JPH04254474A - Production of silicon nitride-based sintered body - Google Patents

Production of silicon nitride-based sintered body

Info

Publication number
JPH04254474A
JPH04254474A JP3011982A JP1198291A JPH04254474A JP H04254474 A JPH04254474 A JP H04254474A JP 3011982 A JP3011982 A JP 3011982A JP 1198291 A JP1198291 A JP 1198291A JP H04254474 A JPH04254474 A JP H04254474A
Authority
JP
Japan
Prior art keywords
sintering
sintered body
silicon nitride
pressure
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3011982A
Other languages
Japanese (ja)
Inventor
Hidemitsu Sakamoto
秀光 坂元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP3011982A priority Critical patent/JPH04254474A/en
Publication of JPH04254474A publication Critical patent/JPH04254474A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain an Si3N4-based sintered body having >=1000MPa strength necessary for a structural material by sintering at a low temp. or <=1,620 deg.C. CONSTITUTION:A uniform powdery mixture of 100 pts.wt., in total, of 97-94wt.% silicon nitride powder as principal starting material and 3-6wt.% sintering aid with 5-80 pts.wt. zirconium oxide is molded, this molded body is heated to 1,350-1,620 deg.C in a nitrogen atmosphere under about 1atm and the pressure of nitrogen is increased to >=1,500atm while holding the molded body at the heating temp.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は窒化珪素質焼結体の製造
方法に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a silicon nitride sintered body.

【0002】0002

【従来の技術】窒化珪素焼結体は強度と靭性を兼ね備え
た構造材料として期待されているが、靭性を改善するこ
と、より低温で焼結することを目的として、 Si3N
4−ZrO2系焼結体が開示されている(特開昭63−
139058号公報)。具体的には、 ZrO2 20
〜40wt%、Al2O3 3〜15wt%、ZrO2
とY2O3の合計に対する Y2O3 4〜8wt%、
残り Si3N4からなり、アスペクト比が5以上の柱
状体を含む窒化珪素質焼結体を、非酸化性雰囲気中15
00〜1650℃で焼結して製造するものである。
[Prior Art] Silicon nitride sintered bodies are expected to be used as structural materials that have both strength and toughness.
A 4-ZrO2-based sintered body has been disclosed (Japanese Patent Application Laid-open No. 1983-
139058). Specifically, ZrO2 20
~40wt%, Al2O3 3~15wt%, ZrO2
and Y2O3 4 to 8 wt% to the total of Y2O3,
The remaining silicon nitride sintered body made of Si3N4 and containing columnar bodies with an aspect ratio of 5 or more was heated for 15 minutes in a non-oxidizing atmosphere.
It is manufactured by sintering at 00 to 1650°C.

【0003】0003

【発明が解決しようとする課題】Si3N4は難焼結性
であるが、ZrO2は低温で Si3N4と反応するた
め、ZrO2を加えると低温焼結が可能になる。しかし
ながら、特開昭63−139058号公報に開示された
方法では、構造材料として要求される 1000MPa
以上の強度を発現する焼結体が得られない。より緻密に
するために、焼結温度を上げると、結晶粒子が成長して
やはり強度を低下させる。そこで、本発明は、低温焼結
でなおかつ構造材料として必要な 1000MPa以上
の強度を有する窒化珪素質焼結体の製造方法を提供する
ことを目的とする。
[Problems to be Solved by the Invention] Si3N4 is difficult to sinter, but since ZrO2 reacts with Si3N4 at low temperatures, low-temperature sintering becomes possible when ZrO2 is added. However, in the method disclosed in JP-A No. 63-139058, the pressure of 1000 MPa required as a structural material is
A sintered body that exhibits the above strength cannot be obtained. To make it more dense, increasing the sintering temperature causes crystal grains to grow, which also reduces the strength. Therefore, an object of the present invention is to provide a method for manufacturing a silicon nitride sintered body that can be sintered at a low temperature and has a strength of 1000 MPa or more, which is necessary as a structural material.

【0004】0004

【課題を解決するための手段】本発明は、上記目的を達
成するために、主原料粉末が窒化珪素であり、該窒化珪
素粉末97〜94重量%と3〜6重量%の焼結助剤の合
計 100重量部に対して酸化ジルコニウムを5〜80
重量部を加えた均一混合粉末を成形し、該成形体を13
50〜1620℃の範囲内の温度まで加熱して予備焼結
し、次いで該温度範囲内の温度で圧力を1500気圧以
上まで昇圧して本焼結することを特徴とする窒化珪素質
焼結体の製造方法を提供する。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides that the main raw material powder is silicon nitride, and that the silicon nitride powder contains 97 to 94% by weight and 3 to 6% by weight of a sintering aid. 5 to 80 parts of zirconium oxide per 100 parts by weight
A homogeneous mixed powder containing a weight part of
A silicon nitride sintered body characterized by pre-sintering by heating to a temperature within the range of 50 to 1,620°C, and then main sintering by increasing the pressure to 1,500 atmospheres or more at a temperature within the temperature range. Provides a manufacturing method.

【0005】出発原料としての窒化珪素(Si3N4)
 は、粒径0.6μm以下、より好ましくは0.1〜0
.4μmのものを使用する。出発原料の粒径が大きくな
ると、焼結粒子の粒径が大きくなり、強度低下の原因に
なるからである。また、純度は金属不純物総量100p
pm以下のものを使用する。不純物がこれより多くなる
と強度が低下する。 同様の理由から、出発原料としての酸化ジルコニウム(
ZrO2)は、粒径0.1μm以下、より好ましくは0
.02μmのものを使用する。また、純度は99%以上
のものを使用する。また、焼結助剤は粒径0.5μm以
下のもの、純度は99%以上のものを使用する。
Silicon nitride (Si3N4) as a starting material
has a particle size of 0.6 μm or less, more preferably 0.1 to 0
.. Use one with a diameter of 4 μm. This is because if the particle size of the starting material becomes large, the particle size of the sintered particles becomes large, which causes a decrease in strength. In addition, the purity is 100p total metal impurities.
Use one below pm. If the amount of impurities exceeds this value, the strength will decrease. For similar reasons, zirconium oxide (
ZrO2) has a particle size of 0.1 μm or less, more preferably 0.
.. 02 μm is used. Moreover, purity of 99% or more is used. Further, the sintering aid used has a particle size of 0.5 μm or less and a purity of 99% or more.

【0006】Si3N4粉末に対する焼結助剤の添加量
はSi3N4 97〜94wt%に総量で3〜6wt%
とする。焼結助剤の添加量が少ないと緻密化せず、従っ
て強度も向上しない。一方、焼結助剤の量が多くなると
、緻密焼結はするが粒界ガラス相が増加し、強度が低下
するからである。 焼結助剤としては公知のもの、例えば Al2O3, 
Y2O3, MgO, MgAl2O4、などを使用す
ることができる。
[0006] The amount of sintering aid added to the Si3N4 powder is 3 to 6 wt% in total to 97 to 94 wt% of Si3N4.
shall be. If the amount of the sintering aid added is small, densification will not occur and therefore strength will not improve. On the other hand, if the amount of the sintering aid is increased, dense sintering is achieved, but the grain boundary glass phase increases and the strength decreases. Known sintering aids such as Al2O3,
Y2O3, MgO, MgAl2O4, etc. can be used.

【0007】本発明では、この Si3N4粉末と焼結
助剤の合計 100重量部に対し、さらに5〜80重量
部のZrO2を添加する。ZrO2の添加により低温で
緻密焼結が可能になる。5重量部未満ではその効果が乏
しく、一方40重量部を越えると強度が低下する。出発
粉末の成形は常法により行なうことができる。すなわち
、典型的には、均一混合粉末を1000kg/cm2 
程度の圧力で加圧成形する。又は、その成形体を薄ゴム
につめ、真空封入後CIPにて3000kgf/cm2
 の圧力で加圧する。
In the present invention, 5 to 80 parts by weight of ZrO2 is further added to 100 parts by weight of the Si3N4 powder and sintering aid. The addition of ZrO2 enables dense sintering at low temperatures. If it is less than 5 parts by weight, the effect will be poor, while if it exceeds 40 parts by weight, the strength will decrease. The starting powder can be shaped by conventional methods. That is, typically, the uniform mixed powder is 1000 kg/cm2.
Pressure mold with moderate pressure. Alternatively, pack the molded body in thin rubber, vacuum seal it, and then apply CIP to 3000 kgf/cm2.
Pressurize at a pressure of

【0008】次いで、焼成するが、本発明では焼成温度
を1350〜1620℃の範囲内として、従来の Si
3N4の常圧焼結温度1700〜1800℃より低い焼
結温度を採用することを特徴としている。すなわち、従
来は、常圧焼結温度として1700〜1800℃が採用
されるが、この温度では焼結体が充分に緻密化せず、理
論密度の99%に達する高密度の焼結体を得ることはで
きなかった。そこで、高温で充分に焼結させるために、
 Si3N4の熱分解を抑制すべく高圧をかけて焼成す
る方法(HIP) が利用されている。このようなHI
P法によれば焼結が進み、理論密度の99%以上の高密
度の焼結体を得ることも可能である。しかしながら、高
温で焼結されるため、粒径も成長し、強度が所望の様に
向上しないという問題があった。これに対して、本発明
者らは、先に、驚くことに、1500気圧以上の高圧を
利用する場合には、従来 Si3N4が焼結しないと考
えられていた1350〜1620℃の低い温度でも焼結
が進行し、理論密度の99%以上、さらには99.5%
以上の高密度の Si3N4焼結体を得ることができる
こと、またこのように低温高圧下で焼結した場合には粒
成長が抑えられるため高強度の発現も可能になるという
ことを発見している。本発明は、このように1500気
圧以上の高圧を利用するとともに、さらにZrO2を添
加することによって1350℃のように低温でも99%
以上の密度に緻密に焼結することができ、構造材料とし
て必要な高強度を発現できることを見い出して、完成さ
れたものである。
[0008] Next, firing is performed, but in the present invention, the firing temperature is set within the range of 1350 to 1620°C.
It is characterized by employing a sintering temperature lower than the normal pressure sintering temperature of 3N4, which is 1700 to 1800°C. That is, conventionally, a pressureless sintering temperature of 1,700 to 1,800°C is used, but at this temperature, the sintered body is not sufficiently densified, and a high-density sintered body reaching 99% of the theoretical density is obtained. I couldn't do that. Therefore, in order to sinter sufficiently at high temperatures,
In order to suppress the thermal decomposition of Si3N4, a method of firing under high pressure (HIP) is used. HI like this
According to the P method, sintering progresses and it is possible to obtain a sintered body with a high density of 99% or more of the theoretical density. However, since it is sintered at a high temperature, the grain size also grows and the strength does not improve as desired. On the other hand, the present inventors first surprisingly found that when using high pressures of 1,500 atmospheres or more, Si3N4 can be sintered even at low temperatures of 1,350 to 1,620 degrees Celsius, which was previously thought not to sinter. Condensation progresses to 99% or more of the theoretical density, and even 99.5%
We have discovered that it is possible to obtain a Si3N4 sintered body with a high density as described above, and that when sintered at low temperatures and high pressures, grain growth is suppressed, making it possible to develop high strength. . In this way, the present invention utilizes high pressure of 1500 atmospheres or more and further adds ZrO2 to achieve 99% reduction even at low temperatures such as 1350°C.
This material was completed after discovering that it can be sintered to a density higher than that and exhibits the high strength required as a structural material.

【0009】そこで、本発明では、1350〜1620
℃、特に1600℃以下、さらに1500℃以下の温度
で焼成することを特徴としているが、直ちに高圧にする
と焼結体内の気孔の圧力も高くなって、緻密化しないの
で、最初に低圧下で予備焼結させる。予備焼結の圧力は
 Si3N4が熱分解しない限り、低い圧力が望ましい
が、減圧下では Si3N4が熱分解し易いので、一般
的には1気圧N2 雰囲気で行なう。ただし、この予備
焼結もHIP装置内で行なうことが都合がよい関係上、
実際の圧力は1〜30気圧位になるであろう。要は、本
焼結の1500気圧以上に対して低い圧力、常圧付近で
あればよい。典型的には、予備焼結は、1気圧付近のN
2 雰囲気下、0.5〜10℃/分程度の昇温速度で1
350〜1620℃の範囲内の温度まで昇温して行なう
。昇温プロフィルは所望に変更できる。予備焼結の終点
の1つのメドは理論密度の90%程度である。
Therefore, in the present invention, 1350 to 1620
℃, especially below 1600℃, and even below 1500℃, but if the pressure is increased immediately, the pressure of the pores in the sintered body will also increase and the sintered body will not be densified, so it is first prepared under low pressure. Sinter. As long as Si3N4 does not thermally decompose, presintering is preferably performed at a low pressure, but since Si3N4 tends to thermally decompose under reduced pressure, it is generally performed in a N2 atmosphere of 1 atmosphere. However, since it is convenient to perform this preliminary sintering in the HIP equipment,
The actual pressure will be between 1 and 30 atmospheres. In short, the pressure may be lower than the 1,500 atmospheres or more for main sintering, as long as it is around normal pressure. Typically, pre-sintering is performed at around 1 atm of N
2 At a heating rate of about 0.5 to 10℃/min in an atmosphere of 1
The temperature is raised to a temperature within the range of 350 to 1620°C. The temperature increase profile can be varied as desired. One endpoint of pre-sintering is about 90% of the theoretical density.

【0010】1350〜1620℃の範囲内の温度に到
達したら、次に圧力を5〜20気圧/分程度の昇圧速度
で1500気圧以上まで昇圧し、その圧力に保持して本
焼結を行なう。本焼結の圧力は1500気圧以上、典型
的には1500〜2500気圧である。1500気圧未
満では焼結体の1000℃強度が低下するからである。 高圧側は装置の問題がなければ、特に上限はない。こう
して、本発明の方法により低温高圧焼結された窒化珪素
焼結体は、粒成長を抑制したままで緻密に焼結し、理論
密度の99%以上、さらには99.5%以上の高密度で
、かつ4点曲げ強度が 1000MPa以上の高強度を
発現する。本発明者は、従来、ZrO2を添加した低温
焼結体において99%以上の相対密度で 1000MP
a以上の強度を発現する窒化珪素質焼結体を知らない。
[0010] When the temperature within the range of 1350 to 1620°C is reached, the pressure is then increased to 1500 atm or more at a rate of increase of about 5 to 20 atm/min, and main sintering is performed while maintaining this pressure. The pressure for main sintering is 1,500 atmospheres or more, typically 1,500 to 2,500 atmospheres. This is because if the pressure is less than 1500 atm, the 1000°C strength of the sintered body decreases. There is no particular upper limit on the high pressure side unless there is a problem with the equipment. In this way, the silicon nitride sintered body sintered at low temperature and high pressure by the method of the present invention is densely sintered while suppressing grain growth, and has a high density of 99% or more of the theoretical density, and even 99.5% or more of the theoretical density. , and exhibits high strength with a four-point bending strength of 1000 MPa or more. The present inventor has conventionally demonstrated that a low-temperature sintered body containing ZrO2 has a relative density of 99% or more and is 1000MP.
I am not aware of any silicon nitride sintered body that exhibits strength greater than a.

【0011】[0011]

【作用】1500気圧以上の高圧をかけ、かつZrO2
を添加することにより1620〜1350℃の低い温度
で Si3N4を相対密度99%以上の高密度に焼結す
ることができ、粒成長を抑制し、粒界相の厚さを薄くで
き、その結果、高密度、高強度、高硬度の焼結体が得ら
れる。
[Operation] Applying high pressure of 1500 atmospheres or more and ZrO2
By adding Si3N4, it is possible to sinter Si3N4 to a high density of 99% or more at a low temperature of 1620 to 1350°C, suppress grain growth, and reduce the thickness of the grain boundary phase. A sintered body with high density, high strength, and high hardness can be obtained.

【0012】実施例 Si3N4粉末(平均粒径0.2μm、金属不純物量3
0ppm 、α化率ほぼ 100%) に焼結助剤の第
1成分としてY2O3粉末(平均粒径0.3μm、純度
99.9%) と第2成分として MgAl2O4粉末
(平均粒径0.3μm、純度99.9%) 、 Al2
O3粉末(平均粒径0.12μm、純度99.9%) 
のうちいずれか1成分を添加した均一混合粉末 100
重量部に対して、 ZrO2(平均粒径0.02μm、
純度99%) を表1に示すような組成で混合(Si3
N4製ボールミル)した。これらの各種粉末を 200
kg/cm2 の圧力で加圧成形し、その成形体を薄ゴ
ムに真空封入後3000kg/cm2 の圧力でCIP
を行った後、この成形体を表1に示す条件でN2 雰囲
気中の炉内で焼結させた。昇温速度は1℃/min 、
最高温度に到達するまでは0kg/cm2のN2 雰囲
気下で、最高温度到達後に表1に示す条件まで毎分15
kg/cm2 の昇圧速度で加圧した。また、最高温度
での保持時間は4時間とした。これらの焼結体の室温4
点曲げ強度(JIS R1601)を測定して表1に示
す結果を得た。焼結体の相対密度はn−ブタノール置換
法で求めた嵩密度を理論密度で除して得た値である。
Example Si3N4 powder (average particle size 0.2 μm, amount of metal impurities 3
0 ppm, α-ization rate almost 100%), Y2O3 powder (average particle size 0.3 μm, purity 99.9%) was used as the first component of the sintering aid, and MgAl2O4 powder (average particle size 0.3 μm, purity 99.9%) was used as the second component. purity 99.9%), Al2
O3 powder (average particle size 0.12μm, purity 99.9%)
Uniform mixed powder containing any one of the following ingredients: 100
ZrO2 (average particle size 0.02 μm,
(purity 99%) mixed with the composition shown in Table 1 (Si3
N4 ball mill). 200 of these various powders
Pressure molded at a pressure of kg/cm2, vacuum sealed the molded product in thin rubber, and CIPed at a pressure of 3000kg/cm2.
After performing this, the molded body was sintered in a furnace in an N2 atmosphere under the conditions shown in Table 1. The temperature increase rate is 1℃/min,
Under the N2 atmosphere of 0 kg/cm2 until the maximum temperature is reached, and after reaching the maximum temperature, the air flow rate is 15 per minute until the conditions shown in Table 1 are reached.
Pressurization was performed at a pressure increase rate of kg/cm2. Further, the holding time at the maximum temperature was 4 hours. Room temperature of these sintered bodies 4
The point bending strength (JIS R1601) was measured and the results shown in Table 1 were obtained. The relative density of the sintered body is a value obtained by dividing the bulk density determined by the n-butanol substitution method by the theoretical density.

【0013】[0013]

【表1】[Table 1]

【0014】比較例 実施例と同様な方法で成形したのち、この成形体を表2
に示す条件でN2 雰囲気の炉内焼結させ、表2の結果
を得た。
[0014] Comparative Example After molding in the same manner as in the example, the molded product is shown in Table 2.
Sintering was carried out in a furnace in an N2 atmosphere under the conditions shown in Table 2, and the results shown in Table 2 were obtained.

【0015】[0015]

【表2】[Table 2]

【0016】[0016]

【発明の効果】本発明によれば、従来緻密化しなかった
低温度での焼結が可能となり、一層微細な粒子を有する
焼結体が得られた。微細な粒子で緻密な焼結体を得るこ
とにより1000MPa を超える4点曲げ強度値を発
現する。
[Effects of the Invention] According to the present invention, sintering at a low temperature, which has not conventionally been possible, has become possible, and a sintered body having even finer particles can be obtained. By obtaining a dense sintered body with fine particles, a four-point bending strength value exceeding 1000 MPa is achieved.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  主原料粉末が窒化珪素であり、該窒化
珪素粉末97〜94重量%と3〜6重量%の焼結助剤の
合計 100重量部に対して酸化ジルコニウムを5〜8
0重量部を加えた均一混合粉末を成形し、該成形体を1
350〜1620℃の範囲内の温度まで加熱して予備焼
結し、次いで該温度範囲内の温度で圧力を1500気圧
以上まで昇圧して本焼結することを特徴とする窒化珪素
質焼結体の製造方法。
Claim 1: The main raw material powder is silicon nitride, and 5 to 8 parts by weight of zirconium oxide is added to 100 parts by weight of a total of 97 to 94 weight % of the silicon nitride powder and 3 to 6 weight % of a sintering aid.
A homogeneous mixed powder to which 0 parts by weight was added was molded, and the molded body was
A silicon nitride sintered body characterized by pre-sintering by heating to a temperature within the range of 350 to 1,620°C, and then main sintering by increasing the pressure to 1,500 atmospheres or more at a temperature within the temperature range. manufacturing method.
JP3011982A 1991-02-01 1991-02-01 Production of silicon nitride-based sintered body Pending JPH04254474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3011982A JPH04254474A (en) 1991-02-01 1991-02-01 Production of silicon nitride-based sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3011982A JPH04254474A (en) 1991-02-01 1991-02-01 Production of silicon nitride-based sintered body

Publications (1)

Publication Number Publication Date
JPH04254474A true JPH04254474A (en) 1992-09-09

Family

ID=11792808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3011982A Pending JPH04254474A (en) 1991-02-01 1991-02-01 Production of silicon nitride-based sintered body

Country Status (1)

Country Link
JP (1) JPH04254474A (en)

Similar Documents

Publication Publication Date Title
JP2518630B2 (en) Silicon nitride sintered body and method for producing the same
JPH04254474A (en) Production of silicon nitride-based sintered body
JPH0259471A (en) Silicon nitride-based sintered body having high strength at high temperature and production thereof
JPH04260669A (en) Production of silicon nitride composite material containing silicon carbide
JP3034100B2 (en) Silicon nitride sintered body and method for producing the same
JP2742619B2 (en) Silicon nitride sintered body
JP3036207B2 (en) Method for producing silicon nitride sintered body
JP2687632B2 (en) Method for producing silicon nitride sintered body
JP3144178B2 (en) Silicon nitride sintered body and method for producing the same
JP2692377B2 (en) Silicon nitride sintered body and method for producing the same
JP2976534B2 (en) Silicon nitride sintered body and method for producing the same
JPH0513104B2 (en)
JP3139646B2 (en) Method for producing silicon nitride sintered body
JP3114302B2 (en) Silicon nitride sintered body and method for producing the same
JPH0559073B2 (en)
JP2694369B2 (en) Silicon nitride sintered body
JP2534214B2 (en) Silicon nitride sintered body and method for manufacturing the same
JP2890849B2 (en) Method for producing silicon nitride sintered body
JPH0840776A (en) Sintered substance based on si3n4/bn and their production
JP3207065B2 (en) Silicon nitride sintered body
JP2746760B2 (en) Silicon nitride-silicon carbide composite sintered body and method of manufacturing the same
JP2783702B2 (en) Silicon nitride sintered body
JP2671539B2 (en) Method for producing silicon nitride sintered body
JPH06166569A (en) Production of sintered silicon nitride
JPH04243974A (en) Production of sintered material of silicon nitride