁16゜圧縮機1へと循環し、精留塔加
熱用熱交換器9にて高沸点液溜め10内の高沸点成分に
富む冷媒液を沸騰させ、精留塔冷却用熱交換器12にて
精留塔8で発生する低沸点成分に富む冷媒蒸気を凝縮さ
せ凝縮液を低沸点液溜め13に溜める。低沸点液溜め1
3からあふれた液は精留塔8内を流下し精留塔8内を上
昇する冷媒蒸気と接触し精留効果金高める。このように
して、精留分離を行ない、低沸点液溜め13内には低沸
点に富んだ冷媒を、又高沸点液溜め10内には高沸点に
富んだ冷媒を貯溜するものである。しかる後に、三方弁
2をもとへもどし三方弁6を図より9o右方向へ切シ換
えるとともに流量調節弁14及び15を調節して高沸点
成分に富む液と低沸点成分に富む液とを所定の割合に混
合し逆止弁17を介して絞シ装置5の方向へ流しその後
三方弁6をもとへもどす。
The operation of the heat pump device configured as described above will be explained below. First, when there is no rectification during normal operation, the three-way valves 2 and 6 are opened in the direction shown in FIG. High temperature side heat exchanger 3. Squeezing device 4. Three-way valve6. Squeezing device 5. The low temperature side heat exchanger 7° circulates to the compressor 1, and the high temperature side heat exchanger 3
The low temperature side heat exchanger 7 performs heat radiation and heat absorption in the low temperature side heat exchanger 7. When separating by so-called rectification, which changes the concentration of the refrigerant circulating in the cycle, first switch the three-way valve 2 to the right at 90 degrees, and then transfer the refrigerant discharged from the compressor 1 to the three-way valve 2 for heating the rectifier. Heat exchanger9. A rectification tower cooling expansion device 11, a rectification tower cooling heat exchanger 12. The check valve 16° circulates to the compressor 1, and the refrigerant liquid rich in high boiling point components in the high boiling point liquid reservoir 10 is boiled in the heat exchanger 9 for heating the rectifying column, and then the refrigerant liquid rich in high boiling point components is boiled in the heat exchanger 9 for heating the rectifying column. At step 12, the refrigerant vapor rich in low-boiling components generated in the rectification column 8 is condensed and the condensate is stored in a low-boiling liquid reservoir 13. Low boiling point liquid reservoir 1
The liquid overflowing from the column 3 flows down in the rectification column 8 and comes into contact with the refrigerant vapor rising in the rectification column 8, thereby increasing the rectification efficiency. In this manner, rectification separation is carried out, and a refrigerant rich in low boiling points is stored in the low boiling point liquid reservoir 13, and a refrigerant rich in high boiling points is stored in the high boiling point liquid reservoir 10. After that, the three-way valve 2 is returned to its original position, the three-way valve 6 is switched to the right direction 9o from the figure, and the flow rate control valves 14 and 15 are adjusted to separate the liquid rich in high-boiling point components and the liquid rich in low-boiling point components. The mixture is mixed at a predetermined ratio and flows through the check valve 17 toward the throttling device 5, after which the three-way valve 6 is returned to its original position.

上記のような作用様態により、主回路での冷媒濃度を可
変し、主回路が低沸点成分に富む時には高暖房能力を得
、一方主回路が高沸点成分に富む時には低暖房能力を得
るように冷凍サイクルを制御するものである。
With the mode of action described above, the refrigerant concentration in the main circuit is varied, and when the main circuit is rich in low boiling point components, high heating capacity is obtained, while when the main circuit is rich in high boiling point components, low heating capacity is obtained. It controls the refrigeration cycle.

発明が解決しようとする問題点 上記従来例の如き熱ポンプ装置においては、冷媒組成の
可変は基本的に可能であるが、以下の如き不具合な点を
生じるものであった。
Problems to be Solved by the Invention Although it is basically possible to change the refrigerant composition in the conventional heat pump device as described above, the following problems occur.

そもそも、本従来例は、精留塔8を含む分離器回路で冷
媒を精留分離させる場合には、三方弁2の切換えにより
精留塔8を駆動させる熱源となし、その時高温側熱交換
器3には冷媒が流れず、それ故暖房能力としては出力し
得えず暖房装置とじてははなはだ不便である。
In the first place, in this conventional example, when a refrigerant is rectified and separated in a separator circuit including a rectifying column 8, the three-way valve 2 is switched to serve as a heat source for driving the rectifying column 8, and at that time, the high temperature side heat exchanger 3, no refrigerant flows through it, and therefore no heating capacity can be output, which is extremely inconvenient as a heating device.

また、主回路の冷媒濃度の調整は、流量調整弁14及び
15を調整して高沸点液溜め10内の高沸点冷媒と、低
沸点冷媒液溜め13内の低沸点冷媒を任意の割合に混合
して、主回路に供給するものであるが、この場合必要と
する主回路濃度に調整しようとすれば、主回路側の濃度
と、高沸点冷媒液溜め10内の冷媒濃度および低沸点冷
媒液溜め13内の冷媒濃度を検出し、更にそれらの濃度
によって、流量調整弁14.15の開度あるいは開閉時
間をコントロールしなければならないという、はなはだ
繁雑な制御となるものである。またこの時、主回路内を
最適冷媒量に維持しようとすれば、三方弁6や流量調整
弁14.15を上述したのと同様に制御しなければなら
ず、これらの点でも、サイクル上複雑な構成となるもの
である。
The refrigerant concentration in the main circuit can be adjusted by adjusting the flow rate adjustment valves 14 and 15 to mix the high boiling point refrigerant in the high boiling point liquid reservoir 10 and the low boiling point refrigerant in the low boiling point refrigerant reservoir 13 in an arbitrary ratio. In this case, in order to adjust the main circuit concentration to the required concentration, the concentration on the main circuit side, the refrigerant concentration in the high boiling point refrigerant reservoir 10, and the low boiling point refrigerant liquid are This requires extremely complicated control, as it is necessary to detect the refrigerant concentration in the reservoir 13 and to control the opening degree or opening/closing time of the flow rate regulating valves 14, 15 based on the detected concentration. Furthermore, at this time, in order to maintain the optimum amount of refrigerant in the main circuit, the three-way valve 6 and the flow rate adjustment valve 14,15 must be controlled in the same way as described above, which also adds complexity to the cycle. The structure is as follows.

更に精留分離の面から考えた場合、三方弁6を開放して
主回路に高沸点あるいは低沸点冷媒を注入した後では、
高沸点冷媒液溜め10と低沸点冷媒液溜め13内のそれ
ぞれの冷媒濃度が変化するため、次に三方弁2を開放し
て精留分離を行なわせても、高沸点冷媒液溜め10と低
沸点冷媒液溜め13の精留分離後の濃度が前回精留分離
時と異なるといった問題点を生じるものである。
Furthermore, when considering from the perspective of rectification separation, after opening the three-way valve 6 and injecting high boiling point or low boiling point refrigerant into the main circuit,
Since the refrigerant concentrations in the high boiling point refrigerant reservoir 10 and the low boiling point refrigerant reservoir 13 change, even if the three-way valve 2 is opened next and rectification separation is performed, the high boiling point refrigerant reservoir 10 and the low boiling point refrigerant reservoir 13 are This causes a problem that the concentration of the boiling point refrigerant liquid reservoir 13 after the rectification separation is different from that during the previous rectification separation.

そこで本発明は、かかる従来の問題点を解決し、非共沸
混合冷媒を用いた熱ポンプ装置において、暖房の出力停
止なしに精留分離の確実性を増して主回路を循環する冷
媒組成の可変を確実に行ない、更にそれらの制御が容易
に出来、主回路側の冷媒調整が可能な冷凍サイクルを提
供しようとするものである。
Therefore, the present invention solves such conventional problems and improves the refrigerant composition to circulate through the main circuit in a heat pump device using a non-azeotropic mixed refrigerant, increasing the reliability of rectification separation without stopping the heating output. The objective is to provide a refrigeration cycle in which the refrigerant can be reliably varied, easily controlled, and the refrigerant on the main circuit side can be adjusted.

問題点・を解決するための手段 本発明になる熱ポンプ装置は、非共沸混合冷媒の組成可
変手段として精留作用を行う精留塔を用い、主回路の高
圧あるいは中間圧より精留塔に入る回路と、精留塔より
副絞シ装置をへて主回路の低圧に戻す回路とで接続し、
副絞シ装置の抵抗を前記主絞シ装置の抵抗よりも大とし
た。又精留分離の最終濃度を可変する時には、副絞シ装
置の抵抗を可変し、精留分離停止時には副絞シ装置の抵
抗を小さくしたものである。
The heat pump device according to the present invention uses a rectifying column that performs a rectifying action as a means for varying the composition of a non-azeotropic mixed refrigerant, and uses a rectifying column from the high pressure or intermediate pressure of the main circuit. The circuit that enters the water is connected to the circuit that passes from the rectifier to the sub-throttle device and returns to the low pressure of the main circuit.
The resistance of the auxiliary diaphragm device was made greater than the resistance of the main diaphragm device. Furthermore, when the final concentration of rectification separation is varied, the resistance of the sub-throttle device is varied, and when the rectification separation is stopped, the resistance of the sub-squeezer device is reduced.

作用 かかる冷凍サイクル上の構成を採用することにより、主
サイクルと暖房出力を得ながら精留作用が行なえ、副絞
り装置の抵抗を主絞り装置の抵抗よりも大ならしめてい
るために、循環冷媒の大部分が主回路側を流れ、精留塔
での精留作用を冷媒流れで乱す事がなく安定な精留作用
が行なえる。
By adopting this configuration on the refrigeration cycle, the rectifying action can be performed while obtaining the main cycle and heating output, and the resistance of the sub-throttle device is made greater than the resistance of the main throttling device, so that the circulating refrigerant is Most of it flows through the main circuit, and the rectifying action in the rectifier is not disturbed by the flow of refrigerant, allowing stable rectifying action to be performed.

又、開校シ装置の抵抗を可変して、加熱器での発生ガス
量を調節する事で精留分離の最終濃度を可変でき、精留
停止時には加熱器での発生ガス量をなくすと共に精留塔
での精留作用を冷媒流れで乱す事によって、確実な精留
停止が可能となるものである。
In addition, by varying the resistance of the opening device and adjusting the amount of gas generated in the heater, the final concentration of rectification separation can be varied, and when rectification is stopped, the amount of gas generated in the heater is eliminated and the rectification is stopped. By disturbing the rectification action in the column with the flow of refrigerant, it is possible to reliably stop the rectification.

実施例 本発明になる熱ポンプ装置の実施例を、暖房装置に適用
した第1図の実施例をもって説明する。
Embodiment An embodiment of the heat pump device according to the present invention will be explained using the embodiment shown in FIG. 1, which is applied to a heating device.

第1図において、18は圧縮機、19は負荷側熱交換器
、20は主絞シ装置、21は熱源側熱交換器で順次環状
に接続されている。
In FIG. 1, 18 is a compressor, 19 is a load side heat exchanger, 20 is a main throttling device, and 21 is a heat source side heat exchanger, which are connected in order in an annular manner.

一方、負荷側熱交換器19の高圧出口と充填材22を充
填した精留塔23とは途中加熱器24を介して接続され
、精留塔23の下部と主回路の熱源側熱交換器210入
口とは開校シ装置26を介して接続されている。精留塔
23の上部には塔頂冷却器26と、塔頂貯溜器27とが
設けられている。
On the other hand, the high-pressure outlet of the load-side heat exchanger 19 and the rectification column 23 filled with the filler 22 are connected via an intermediate heater 24, and the lower part of the rectification column 23 and the heat source side heat exchanger 210 of the main circuit are connected. It is connected to the entrance via a school opening device 26. A top cooler 26 and a top reservoir 27 are provided at the top of the rectification column 23 .

本実施例では加熱器24及び冷却器2eの熱源は図示し
ていないが、圧縮機18の吐出ガス及び吸入ガスを導き
、精留作用の有無にかかわらず常に冷媒を流す如く構成
しているものである。
Although the heat sources of the heater 24 and the cooler 2e are not shown in this embodiment, they are configured to guide the discharge gas and suction gas of the compressor 18, and to constantly flow the refrigerant regardless of the presence or absence of rectification. It is.

かかる構成になるヒートポンプ装置において、暖房時の
精留作用時および精留なし時について説明する。
In the heat pump device having such a configuration, the time of rectification action and the time of no rectification during heating will be explained.

まず精留作用時には、負荷側熱交換器19から出た高圧
液冷媒の一部が、加熱器24で加熱されて一部ガスが発
生し精留塔23の下部に流入する。
First, during rectification, a portion of the high-pressure liquid refrigerant discharged from the load-side heat exchanger 19 is heated by the heater 24 to generate some gas, which flows into the lower part of the rectification column 23 .

加熱器24で発生したガス成分は精留塔23内を上昇し
、冷却器26で凝縮液化し、貯溜器27から精留塔23
上部に還流して精留塔23内を下降し、その時上昇ガス
と物質、熱交換して精留作用をなし、貯溜器27には低
沸点リッチの冷媒が貯溜され、精留塔23下部からは高
沸点リッチの冷媒が副絞り装置25を通って主回路側冷
媒と合流し、熱源側熱交換器21に流入するものである
The gas components generated in the heater 24 rise in the rectification tower 23, are condensed and liquefied in the cooler 26, and are sent from the reservoir 27 to the rectification tower 23.
It refluxes to the upper part and descends in the rectifying column 23, and at that time, the substance exchanges heat with the rising gas to perform a rectifying action.A low-boiling point rich refrigerant is stored in the reservoir 27, and flows from the lower part of the rectifying column 23. The high boiling point rich refrigerant passes through the sub-throttle device 25, joins with the main circuit side refrigerant, and flows into the heat source side heat exchanger 21.

この時開校り装置25の抵抗を主絞り装置20よりも犬
としているので、循環冷媒の大部分が主回路側を流れ、
精留塔23内に流入する冷媒は少なく、それ故精留塔2
3内での精留作用を乱す事がなく安定な精留が行なえる
ものである。又この時開校シ装置26の抵抗を可変にす
ると、加熱器24から発生するガス量が変化し、例えば
分岐流量を多くして発生ガス量を少なくすると、精留分
離での分離作用が進行せず、本実施例の如き、低沸点成
分を貯溜する方式では貯溜器27内の低沸点成分濃度が
高くなく、それ放生回路側濃度も低沸点成分の多い冷媒
組成となる。逆に分岐流量を少なくして発生ガス量を多
くすると、精留分離での分離作用が進行し、主回路側濃
度を高沸点成分の多い冷媒組成に変える事ができる。
At this time, since the resistance of the opening device 25 is set higher than that of the main throttle device 20, most of the circulating refrigerant flows through the main circuit side.
The amount of refrigerant flowing into the rectifying column 23 is small, so the rectifying column 2
3. Stable rectification can be performed without disturbing the rectification action within 3. Also, if the resistance of the opening device 26 is made variable at this time, the amount of gas generated from the heater 24 will change. For example, if the branch flow rate is increased to reduce the amount of gas generated, the separation action in rectification separation will not progress. First, in the method of storing low boiling point components as in this embodiment, the concentration of low boiling point components in the reservoir 27 is not high, and the concentration on the release circuit side also has a refrigerant composition with a large amount of low boiling point components. On the other hand, if the branch flow rate is decreased to increase the amount of gas generated, the separation action in rectification separation will proceed, and the concentration on the main circuit side can be changed to a refrigerant composition containing many high boiling point components.

また精留時に主回路濃度が変わる事により、主回路側で
の最適冷媒量も変化し、低沸点成分リッチの時には多く
必要となシ、高沸点成分リッチ時には少ない冷媒量とな
るものであるが、本発明ではその分の調整は貯溜器27
内に低沸点成分を貯溜する事により、その密度差に比例
して冷媒貯溜量を増減させる事で調整が可能となる。
Additionally, as the main circuit concentration changes during rectification, the optimum amount of refrigerant in the main circuit also changes, with more refrigerant being required when low boiling point components are rich, and less refrigerant required when high boiling point components are rich. , in the present invention, the adjustment is made by the reservoir 27.
By storing low boiling point components within the refrigerant, adjustment can be made by increasing or decreasing the amount of refrigerant stored in proportion to the density difference.

次に精留分離を停止して、主回路濃度を初期封入冷媒組
成で運転する場合には、開校シ装置25を開けて、分岐
流量を多くし、加熱器24での発生ガス量をなしにする
事で、精留作用が停止する。
Next, when the rectification separation is stopped and the main circuit concentration is to be operated with the initial charged refrigerant composition, the opening system 25 is opened and the branch flow rate is increased to eliminate the amount of gas generated in the heater 24. This will stop the rectification action.

またこの時、精留塔23を主回路の中間圧力で作動させ
る場合でも、精留塔23への分岐流量が多いために精留
塔23内での流れが乱され、精留作用が停止するもので
ある。
Moreover, at this time, even if the rectification column 23 is operated at an intermediate pressure in the main circuit, the flow within the rectification column 23 is disturbed due to the large branch flow rate to the rectification column 23, and the rectification action is stopped. It is something.

このように、本発明では主回路で暖房運転しながらでも
精留作用を行ない、主回路濃度を変えてゆく事ができる
ものである。
In this way, in the present invention, the rectification action can be performed even during heating operation in the main circuit, and the concentration in the main circuit can be changed.

本実施例では暖房回路のみについて説明しているが、四
方弁等を付加して冷房時にも精留作用を行ない前述した
のと同様の動作を行なわせる事は可能である。
Although only the heating circuit is described in this embodiment, it is possible to add a four-way valve or the like to perform the rectifying action even during cooling, and perform the same operation as described above.

また、本実施例では、精留して低沸点冷媒を貯溜する場
合について述べているが、たとえば分離器下部に配置し
た貯−溜器に高沸点冷媒を貯溜する冷凍サイクル(図示
せず)の場合も同様の効果を有するものである。
Furthermore, in this embodiment, a case is described in which a low boiling point refrigerant is stored by rectification, but for example, a refrigeration cycle (not shown) in which a high boiling point refrigerant is stored in a reservoir placed at the bottom of a separator is used. The same effect can be obtained in this case.

発明の効果 本発明になる熱ポンプ装置は、非共沸混合冷媒を用い、
精留塔を主回路の高圧又は中間圧と接続すると共に、精
留塔からの還りを主回路の低圧に接続し副絞り装置の抵
抗を主絞り装置の抵抗よりも大きくすることにより主回
路での暖房運転をしなから精留分離を確実に行なう事が
できる。
Effects of the Invention The heat pump device according to the present invention uses a non-azeotropic mixed refrigerant,
By connecting the rectifying column to the high pressure or intermediate pressure of the main circuit, connecting the return from the rectifying column to the low pressure of the main circuit, and making the resistance of the sub-throttle device greater than the resistance of the main throttling device, Rectification separation can be carried out reliably even during heating operation.

又所望主回路濃度に応じて開校シ装置の抵抗を可変し、
精留停止時には当該抵抗を小さくする構成を付加する事
で、分岐流量を調整し分離濃度を可変して主回路濃度を
任意に設定できる。更に分離濃度に応じて貯溜器での貯
溜量を調整し、主回路側冷媒量を最適に維持できるもの
である。
Also, the resistance of the opening device is varied according to the desired main circuit concentration,
By adding a configuration that reduces the resistance when rectification is stopped, the main circuit concentration can be set arbitrarily by adjusting the branch flow rate and varying the separation concentration. Furthermore, the amount of refrigerant stored in the reservoir can be adjusted according to the separated concentration, and the amount of refrigerant on the main circuit side can be maintained at an optimum level.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における熱ポンプ装置の原理
図、第2図は従来例における熱ポンプ装置の原理図であ
る。 18・・・・・・圧縮機、19・・・・・・負荷側熱交
換器、2゜・・・・・・主絞り装置、21・・・・・・
熱源側熱交換器、23・・・・・・精留塔、24・・・
・・・加熱器、26.・・・・・・副絞り装置、26・
・・・・・塔頂冷却器、27・・曲塔頂貯溜器。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名18
−一一江婦機 I9−m−騎イ則然交1づ亀」θに 20−−一主&(り装置 第2図
FIG. 1 is a principle diagram of a heat pump device according to an embodiment of the present invention, and FIG. 2 is a principle diagram of a conventional heat pump device. 18... Compressor, 19... Load side heat exchanger, 2°... Main throttling device, 21...
Heat source side heat exchanger, 23... Rectification column, 24...
...heater, 26.・・・・・・Sub-diaphragm device, 26・
...Tower top cooler, 27...Curved tower top reservoir. Name of agent: Patent attorney Toshio Nakao and 1 other person18
- 11-Engine I9-m-20 in θ-1-1

Claims (2)

【特許請求の範囲】[Claims] (1)少くとも圧縮機、負荷側熱交換器、主絞り装置、
熱源側熱交換器を環状接続して主回路、精留塔、塔頂冷
却器、貯溜器、塔底加熱器を備えた回路とを、主回路の
高圧あるいは中間圧より精留塔に入る回路と、精留塔よ
り副絞り装置をへて主回路の低圧に戻す回路とで接続す
るとともに非共沸混合冷媒を封入し、前記副絞り装置の
抵抗を前記主絞り装置の抵抗より大ならしめたことを特
徴とする熱ポンプ装置。
(1) At least a compressor, a load-side heat exchanger, a main throttling device,
A circuit that connects the heat exchangers on the heat source side in a ring and connects the main circuit, a rectification column, a tower top cooler, a reservoir, and a circuit equipped with a column bottom heater, and enters the rectification column from the high pressure or intermediate pressure of the main circuit. and a circuit that returns the rectifying column to the low pressure of the main circuit through the sub-throttling device and encloses a non-azeotropic mixed refrigerant, so that the resistance of the sub-throttling device is made greater than the resistance of the main throttling device. A heat pump device characterized by:
(2)副絞り装置において、精留分離時には所望主回路
濃度に応じて抵抗を可変し、精留分離停止時には抵抗を
小さくした事を特徴とする特許請求の範囲第1項記載の
熱ポンプ装置。
(2) The heat pump device according to claim 1, characterized in that in the sub-throttling device, the resistance is varied according to the desired main circuit concentration during rectification separation, and the resistance is reduced when rectification separation is stopped. .
JP19079785A 1985-03-25 1985-08-29 NETSUHONPUSOCHI Expired - Lifetime JPH0247670B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP19079785A JPH0247670B2 (en) 1985-08-29 1985-08-29 NETSUHONPUSOCHI
KR1019860002009A KR890004867B1 (en) 1985-03-25 1986-03-19 Haet pump with a reservoir storing higher pressure refrigerante of non-azeotropic mixture
EP86104022A EP0196051B1 (en) 1985-03-25 1986-03-24 Heat pump with a reservoir storing higher pressure refrigerant of non-azeotropic mixture
DE8686104022T DE3675047D1 (en) 1985-03-25 1986-03-24 HEAT PUMP WITH A CONTAINER FOR THE STORAGE OF THE REFRIGERANT WITH A HIGHER PARTIAL PRESSURE OF A NON-AZEOTROPIC MIXTURE.
US06/844,065 US4722195A (en) 1985-03-25 1986-03-25 Heat pump with a reservoir storing higher pressure refrigerant of non-azeotropic mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19079785A JPH0247670B2 (en) 1985-08-29 1985-08-29 NETSUHONPUSOCHI

Publications (2)

Publication Number Publication Date
JPS6252372A true JPS6252372A (en) 1987-03-07
JPH0247670B2 JPH0247670B2 (en) 1990-10-22

Family

ID=16263900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19079785A Expired - Lifetime JPH0247670B2 (en) 1985-03-25 1985-08-29 NETSUHONPUSOCHI

Country Status (1)

Country Link
JP (1) JPH0247670B2 (en)

Also Published As

Publication number Publication date
JPH0247670B2 (en) 1990-10-22

Similar Documents

Publication Publication Date Title
KR890004867B1 (en) Haet pump with a reservoir storing higher pressure refrigerante of non-azeotropic mixture
KR930004384B1 (en) Heat-pump apparatus
JPS6252372A (en) Heat pump device
JPS6166056A (en) Heat pump device
JPH0264364A (en) Heat pump device
JPS63153367A (en) Heat pump device
JPS6166054A (en) Heat pump device
JPH0461260B2 (en)
JPH0646118B2 (en) Heat pump device
JPS63204072A (en) Refrigeration cycle device
JPS5938564A (en) Refrigerator
JPS59157448A (en) Heat pump device
JPS62242769A (en) Refrigeration cycle device
JPH02178568A (en) Heat pump device
JPS62242768A (en) Refrigeration cycle device
JPS636346A (en) Refrigeration cycle
JPS62248967A (en) Controller for heat pump device
JPH0461261B2 (en)
JPH0833254B2 (en) Heat pump system
JPH0264369A (en) Heat pump device
JPH0264370A (en) Heat pump device
JPS636347A (en) Refrigeration cycle
JPH0440622B2 (en)
JPH0262791B2 (en)
JPS63156975A (en) Refrigeration cycle device