JPH0735930B2 - Heat pump device - Google Patents

Heat pump device

Info

Publication number
JPH0735930B2
JPH0735930B2 JP2052988A JP2052988A JPH0735930B2 JP H0735930 B2 JPH0735930 B2 JP H0735930B2 JP 2052988 A JP2052988 A JP 2052988A JP 2052988 A JP2052988 A JP 2052988A JP H0735930 B2 JPH0735930 B2 JP H0735930B2
Authority
JP
Japan
Prior art keywords
refrigerant
reservoir
valve
evaporator
main circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2052988A
Other languages
Japanese (ja)
Other versions
JPH01196457A (en
Inventor
和生 中谷
光博 生駒
猛 富澤
雄二 吉田
浩二 有田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2052988A priority Critical patent/JPH0735930B2/en
Publication of JPH01196457A publication Critical patent/JPH01196457A/en
Publication of JPH0735930B2 publication Critical patent/JPH0735930B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非共沸混合冷媒を用い、組成分離により、高
沸点冷媒を貯留して循環組成を可変する熱ポンプ装置の
改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a heat pump device that uses a non-azeotropic mixed refrigerant to store a high boiling point refrigerant by composition separation to change the circulating composition.

従来の技術 従来、非共沸混合冷媒を用い、組成分離により高沸点冷
媒を貯留して組成を可変する熱ポンプ装置として、第2
図に示すような装置が提案されている。第2図において
1は圧縮機、2は凝縮器、3は第1絞り装置、4は蒸発
器であり、これらを配管接続することにより主回路を構
成している。5は充填材を充填した精留分離器であり、
この頂部は凝縮器2出口と接続し、同じく頂部を開閉弁
6を介して圧縮機1のシリンダー内部に接続すると共
に、精留分離器5の下部には加熱ヒーター7を内蔵した
貯留器8を配しており、この貯留器8の底部は開閉弁9
および第2絞り装置10を介して蒸発器4に接続されてい
る。
2. Description of the Related Art Conventionally, as a heat pump device that uses a non-azeotropic mixed refrigerant and stores a high boiling point refrigerant by composition separation to change the composition,
A device as shown in the figure has been proposed. In FIG. 2, 1 is a compressor, 2 is a condenser, 3 is a first expansion device, and 4 is an evaporator, and these are connected by piping to form a main circuit. 5 is a rectification separator filled with a packing material,
This top is connected to the outlet of the condenser 2, and the top is also connected to the inside of the cylinder of the compressor 1 via the on-off valve 6, and a reservoir 8 having a heater 7 built in is provided below the rectification separator 5. The reservoir 8 has an open / close valve 9
It is also connected to the evaporator 4 via the second expansion device 10.

このような冷凍サイクル装置において非共沸混合冷媒を
封入し、循環組成を可変する方法について説明する。ま
ず分離なしモードでは、加熱ヒーター7をOFFし、開閉
弁6を閉止、開閉弁9を開放することにより、貯留器8
には余剰冷媒が貯留され、一部は第2絞り装置10を経由
して蒸発器4に流出するのみとなるため、主回路は封入
した状態の高沸点冷媒の富んだ混合冷媒の組成のまま運
転することになる。次に分離離ありモードでは、加熱ヒ
ーター7をONし、開閉弁6を開放、開閉弁9を閉止する
ことにより、貯留器8内部の冷媒中主に低沸点冷媒が気
化され、精留分離器5内部を上昇する。このとき凝縮器
2出口から液冷媒が精留分離器5上部に供給され、精留
分離器5内部で気液接触により精留作用が起こり、上昇
する気体は低沸点冷媒の濃度が高まり、逆に下降する液
体は高沸点冷媒の濃度が高まり、貯留器8には主に高沸
点冷媒が凝縮液の状態で貯留されることになる。一方上
昇した低沸点冷媒に富んだ気体は開閉弁6を通って圧縮
機1のシリンダー内に噴射され、吸入ガスと共に高圧力
まで圧縮されて凝縮器2に再び流入することによって、
主回路は低沸点冷媒に富んだ混合冷媒の組成で運転でき
るものである。なお主回路の組成を元に戻すには、加熱
ヒーター7をOFFし、開閉弁9を開放すると、貯留器8
内の高沸点冷媒が主回路に混入して、主回路は封入した
状態の高沸点冷媒の富んだ混合冷媒の組成となる。
A method of enclosing a non-azeotropic mixed refrigerant in such a refrigeration cycle apparatus and varying the circulating composition will be described. First, in the non-separation mode, the heater 7 is turned off, the on-off valve 6 is closed, and the on-off valve 9 is opened, so that the reservoir 8
Since the excess refrigerant is stored in the refrigerant and only a part of the refrigerant flows out to the evaporator 4 via the second expansion device 10, the main circuit remains the composition of the mixed refrigerant rich in the high boiling point refrigerant. I will drive. Next, in the separation / separation mode, the heater 7 is turned on, the opening / closing valve 6 is opened, and the opening / closing valve 9 is closed, so that the low boiling point refrigerant in the refrigerant inside the reservoir 8 is mainly vaporized, and the rectification separator 5 Ascend inside. At this time, the liquid refrigerant is supplied from the outlet of the condenser 2 to the upper part of the rectification separator 5, and the rectification action occurs due to the gas-liquid contact inside the rectification separator 5, and the rising gas increases the concentration of the low boiling point refrigerant, The liquid descending to the high concentration has a high concentration of the high boiling point refrigerant, and the high boiling point refrigerant is mainly stored in the reservoir 8 in the state of a condensed liquid. On the other hand, the rising gas rich in low boiling point refrigerant is injected into the cylinder of the compressor 1 through the on-off valve 6, compressed to a high pressure together with the suction gas, and then flows into the condenser 2 again.
The main circuit can be operated with a mixed refrigerant composition rich in low boiling point refrigerant. To restore the composition of the main circuit, turn off the heater 7 and open the on-off valve 9, and open the reservoir 8.
The high-boiling-point refrigerant therein mixes into the main circuit, and the main circuit has a composition of a mixed refrigerant rich in high-boiling-point refrigerant in a sealed state.

このような組成可変型の熱ポンプ装置は、給湯装置等に
適用され、通常使用時には高温水を得るため高沸点冷媒
に富んだ封入組成のままで運転し、できるだけ短時間で
貯湯する必要がある場合には加熱能力の高い低沸点冷媒
に富んだ組成で運転する様な方法が可能となる。
Such a composition-variable type heat pump device is applied to a hot water supply device, etc., and in normal use, it is necessary to operate with the enclosed composition rich in high boiling point refrigerant as it is to obtain high temperature water and store hot water in the shortest possible time. In this case, a method of operating with a composition rich in a low boiling point refrigerant having a high heating capacity becomes possible.

発明が解決しようとする課題 しかしながら、上記のような熱ンプ装置では、分離あり
モードから分離無しモードへの切り替え時に開閉弁9の
開放により、分離ありモードでヒーター等によって加熱
された高温の高沸点液冷媒がそのまま開閉弁9を通り、
第2絞り装置10で低圧まで絞られた後、蒸発器4に流入
する構成になっていた。そのため、比較的高いエンタル
ピーを持った高温の液冷媒がそのま蒸発器に流入するた
め、本来、蒸発器において熱源側より得ることのできる
吸熱量が減少し、そのため利用側での放熱量も減少し成
績係数が低下するという問題点があった。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention However, in the heat pump device as described above, when the switching mode is switched from the separation mode to the non-separation mode, the on-off valve 9 is opened so that the high boiling point of the high temperature heated by the heater or the like in the separation mode. The liquid refrigerant passes through the on-off valve 9 as it is,
After the pressure was reduced to a low pressure by the second expansion device 10, it flowed into the evaporator 4. Therefore, since the high temperature liquid refrigerant with a relatively high enthalpy flows into the evaporator as it is, the amount of heat absorption that can be obtained from the heat source side in the evaporator originally decreases, and therefore the amount of heat radiation on the use side also decreases. However, there was a problem that the coefficient of performance decreased.

課題を解決するための手段 本発明の熱ポンプ装置は、非共沸混合冷媒を封入し、圧
縮機、凝縮器、第1絞り装置、蒸発器、補助熱交換器等
を順に接続して主回路を構成し、下部に貯留器と前記貯
留器内部の冷媒を加熱するための加熱手段を設けた精留
分離器の頂部を前記凝縮器出口に接続し、前記貯留器の
底部を開閉弁を介して前記補助熱交換器と接続して、前
記主回路を流れる冷媒と間接的に熱交換するように構成
し、さらに前記補助熱交換器から第2絞り装置を介して
前記蒸発器入口に接続したことを特徴とするものであ
る。
Means for Solving the Problems A heat pump device of the present invention is a main circuit in which a non-azeotropic mixed refrigerant is sealed and a compressor, a condenser, a first expansion device, an evaporator, an auxiliary heat exchanger, etc. are sequentially connected. The upper part of the rectification separator, which is provided with a reservoir and heating means for heating the refrigerant inside the reservoir, is connected to the condenser outlet, and the bottom of the reservoir is connected via an on-off valve. Is connected to the auxiliary heat exchanger to indirectly exchange heat with the refrigerant flowing in the main circuit, and is further connected to the evaporator inlet via the second expansion device from the auxiliary heat exchanger. It is characterized by that.

作用 本発明は上記した構成により、分離ありモードにおいて
ヒータ等により加熱された高温になった塔底貯留器内の
高沸点液冷媒を、分離なしモードへの切り替え時に蒸発
器と圧縮機の間に設けた補助熱交換器によって主回路の
吸入ガスと熱交換させた後、蒸発器入口に流入させるこ
とにより、高温の液冷媒は冷却され、エンタルピーが減
少するので蒸発器で得られる吸熱量が増加する。また吸
入ガスは反対に加熱されるため、エンタルビーが増加
し、利用側での放熱量を十分に増加させることができ、
成績係数が向上する。
Effect The present invention has the above-described configuration, and the high boiling liquid refrigerant in the bottom reservoir which has been heated by a heater or the like in the mode with separation is heated between the evaporator and the compressor at the time of switching to the mode without separation. After the heat exchange with the intake gas of the main circuit by the provided auxiliary heat exchanger, it flows into the evaporator inlet, the high temperature liquid refrigerant is cooled and the enthalpy decreases, so the amount of heat absorbed by the evaporator increases. To do. Also, since the inhaled gas is heated oppositely, the enthalpy increases and the amount of heat released on the user side can be increased sufficiently,
The coefficient of performance is improved.

実施例 以下、本発明の一実施例を添付図面に基づいて説明す
る。
Embodiment An embodiment of the present invention will be described below with reference to the accompanying drawings.

第1図において、11は圧縮機、12は凝縮器、13は第1絞
り装置、14は蒸発器、15は補助熱交換器であり、これら
を配管接続することにより主回路を構成している。16は
充填材を充填した精留分離器であり、頂部は配管により
凝縮器12出口と接続し、同じく頂部を開閉弁17を介して
圧縮機11のシリンダー内部に接続している。また精留分
離器16の下部には加熱ヒーター18を内蔵した貯留器19を
配しており、この貯留器19の底部を開閉弁20を介して補
助熱交換器15に接続し、そこで主回路側の蒸発器14を出
た冷媒と熱交換させるようにした後、第2絞り装置21を
介して蒸発器14の入口と接続している。
In FIG. 1, 11 is a compressor, 12 is a condenser, 13 is a first expansion device, 14 is an evaporator, and 15 is an auxiliary heat exchanger, and these are connected by piping to form a main circuit. . Reference numeral 16 denotes a rectification separator filled with a packing material, the top of which is connected to the outlet of the condenser 12 by a pipe, and the top of which is also connected to the inside of the cylinder of the compressor 11 via an opening / closing valve 17. Further, a reservoir 19 having a built-in heater 18 is arranged below the rectification separator 16, and the bottom of this reservoir 19 is connected to an auxiliary heat exchanger 15 via an on-off valve 20 and the main circuit there. After the heat is exchanged with the refrigerant discharged from the side evaporator 14, it is connected to the inlet of the evaporator 14 via the second expansion device 21.

このような冷凍サイクル装置において非共沸混合冷媒を
封入し、循環組成を可変する運転方法について説明す
る。まず分離ありモードでは、加熱ヒーター18をONし、
開閉弁17を開放、開閉弁20を閉止することにより、貯留
器19内部の冷媒中主に低沸点冷媒が気化され、精留分離
器16内部を上昇する。このとき凝縮器12出口から液冷媒
が精留分離器16上部に供給され、精留分離器16内部で気
液接触により精留作用が起こり、上昇する気体は低沸点
冷媒の濃度が高まり、逆に下降する液体は高沸点冷媒の
濃度が高まり、貯留器19には主に高沸点冷媒が凝縮液の
状態で貯留されることになる。一方上昇した低沸点冷媒
に富んだ気体は開閉弁17を通って圧縮機11のシリンダー
内に噴射され、吸入ガスと共に高圧力まで圧縮されて凝
縮器12に流入する。こうすることよって、主回路は低沸
点冷媒に富んだ混合冷媒の組成で運転きるものである。
An operation method of enclosing a non-azeotropic mixed refrigerant in such a refrigeration cycle apparatus and varying the circulation composition will be described. First, in the separation mode, turn on the heater 18,
By opening the on-off valve 17 and closing the on-off valve 20, mainly the low boiling point refrigerant in the refrigerant inside the reservoir 19 is vaporized and the inside of the rectification separator 16 rises. At this time, the liquid refrigerant is supplied from the outlet of the condenser 12 to the upper part of the rectification separator 16, and the rectification action occurs due to the gas-liquid contact inside the rectification separator 16, and the rising gas has a high concentration of the low boiling point refrigerant, and the reverse The liquid descending to the high concentration has a high concentration of the high boiling point refrigerant, and the high boiling point refrigerant is mainly stored in the reservoir 19 in a condensed state. On the other hand, the rising gas rich in low boiling point refrigerant is injected into the cylinder of the compressor 11 through the on-off valve 17, compressed to a high pressure together with the suction gas, and flows into the condenser 12. By doing so, the main circuit can be operated with the composition of the mixed refrigerant rich in the low boiling point refrigerant.

そして分離なしモードへの切り替えは、加熱ヒーター18
をOFFし、開閉弁17を閉止、開閉弁20を開放する。こう
することにより貯留器19内の高温の高沸点液冷媒が開閉
弁20、補助熱交換器15、第2絞り装置21を通って主回路
に流入するため、主回路は封入した状態の高沸点冷媒の
富んだ混合冷媒の組成のまま運転することになる。ここ
において貯留器19内の高温の高沸点液冷媒が補助熱交換
器15において、主回路の蒸発器14から出た低温のガス冷
媒と間接的に熱交換することにより液冷媒は冷却され、
温度が低下し、さらに第2絞り装置21で低圧まで絞られ
た後、主回路と合流して蒸発器14に流入する。こうする
ことにより高温の液冷媒のエンタルビーが減少し、蒸発
器で得られる吸熱量が増加する。また、吸入ガスは加熱
されるためめエンタルビーが増加し、利用側での放熱量
を十分に増加させることができる。
And to switch to the no separation mode, the heater 18
Is turned off, the on-off valve 17 is closed, and the on-off valve 20 is opened. By doing so, the high-temperature high-boiling-point liquid refrigerant in the reservoir 19 flows into the main circuit through the on-off valve 20, the auxiliary heat exchanger 15, and the second expansion device 21, so that the main circuit has a high-boiling point in a sealed state. It will be operated with the composition of the mixed refrigerant rich in refrigerant. Here, the high-temperature high-boiling-point liquid refrigerant in the reservoir 19 is cooled in the auxiliary heat exchanger 15 by indirectly exchanging heat with the low-temperature gas refrigerant discharged from the evaporator 14 of the main circuit,
The temperature decreases, and after the pressure is further reduced to a low pressure by the second expansion device 21, it merges with the main circuit and flows into the evaporator 14. This reduces the enthalpy of the hot liquid refrigerant and increases the amount of heat absorbed by the evaporator. Further, since the inhaled gas is heated, the enthalpy increases, and the amount of heat released on the user side can be sufficiently increased.

また、これは貯留器19内の高温の液冷媒が流出した後に
おいても、凝縮器12を出た液冷媒の一部が連続的に開閉
弁20を介して補助熱交換器15に流入し蒸発器14を出たガ
ス冷媒と熱交換するため、同様な効果を発揮するもので
ある。
Further, even after the hot liquid refrigerant in the reservoir 19 flows out, a part of the liquid refrigerant leaving the condenser 12 continuously flows into the auxiliary heat exchanger 15 through the on-off valve 20 and evaporates. Since it exchanges heat with the gas refrigerant flowing out of the vessel 14, the same effect is exhibited.

なお分離ありモードに戻すには、加熱ヒーター18をON
し、開閉弁20を閉止、開閉弁17を開放すると、再び精留
作用が開始され、主回路は低沸点冷媒の富んだ混合冷媒
の組成となる。
To return to the separation mode, turn on the heater 18.
Then, when the on-off valve 20 is closed and the on-off valve 17 is opened, the rectification action is started again, and the main circuit becomes the composition of the mixed refrigerant rich in the low boiling point refrigerant.

なお、精留分離器の加熱源として加熱ヒーター17の代わ
りに圧縮機11の吐出配管等冷凍サイクル中の高温熱源を
用いてもよく、これらは本発明に含まれるものである。
A high-temperature heat source in the refrigeration cycle such as the discharge pipe of the compressor 11 may be used as the heating source of the rectification separator, instead of the heater 17, and these are included in the present invention.

また、本実施例においては精留分離器16の頂部は配管に
より凝縮器12出口および開閉弁17を介して圧縮機11のシ
リンダー内部に接続する構成としたが、両方とも凝縮器
出口と接続したり、あるいは凝縮器出口と蒸発器入口と
に接続してもよく、これらもまた本発明に含まれるもの
である。
Further, in the present embodiment, the top of the rectification separator 16 is connected to the inside of the cylinder of the compressor 11 via the outlet of the condenser 12 and the on-off valve 17 by piping, but both are connected to the outlet of the condenser. Alternatively, the condenser outlet and the evaporator inlet may be connected, and these are also included in the present invention.

発明の効果 以上のように、本発明の熱ポンプ装置においては、塔底
貯留器内の高温の高沸点液媒を、補助熱交換器で主回路
の吸入ガスと間接的に熱交換させた後、蒸発器入口に流
入させることができ、液冷媒が冷却され、エンタルビー
が減少するので蒸発器で得られる吸熱量を増加させるこ
とができる。また吸入ガスは加熱されるためエンタルビ
ーが増加し、利用側での放熱量を十分に増加させること
ができ、成績係数が向上する。
As described above, in the heat pump device of the present invention, after the high-temperature high-boiling-point liquid medium in the bottom reservoir is indirectly heat-exchanged with the intake gas of the main circuit by the auxiliary heat exchanger. , The liquid refrigerant is cooled, the enthalpy is reduced, and the amount of heat absorbed by the evaporator can be increased. Further, since the inhaled gas is heated, the enthalpy increases, the amount of heat released on the user side can be sufficiently increased, and the coefficient of performance improves.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の熱ポンプ装置の構成図、第
2図は従来例の熱ポンプ装置の構成図である。 11……圧縮機、12……凝縮器、13……第1絞り装置、14
……蒸発器、15……補助熱交換器、16……精留分離器、
17,20……開閉弁、18……加熱ヒーター、19……貯留
器、21……第2絞り装置。
FIG. 1 is a block diagram of a heat pump device according to an embodiment of the present invention, and FIG. 2 is a block diagram of a conventional heat pump device. 11 …… Compressor, 12 …… Condenser, 13 …… First throttling device, 14
…… Evaporator, 15 …… Auxiliary heat exchanger, 16 …… Rectification separator,
17,20 …… Open / close valve, 18 …… Heater, 19 …… Reservoir, 21 …… Second throttling device.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 雄二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 有田 浩二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yuji Yoshida 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Koji Arita, 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】非共沸混合冷媒を封入し、圧縮機、凝縮
器、第1絞り装置、蒸発器、補助熱交換器等を順に接続
して主回路を構成し、下部に貯留器と前記貯留器内部の
冷媒を加熱するための加熱手段を設けた精留分離器の頂
部を前記凝縮器出口に接続し、前記貯留器の底部を開閉
弁を介して前記補助熱交換器と接続して、前記主回路を
流れる冷媒と間接的に熱交換するように構成し、さらに
前記補助熱交換器から第2絞り装置を介して前記蒸発器
入口に接続したことを特徴とする熱ポンプ装置。
1. A non-azeotropic mixed refrigerant is enclosed, and a compressor, a condenser, a first expansion device, an evaporator, an auxiliary heat exchanger, etc. are sequentially connected to form a main circuit, and a reservoir and a reservoir are provided at a lower portion. The top of the rectification separator provided with heating means for heating the refrigerant inside the reservoir is connected to the condenser outlet, and the bottom of the reservoir is connected to the auxiliary heat exchanger via an on-off valve. A heat pump device, which is configured to indirectly exchange heat with the refrigerant flowing through the main circuit, and is further connected to the evaporator inlet via the second expansion device from the auxiliary heat exchanger.
JP2052988A 1988-01-29 1988-01-29 Heat pump device Expired - Lifetime JPH0735930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2052988A JPH0735930B2 (en) 1988-01-29 1988-01-29 Heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2052988A JPH0735930B2 (en) 1988-01-29 1988-01-29 Heat pump device

Publications (2)

Publication Number Publication Date
JPH01196457A JPH01196457A (en) 1989-08-08
JPH0735930B2 true JPH0735930B2 (en) 1995-04-19

Family

ID=12029683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2052988A Expired - Lifetime JPH0735930B2 (en) 1988-01-29 1988-01-29 Heat pump device

Country Status (1)

Country Link
JP (1) JPH0735930B2 (en)

Also Published As

Publication number Publication date
JPH01196457A (en) 1989-08-08

Similar Documents

Publication Publication Date Title
KR930000852B1 (en) Heat pump system
KR930004384B1 (en) Heat-pump apparatus
JPH0735930B2 (en) Heat pump device
JPH0745982B2 (en) Heat pump device
JPH0440622B2 (en)
JPH0531066B2 (en)
JPH058350B2 (en)
JPH0621725B2 (en) Heat pump device
JPH0264368A (en) Heat pump device
JPH0769084B2 (en) Heat pump device
JPH0737856B2 (en) Heat pump device
JPH0264362A (en) Heat pump device
JPH0769083B2 (en) Heat pump device
JPH0246864B2 (en) NETSUHONPUSOCHI
JPH0264367A (en) Heat pump device
JPH03244970A (en) Heat pump device
JPH0440623B2 (en)
JPH0250373B2 (en)
JPH01212863A (en) Hot-water supplying device
JPH02263057A (en) Heat pump
JPS5974470A (en) Absorption type heat pump
JPS63156977A (en) Refrigeration cycle device
JPH0244156A (en) Heat pump device
JPS601544B2 (en) Control device for single-double effect absorption chiller
JPS58156168A (en) Cooling device utilizing adsorbent