JPH04236779A - High-toughness polycrystalline diamond and production thereof - Google Patents
High-toughness polycrystalline diamond and production thereofInfo
- Publication number
- JPH04236779A JPH04236779A JP3005368A JP536891A JPH04236779A JP H04236779 A JPH04236779 A JP H04236779A JP 3005368 A JP3005368 A JP 3005368A JP 536891 A JP536891 A JP 536891A JP H04236779 A JPH04236779 A JP H04236779A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- polycrystalline diamond
- diamond
- toughness
- polycrystalline
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010432 diamond Substances 0.000 title claims abstract description 153
- 229910003460 diamond Inorganic materials 0.000 title claims abstract description 149
- 238000004519 manufacturing process Methods 0.000 title claims description 25
- 239000013078 crystal Substances 0.000 claims abstract description 41
- 239000000463 material Substances 0.000 claims abstract description 26
- 230000015572 biosynthetic process Effects 0.000 claims description 35
- 238000003786 synthesis reaction Methods 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 21
- 239000002245 particle Substances 0.000 claims description 10
- 239000000758 substrate Substances 0.000 claims description 9
- 239000012071 phase Substances 0.000 claims description 6
- 239000002994 raw material Substances 0.000 claims description 6
- 150000001722 carbon compounds Chemical class 0.000 claims description 5
- 239000012808 vapor phase Substances 0.000 claims description 5
- 239000010408 film Substances 0.000 description 19
- 239000007789 gas Substances 0.000 description 19
- 238000005520 cutting process Methods 0.000 description 16
- 230000007423 decrease Effects 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910009043 WC-Co Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000002065 inelastic X-ray scattering Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- -1 pressure Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910001868 water Inorganic materials 0.000 description 1
- 238000005491 wire drawing Methods 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Carbon And Carbon Compounds (AREA)
- Chemical Vapour Deposition (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、特に工具などの高い強
度を要求される分野に適した靭性の高い緻密な多結晶ダ
イヤモンド構造とおよびその気相合成による製造方法に
関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dense polycrystalline diamond structure with high toughness suitable for use in fields requiring high strength, such as tools, and a method for producing the same by vapor phase synthesis.
【0002】0002
【従来の技術】ダイヤモンド微粉末を超高圧下で焼結し
てなるダイヤモンド焼結体は、既に非鉄金属類の切削工
具、ドリルビット、線引きダイスなどに広く使用されて
いる。2. Description of the Related Art Diamond sintered bodies produced by sintering fine diamond powder under ultra-high pressure have already been widely used in cutting tools for nonferrous metals, drill bits, wire drawing dies, and the like.
【0003】たとえば、特公昭52−12126号公報
にはこの種のダイヤモンド焼結体が開示されており、そ
こではダイヤモンド粉末をWC−Co超硬合金の成形体
または焼結体に接するように配置し、超硬合金の液相が
生じる温度以上の温度ならびに超高圧下で焼結する方法
がとられている。この方法により製造されたダイヤモン
ド焼結体は、約10〜15体積%のCoを含有し、非鉄
金属などの切削加工用工具としては十分実用的な性能を
有している。For example, Japanese Patent Publication No. 52-12126 discloses this type of diamond sintered body, in which diamond powder is arranged so as to be in contact with a compact or sintered body of WC-Co cemented carbide. However, a method is used in which sintering is performed at a temperature higher than the temperature at which the liquid phase of cemented carbide occurs and under ultra-high pressure. The diamond sintered body produced by this method contains about 10 to 15% by volume of Co, and has sufficient practical performance as a cutting tool for nonferrous metals.
【0004】しかし、このダイヤモンド焼結体は、耐熱
性に劣り、たとえば700℃以上の温度に加熱すると耐
摩耗性および強度の低下が見られ、さらに900℃以上
の温度では焼結体が破壊されてしまう。これはダイヤモ
ンド粒子と結合材であるCoとの界面においてダイヤモ
ンドの黒鉛化が生じること、ならびに両者の加熱時にお
ける熱膨張率の差に基づく熱応力によるものと考えられ
る。However, this diamond sintered body has poor heat resistance; for example, when heated to a temperature of 700°C or higher, wear resistance and strength decrease, and furthermore, at a temperature of 900°C or higher, the sintered body is destroyed. I end up. This is thought to be due to the graphitization of diamond occurring at the interface between the diamond particles and Co, which is a binder, and thermal stress due to the difference in thermal expansion coefficients during heating of the two.
【0005】また、上記のCoを結合材としたダイヤモ
ンド焼結体を酸処理して大部分の結合金属層を除去する
と、焼結体の耐熱性が向上することが知られている。た
とえば、特開昭53−114589号公報には、このよ
うにして耐熱性を改善したダイヤモンド焼結体が開示さ
れている。しかしながら、この方法により除去された結
合金属層の部分は空孔となるため、耐熱性こそ向上する
ものの強度が低下するという問題があった。[0005] Furthermore, it is known that when a diamond sintered body using Co as a binder is acid-treated to remove most of the bonding metal layer, the heat resistance of the sintered body is improved. For example, JP-A-53-114589 discloses a diamond sintered body with improved heat resistance in this manner. However, since the portion of the bonding metal layer removed by this method becomes a void, there is a problem in that although the heat resistance is improved, the strength is reduced.
【0006】一方、気相合成法を用いて基体上にダイヤ
モンド薄膜をコーティングした工具が知られている。し
かしながら、通常の気相合成法により形成したダイヤモ
ンド膜は膜厚が薄く、かつ基体との密着強度が不十分で
あるため、切削などに用いる工具としては十分な性能が
得られなかった。On the other hand, tools are known in which a diamond thin film is coated on a substrate using a vapor phase synthesis method. However, diamond films formed by conventional vapor phase synthesis methods are thin and have insufficient adhesion strength to the substrate, so they have not been able to provide sufficient performance as tools for cutting and the like.
【0007】[0007]
【発明が解決しようとする課題】本発明者らは、上記し
た従来のダイヤモンド工具の問題点に検討を加え、特願
昭63−34033号および特願昭63−34034号
により強度、耐摩耗性および耐熱性を改善した実質的に
ダイヤモンドのみからなる多結晶体工具を提案した。[Problems to be Solved by the Invention] The present inventors have investigated the above-mentioned problems of conventional diamond tools, and have improved the strength and wear resistance according to Japanese Patent Application No. 63-34033 and Japanese Patent Application No. 63-34034. We also proposed a polycrystalline tool consisting essentially of diamond with improved heat resistance.
【0008】しかしながら、このダイヤモンドの多結晶
体工具においても、断続切削や硬質セラミックスの切削
などのように、刃先に高い押力や衝撃力が加わる場合に
は欠損しやすいという問題があった。However, even this diamond polycrystalline tool has the problem of being prone to breakage when a high pushing force or impact force is applied to the cutting edge, such as in interrupted cutting or cutting of hard ceramics.
【0009】したがって、本発明はかかる従来の事情に
鑑み、工具としての使用に耐え得るような強度の高い高
靭性多結晶ダイヤモンドおよびその製造方法を提供する
ことを目的とする。[0009] Therefore, in view of the conventional circumstances, it is an object of the present invention to provide a high-strength, high-toughness polycrystalline diamond that can withstand use as a tool, and a method for producing the same.
【0010】0010
【課題を解決するための手段】請求項1に係る高靭性多
結晶ダイヤモンドは、相互に積層された第1の層と第2
の層とを含む。第1の層は、その結晶粒子が六面体また
は八面体のいずれかの形状を有する多結晶ダイヤモンド
層であり、また第2の層は、多結晶ダイヤモンドの結晶
粒子より粒径の小さい双晶ダイヤモンド層、または非晶
質ダイヤモンド層のいずれか一方から構成される。[Means for Solving the Problem] A high toughness polycrystalline diamond according to claim 1 has a first layer and a second layer stacked on each other.
and a layer of. The first layer is a polycrystalline diamond layer whose crystal grains have either a hexahedral or octahedral shape, and the second layer is a twinned diamond layer whose grain size is smaller than the crystal grains of the polycrystalline diamond. , or an amorphous diamond layer.
【0011】請求項2に係る高靭性多結晶ダイヤモンド
は、第1の層の厚さが多結晶ダイヤモンドの結晶粒子の
粒子径のほぼ1〜2倍に形成されている。[0011] In the highly tough polycrystalline diamond according to the second aspect, the thickness of the first layer is approximately 1 to 2 times the grain size of the crystal grains of the polycrystalline diamond.
【0012】請求項3に係る高靭性多結晶ダイヤモンド
は、第1の層の多結晶ダイヤモンド層の結晶粒子の粒子
径は、0.1μm〜10μmである。[0012] In the high toughness polycrystalline diamond according to claim 3, the grain size of the crystal grains of the first polycrystalline diamond layer is 0.1 μm to 10 μm.
【0013】請求項4に係る高靭性多結晶ダイヤモンド
は、第2の層の厚みが、第1の層の厚みの1/10〜1
/2である。[0013] In the high toughness polycrystalline diamond according to claim 4, the thickness of the second layer is 1/10 to 1/10 of the thickness of the first layer.
/2.
【0014】請求項5に係る高靭性多結晶ダイヤモンド
は、第1の層と第2の層とが相互に複数層積層されてお
り、その最下層と最上層とに積層された層は、第1の層
を構成する多結晶ダイヤモンド層である。[0014] In the high toughness polycrystalline diamond according to claim 5, the first layer and the second layer are laminated in plural layers, and the layer laminated on the bottom layer and the top layer is the first layer and the second layer. This is a polycrystalline diamond layer constituting one layer.
【0015】請求項6に係る高靭性多結晶ダイヤモンド
は、第2の層が、多結晶ダイヤモンド層の結晶粒子より
粒径の小さい双晶ダイヤモンド層から構成されている。[0015] In the high toughness polycrystalline diamond according to claim 6, the second layer is composed of a twinned diamond layer having a grain size smaller than the crystal grains of the polycrystalline diamond layer.
【0016】請求項7に係る高靭性多結晶ダイヤモンド
は、双晶ダイヤモンド層の結晶粒子の粒子径が0.05
μm〜8μmである。[0016] In the high toughness polycrystalline diamond according to claim 7, the grain size of the crystal grains of the twinned diamond layer is 0.05.
It is μm to 8 μm.
【0017】請求項8に係る高靭性多結晶ダイヤモンド
は、積層された第2の層の厚みが50μm〜300μm
である。[0017] In the high toughness polycrystalline diamond according to claim 8, the thickness of the laminated second layer is 50 μm to 300 μm.
It is.
【0018】請求項9に係る高靭性多結晶ダイヤモンド
は、第2の層が非晶質ダイヤモンド層から構成される。[0018] In the highly tough polycrystalline diamond according to claim 9, the second layer is composed of an amorphous diamond layer.
【0019】請求項10に係る高靭性多結晶ダイヤモン
ドは、非晶質ダイヤモンド層のヴィッカース硬度が、3
000〜10000kg/mm2 である。In the high toughness polycrystalline diamond according to claim 10, the amorphous diamond layer has a Vickers hardness of 3.
000 to 10000 kg/mm2.
【0020】請求項11に係る高靭性多結晶ダイヤモン
ドの製造方法は、まず、基材表面上に低圧気相法を用い
て第1の合成条件下で、その結晶粒子が六面体または八
面体のいずれかの形状を有する多結晶ダイヤモンドの第
1層を形成する。次に、多結晶ダイヤモンドの第1層の
表面上に、低圧気相法を用いて第2の合成条件下で双晶
多結晶ダイヤモンド層または非晶質ダイヤモンド層のい
ずれか一方の第2層を形成する。[0020] In the method for producing high-toughness polycrystalline diamond according to claim 11, first, crystal grains thereof are either hexahedral or octahedral on the surface of a base material using a low-pressure gas phase method under first synthesis conditions. A first layer of polycrystalline diamond having the above shape is formed. Next, a second layer of either a twinned polycrystalline diamond layer or an amorphous diamond layer is formed on the surface of the first layer of polycrystalline diamond under a second synthesis condition using a low-pressure vapor phase method. Form.
【0021】請求項12に係る製造方法では、第1層の
形成工程と、第2層の形成工程とが繰り返して行なわれ
る。In the manufacturing method according to the twelfth aspect, the step of forming the first layer and the step of forming the second layer are repeatedly performed.
【0022】請求項13に係る製造方法では、第1の合
成条件と第2の合成条件とが10秒以内で変換される。In the manufacturing method according to the thirteenth aspect, the first synthesis condition and the second synthesis condition are converted within 10 seconds.
【0023】請求項14に係る製造方法では、第1の合
成条件と第2の合成条件とは基材の温度が異なる。In the manufacturing method according to the fourteenth aspect, the temperature of the base material is different between the first synthesis condition and the second synthesis condition.
【0024】請求項15に係る製造方法では、第1の合
成条件と第2の合成条件とは、低圧気相法に用いる原料
ガス中の有機炭素化合物の濃度が異なる。In the production method according to the fifteenth aspect, the first synthesis condition and the second synthesis condition differ in the concentration of the organic carbon compound in the raw material gas used in the low-pressure gas phase method.
【0025】請求項16に係る製造方法では、第1層は
、その膜厚が結晶粒径の1ないし2倍となるように合成
される。In the manufacturing method according to the sixteenth aspect, the first layer is synthesized so that its thickness is one to two times the crystal grain size.
【0026】請求項17に係る製造方法では、第1の合
成条件は第1層の結晶粒径が0.1〜10μmとなるよ
うに選ばれる。In the manufacturing method according to claim 17, the first synthesis conditions are selected so that the crystal grain size of the first layer is 0.1 to 10 μm.
【0027】請求項18に係る製造方法は、第2層の膜
厚が第1層の膜厚の1/10〜1/2となるように形成
される。[0027] In the manufacturing method according to claim 18, the second layer is formed so that the thickness of the second layer is 1/10 to 1/2 of the thickness of the first layer.
【0028】請求項19に係る製造方法では、双晶ダイ
ヤモンド層の粒径が0.05μm〜8μmとなるような
第2の合成条件が選ばれる。In the manufacturing method according to the nineteenth aspect, the second synthesis conditions are selected such that the grain size of the twinned diamond layer is 0.05 μm to 8 μm.
【0029】請求項20に係る製造方法では、非晶質ダ
イヤモンド層のヴィッカース硬度が3000〜1000
0kg/cm2 となるように第2の合成条件が選ばれ
る。In the manufacturing method according to claim 20, the amorphous diamond layer has a Vickers hardness of 3000 to 1000.
The second synthesis conditions are selected so that the weight is 0 kg/cm2.
【0030】[0030]
【発明の作用効果】本発明者らは、まず特開平1−21
2766号公報および特開平1−212767号公報に
開示した多結晶体の断面組織の観察を行なった。その結
果、断続切削などで欠損しやすいこれらの多結晶体に共
通する点として、
■ 柱状晶であること
■ 多結晶体の厚さが増大するとともに、析出する粒
子が粗大化することを見出した。これらの特徴は、多結
晶体の厚さ方向の強度低下を招き、かつ1つの粒子の脱
落が大きな欠損につながるということを示唆していると
考えられた。したがって、多結晶体の耐欠損性を向上さ
せるためには、その構成粒子を粒状化させ、かつ粒径が
小さくなるように制御することが必要であると考察した
。Effects of the Invention The present inventors first discovered the
The cross-sectional structures of the polycrystalline bodies disclosed in JP-A No. 2766 and JP-A-1-212767 were observed. As a result, they found that these polycrystalline bodies, which are prone to breakage due to interrupted cutting, have the following common features: ■ They are columnar crystals; ■ As the thickness of the polycrystalline increases, the precipitated particles become coarser. . These characteristics were considered to suggest that the strength of the polycrystalline body decreases in the thickness direction, and that falling off of one particle leads to a large defect. Therefore, it was considered that in order to improve the fracture resistance of a polycrystalline body, it is necessary to make the constituent particles granular and to control the particle size to be small.
【0031】このような考察に基づき、本発明において
は、まず多結晶ダイヤモンドの合成方法として低圧気相
法を用いている。この多結晶ダイヤモンドの合成手段と
しては、公知のあらゆる方法が可能であり、熱電子放射
やプラズマ放電を利用して原料ガスの分離・励起を生じ
させる方法や燃焼炎を用いた成膜方法などが有効である
。また、原料ガスとしては、有機炭素化合物と水素を主
成分とする混合ガスを用いることが一般的である。なお
、これら以外にアルゴンなどの不活性ガスや、酸素、一
酸化炭素、水なども多結晶ダイヤモンドの合成反応やそ
の特性を阻害しない範囲内であれば、原料中に含有され
ていても差し支えない。Based on these considerations, the present invention first uses a low-pressure gas phase method as a method for synthesizing polycrystalline diamond. All known methods can be used to synthesize this polycrystalline diamond, including a method that uses thermionic radiation or plasma discharge to separate and excite the raw material gas, and a method that uses combustion flame to form a film. It is valid. Further, as the raw material gas, it is common to use a mixed gas containing an organic carbon compound and hydrogen as main components. In addition to these, inert gases such as argon, oxygen, carbon monoxide, water, etc. may also be contained in the raw materials as long as they do not interfere with the synthesis reaction or properties of polycrystalline diamond. .
【0032】また、多結晶ダイヤモンドは基材の表面上
に合成される。使用される基材は、熱応力に起因する合
成膜の剥離を回避するために、できるだけダイヤモンド
と熱膨張率の差が小さいものが好ましい。たとえば、シ
リコン(Si)、モリブデン(Mo)、タングステン(
W)などが好ましい。これらの基材を用いた場合には、
成膜後、酸への浸漬などの化学処理を施すことによって
基材を溶解、除去せしめ、合成膜のみを回収することが
可能である。[0032] Polycrystalline diamond is also synthesized on the surface of the base material. The base material used is preferably one that has as small a difference in thermal expansion coefficient as possible from diamond in order to avoid peeling of the synthetic film due to thermal stress. For example, silicon (Si), molybdenum (Mo), tungsten (
W) etc. are preferred. When using these base materials,
After film formation, the base material can be dissolved and removed by chemical treatment such as immersion in acid, and only the synthetic film can be recovered.
【0033】さらに、この発明による多結晶ダイヤモン
ドの製造方法では、合成する際に、その合成条件を間欠
的に変動させることにより結晶の粒状化ならびに粒成長
抑制を図っている。具体的な方法としては、ガス組成、
圧力を一定とした場合、基材温度を調整することにより
、析出粒子の形態変化を生じさせることができる。また
、ガス組成、圧力および基材温度を一定とした場合、原
料ガス中の有機炭素化合物の濃度を調整することにより
同様に形態変化を生じさせることができる。図1はこれ
らの方法により析出した3つの形態を示すものであり、
図1(a)は結晶粒形が六面体および/または八面体の
自形を呈する多結晶ダイヤモンドを、また図1(b)は
(a)よりも微細な双晶ダイヤモンドを、図1(c)は
、さらに微細な非晶質ダイヤモンドの結晶構造を示して
いる。Furthermore, in the method for producing polycrystalline diamond according to the present invention, the synthesis conditions are intermittently varied during synthesis to suppress crystal granulation and grain growth. Specific methods include gas composition,
When the pressure is kept constant, the shape of the precipitated particles can be changed by adjusting the substrate temperature. Furthermore, when the gas composition, pressure, and substrate temperature are kept constant, the morphology can be similarly changed by adjusting the concentration of the organic carbon compound in the raw material gas. Figure 1 shows the three forms deposited by these methods.
Figure 1(a) shows a polycrystalline diamond whose grain shape is euhedral with hexahedrons and/or octahedrons, Figure 1(b) shows a twinned diamond which is finer than that in Figure 1(c). shows a finer amorphous diamond crystal structure.
【0034】製造工程において、まず第1の合成条件下
で一定時間成膜し、図1(a)に示す多結晶ダイヤモン
ド層を合成した後、第2の合成条件に変換して(b)の
双晶ダイヤモンド層あるいは(c)の非晶質ダイヤモン
ド層を成膜する。その後、再び第1の合成条件に戻し、
(a)の多結晶ダイヤモンドを成膜する。この過程を繰
り返し、必要とする厚さになるまで連続することにより
、多層積層型の多結晶体が得られる。第1の合成条件を
保持する時間は、合成される多結晶ダイヤモンド層が、
その結晶粒径の1〜2倍の膜厚を形成するのに要する時
間とし、またその結晶粒径は0.1〜10μmの範囲と
することが重要である。ここで、第1の合成条件を保持
する時間をこの範囲に規定するのは、この範囲よりも短
時間であると、全面にわたって完全に成膜しきらず、粒
状化しない可能性があるからである。また、上記の範囲
よりも長時間であると、そのダイヤモンド層が柱状化し
てしまい、低強度となりやすいからである。さらに、結
晶の粒径を規定する理由は、粒径が0.1μmよりも小
さい場合には耐摩耗性が低下するからであり、また10
μmより大きい場合には粒状化しても強度が低いからで
ある。In the manufacturing process, first, a film is formed for a certain period of time under the first synthesis condition to synthesize the polycrystalline diamond layer shown in FIG. A twinned diamond layer or an amorphous diamond layer (c) is formed. After that, return to the first synthesis conditions again,
A film of polycrystalline diamond (a) is formed. By repeating this process until the required thickness is reached, a multilayered polycrystalline material can be obtained. The time period for which the first synthesis condition is maintained is such that the polycrystalline diamond layer to be synthesized is
It is important that the time required to form a film thickness that is 1 to 2 times the crystal grain size is set, and that the crystal grain size is in the range of 0.1 to 10 μm. Here, the reason why the time for maintaining the first synthesis condition is specified within this range is that if the time is shorter than this range, the film may not be completely formed over the entire surface and may not become granular. . Further, if the heating time is longer than the above range, the diamond layer becomes columnar and tends to have low strength. Furthermore, the reason why the grain size of the crystals is specified is that if the grain size is smaller than 0.1 μm, the wear resistance decreases;
This is because if the size is larger than μm, the strength will be low even if it is granulated.
【0035】次に、第2の条件下で双晶ダイヤモンド層
あるいは非晶質ダイヤモンド層を成膜する工程において
、この第2の合成条件を保持する時間をこの多結晶層の
厚さが、その下層の多結晶ダイヤモンド層の厚さの0.
1〜0.5倍となるのに要する時間とすることが重要で
ある。この双晶ダイヤモンドあるいは非晶質ダイヤモン
ド層の厚さを多結晶ダイヤモンド層の厚さの0.1〜0
.5倍の範囲に規定するのは以下の理由による。まず、
その下限は、多結晶ダイヤモンド層の全面にわたって双
晶ダイヤモンドあるいは非晶質ダイヤモンドが成膜する
のに要する最短時間で定められている。また、その上限
は、これより長時間成膜を続けると、下層の多結晶ダイ
ヤモンド層に比べて強度が低い双晶ダイヤモンドや非晶
質ダイヤモンドの層が、全体の多結晶体の中に占める割
合が大きくなり、全体の強度が低下するからである。Next, in the step of forming a twinned diamond layer or an amorphous diamond layer under the second condition, the thickness of the polycrystalline layer is The thickness of the underlying polycrystalline diamond layer is 0.
It is important to set the time required to increase the amount by 1 to 0.5 times. The thickness of this twinned diamond or amorphous diamond layer is 0.1 to 0 of the thickness of the polycrystalline diamond layer.
.. The reason for specifying the range of 5 times is as follows. first,
The lower limit is determined by the minimum time required for twin diamond or amorphous diamond to form over the entire surface of the polycrystalline diamond layer. Additionally, if the film continues to be formed for a longer time than this, the proportion of twinned diamond and amorphous diamond layers, which have lower strength than the underlying polycrystalline diamond layer, in the entire polycrystalline layer will increase. This is because the amount increases and the overall strength decreases.
【0036】多結晶ダイヤモンド層の表面上に構成され
る層が双晶ダイヤモンドの場合には、その粒径が0.0
5〜8μmであることが好ましい。これは、粒径が0.
05μmよりも小さい場合には、多結晶体の強度は高い
が耐摩耗性が低下する。また、粒径が8μmより大きい
場合には、粒状化しても強度は低いからである。なお、
この双晶ダイヤモンドの粒径は、この双晶ダイヤモンド
層の上下に積層される多結晶ダイヤモンド層の粒径より
も小さく形成することが重要である。When the layer formed on the surface of the polycrystalline diamond layer is twinned diamond, the grain size is 0.0.
It is preferable that it is 5-8 micrometers. This has a particle size of 0.
If it is smaller than 0.05 μm, the strength of the polycrystalline body is high, but the wear resistance is reduced. Furthermore, if the particle size is larger than 8 μm, the strength will be low even if it is granulated. In addition,
It is important that the grain size of this twinned diamond is smaller than the grain size of the polycrystalline diamond layers stacked above and below this twinned diamond layer.
【0037】また、第2の層として非晶質ダイヤモンド
を成膜する場合には、その表面のヴィッカース硬度が3
000〜10000kg/mm2 であることが好まし
い。これは、硬度が3000kg/mm2 よりも小さ
い場合には非晶質ダイヤモンド層の強度および耐磨耗性
がともに低下し、工具素材としての性能が損われるから
である。また、10000g/mm2の場合は、X線回
折あるいはラマン分光分析により非晶質ダイヤモンドと
同定されるもので最も高い硬度を示すものの一般的な値
を示している。[0037] When amorphous diamond is formed as the second layer, the Vickers hardness of the surface is 3.
It is preferable that it is 000-10000 kg/mm2. This is because if the hardness is less than 3000 kg/mm2, both the strength and wear resistance of the amorphous diamond layer decrease, and the performance as a tool material is impaired. Further, in the case of 10000 g/mm2, it shows a general value of the highest hardness identified as amorphous diamond by X-ray diffraction or Raman spectroscopy.
【0038】さらに、第2層は、上記のような条件に加
え、全体の層の厚さが50〜300μm、好ましくは1
00〜200μmとなるように成膜される。ここで、こ
の膜厚の下限値は、通常、工具は50μm程度の摩耗が
生じるまで使用されることから定められ、また上限は3
00μmよりも厚い膜を作製する場合にはコストが高く
つくことによって定められる。Furthermore, in addition to the above-mentioned conditions, the second layer has a total thickness of 50 to 300 μm, preferably 1 μm.
The film is formed to have a thickness of 00 to 200 μm. Here, the lower limit of this film thickness is determined from the fact that tools are normally used until wear of about 50 μm occurs, and the upper limit is 3
This is determined by the high cost of producing a film thicker than 00 μm.
【0039】上記のような自形を呈する結晶形状を有す
る多結晶ダイヤモンド層の第1の合成条件と双晶あるい
は非晶質ダイヤモンド層を形成する第2の合成条件との
変化させるための時間は10秒以下で行なわれることが
好ましい。この条件の変化時間を長くすると、得られる
結晶組織の変化が緩慢で、望ましい粒状結晶が得られな
いからである。上記のような条件によって合成された多
結晶体は、微粒で粒状化した多層積層構造を有している
ため、高い強度を有し、工具素材などに適したものであ
る。The time required to change the first synthesis conditions for a polycrystalline diamond layer having an euhedral crystal shape as described above and the second synthesis conditions for forming a twinned or amorphous diamond layer is It is preferable that this is carried out in 10 seconds or less. This is because if the time for changing these conditions is prolonged, the resulting crystal structure changes slowly, making it impossible to obtain desirable granular crystals. The polycrystalline body synthesized under the above conditions has a multilayer laminated structure with fine grains, so it has high strength and is suitable for tool materials and the like.
【0040】[0040]
【実施例】以下、具体的な実施例について説明する。
実施例1
マイクロ波プラズマCVD法により、Mo基板上に以下
の一定条件で多結晶ダイヤモンドを10時間合成析出さ
せた。[Examples] Specific examples will be described below. Example 1 Polycrystalline diamond was synthesized and deposited on a Mo substrate under the following fixed conditions for 10 hours by microwave plasma CVD.
【0041】
混合ガス(流量) :H2 200cc/min
CH4 4cc/min
Ar 50cc/min
混合ガス圧力 : 100 tor
rマイクロ波発振出力: 800 W上記の例
で得られた多結晶ダイヤモンド(A)は、その断面を電
子顕微鏡により観察したところ、直径が最大で25μm
、長さ約150μm程度の柱状結晶からなる組織を呈し
ていた。また、その成長上面の観察からは、粒径約25
μmの八面体結晶の集合体であることが判明した。Mixed gas (flow rate): H2 200cc/min
CH4 4cc/min Ar 50cc/min Mixed gas pressure: 100 torr
r Microwave oscillation output: 800 W When the cross section of the polycrystalline diamond (A) obtained in the above example was observed using an electron microscope, it was found that the diameter was at most 25 μm.
It exhibited a structure consisting of columnar crystals with a length of about 150 μm. Also, from observation of the top surface of the growth, the grain size was approximately 25
It turned out to be an aggregate of μm octahedral crystals.
【0042】次に、上記と同じ基材を用い、ガス流量、
ガス圧力を上記の条件に保持し、マイクロ波の発振出力
を調整することにより、800Wと1200Wの2条件
を間欠的に変動させた。各出力の保持時間は、800W
を30分、1200Wを15分とし、かつ変動に要する
時間は5秒で行なった。この条件で10時間成膜して得
られた多結晶ダイヤモンド(B)は、厚さが180μm
であった。この多結晶体は、その断面観察から、径が約
5μm、長さが約8μmの八面体粒状結晶の集合体の層
と、径が約4μm、長さが4μmの双晶ダイヤモンドの
集合体の層が交互に積層した構造をとっていることが判
明した。Next, using the same base material as above, the gas flow rate,
The two conditions of 800 W and 1200 W were intermittently varied by maintaining the gas pressure at the above conditions and adjusting the microwave oscillation output. The holding time of each output is 800W
for 30 minutes, 1200W for 15 minutes, and the time required for variation was 5 seconds. The polycrystalline diamond (B) obtained by forming a film under these conditions for 10 hours has a thickness of 180 μm.
Met. Observation of its cross section reveals that this polycrystal has a layer of aggregates of octahedral granular crystals with a diameter of about 5 μm and a length of about 8 μm, and an aggregate of twinned diamonds with a diameter of about 4 μm and a length of 4 μm. It was found that the structure consists of alternating layers.
【0043】次に、これらの多結晶ダイヤモンド(A)
、(B)の耐欠損性を評価するために、酸処理により基
板を溶解除去し、超硬合金の台金にロウ付けした後、研
削加工を行なって切削チップを作製した。なお、比較材
として、従来の結合材Coを10容量%含有する平均粒
径10μmの超高圧焼結ダイヤモンドも上記と同様に切
削チップを作製した。Next, these polycrystalline diamonds (A)
, (B), the substrate was dissolved and removed by acid treatment, brazed to a cemented carbide base metal, and then ground to produce a cutting tip. As a comparative material, a cutting tip was also prepared using ultra-high pressure sintered diamond containing 10% by volume of a conventional binder Co and having an average grain size of 10 μm in the same manner as described above.
【0044】評価試験は、被削材として外周面に軸方向
に延びる4本の溝が形成されたA390合金(Al−1
7Si)丸棒を用い、以下の条件で外周長手方向の切削
を行ない、評価結果を表1に示した。In the evaluation test, A390 alloy (Al-1
Using a round bar (7Si), cutting was performed in the longitudinal direction of the outer periphery under the following conditions, and the evaluation results are shown in Table 1.
【0045】切削速度:300m/min切込み :
0.2mm
送り :0.1mm/rev.Cutting speed: 300m/min Depth of cut:
0.2mm Feed: 0.1mm/rev.
【0046】[0046]
【表1】[Table 1]
【0047】この結果から、本発明による多結晶ダイヤ
モンド(B)は通常の柱状多結晶ダイヤモンド(A)に
比べ強度が向上して欠損しにくく、また従来の超高圧焼
結ダイヤモンドに比較して耐摩耗性が高いことが判明し
た。
実施例2
熱電子放射材に直径0.5mm、長さ20mmの直線状
タングステンフィラメントを用いた熱CVD法により、
下記の表2に示す各々の条件によって10時間基板上に
多結晶ダイヤモンドを合成析出させた。[0047] From these results, the polycrystalline diamond (B) according to the present invention has improved strength and is less prone to chipping compared to ordinary columnar polycrystalline diamond (A), and is more durable than conventional ultra-high pressure sintered diamond. It was found to be highly abrasive. Example 2 By thermal CVD method using a linear tungsten filament with a diameter of 0.5 mm and a length of 20 mm as the thermionic emitting material,
Polycrystalline diamond was synthesized and deposited on the substrate for 10 hours under each of the conditions shown in Table 2 below.
【0048】[0048]
【表2】[Table 2]
【0049】表2において、素材C、E、G、Hは、各
条件を変動させることにより八面体結晶と双晶とを交互
に積層させることを試みた。また素材Fは、有機炭素化
合物の濃度を変化させて六面体結晶と非晶質ダイヤモン
ドとを交互に積層させることを試みた。なお、素材Dは
比較のため一定条件での成膜を行なったものである。In Table 2, for materials C, E, G, and H, attempts were made to alternately stack octahedral crystals and twin crystals by varying each condition. For material F, attempts were made to alternately stack hexahedral crystals and amorphous diamond by varying the concentration of organic carbon compounds. Note that material D was formed under certain conditions for comparison.
【0050】得られた多結晶ダイヤモンドは、いずれも
黒色半透明であり、ラマン分光分析の結果からダイヤモ
ンド炭素であることがわかった。これらの断面組織を電
子顕微鏡により観察したところ、厚さ方向の粒径変化は
図2に示すとおりであった。図2を参照して、条件変更
に要する時間が長かった素材Hを除き、本発明の方法に
よる素材C、E、F、Gはいずれも粒成長抑制の効果が
、特に一定条件で成膜した素材Dに比べて顕著に現われ
ていることが明らかとなった。The obtained polycrystalline diamonds were all black and translucent, and were found to be diamond carbon from the results of Raman spectroscopic analysis. When these cross-sectional structures were observed using an electron microscope, the change in grain size in the thickness direction was as shown in FIG. 2. Referring to FIG. 2, except for material H, for which it took a long time to change the conditions, materials C, E, F, and G obtained by the method of the present invention all had the effect of suppressing grain growth, especially when they were formed under certain conditions. It has become clear that this is more noticeable than in Material D.
【0051】これらの各多結晶ダイヤモンドから、実施
例1と同様にして切削チップを作製し、同じ被削材を用
いてその外周旋削を行ない、切削性能を評価し、その結
果を表3に示した。[0051] Cutting chips were prepared from each of these polycrystalline diamonds in the same manner as in Example 1, and the outer circumference of the chips was turned using the same work material to evaluate the cutting performance. The results are shown in Table 3. Ta.
【0052】切削速度:400m/min切込み :
0.2mm
送り :0.1mm/rev.
切削時間:60minCutting speed: 400m/min Depth of cut:
0.2mm Feed: 0.1mm/rev. Cutting time: 60min
【0053】[0053]
【表3】[Table 3]
【0054】実施例3
Si基板の置かれた反応管中に、C2 H6 とH2
の混合ガスを流量200cc/minで供給し、圧力を
180torrに調整した。次に、高周波発振器から9
00Wの出力で高周波(13.56MHz)を与え、混
合ガスを励起してプラズマを発生させた。Example 3 In a reaction tube containing a Si substrate, C2 H6 and H2
The mixed gas was supplied at a flow rate of 200 cc/min, and the pressure was adjusted to 180 torr. Next, from the high frequency oscillator, 9
A high frequency (13.56 MHz) was applied with an output of 00 W to excite the mixed gas and generate plasma.
【0055】その後、ガスの組成比を、表4に示すよう
に(X)と(Y)の2条件に30分ごとに変動させて合
計20時間成膜を行なった。なお、条件変更に要した時
間は、いずれも5秒であった。また、成膜終了時は、い
ずれも条件(X)とした。Thereafter, film formation was carried out for a total of 20 hours while changing the gas composition ratio between two conditions (X) and (Y) every 30 minutes as shown in Table 4. Note that the time required to change the conditions was 5 seconds in each case. Further, at the end of film formation, conditions (X) were set in all cases.
【0056】[0056]
【表4】[Table 4]
【0057】その結果、得られた多結晶ダイヤモンドは
、膜厚約0.2mmであり、電子顕微鏡観察により成長
上面の平均粒径が約5μmの微細結晶であることが判明
した。また、断面組織は層状であることが明らかになっ
た。As a result, the obtained polycrystalline diamond had a film thickness of about 0.2 mm, and observation with an electron microscope revealed that it was a fine crystal with an average grain size of about 5 μm on the top surface of the growth. It was also revealed that the cross-sectional structure was layered.
【0058】比較のために、混合ガス中のC2 H6
の濃度を1.2容量%(一定)とし、他の条件は上記と
同様に設定して20時間成膜を行なった。得られた多結
晶ダイヤモンド(O)は、成長上面での平均粒径が50
μmで長さ250μmの柱状結晶であった。For comparison, C2 H6 in the mixed gas
The concentration was set at 1.2% by volume (constant), and the other conditions were set as above, and film formation was performed for 20 hours. The obtained polycrystalline diamond (O) has an average grain size of 50
It was a columnar crystal with a length of 250 μm.
【0059】これらの素材を超硬合金製ホルダーにロウ
付けし、刃先処理を行なってドレッシング工具を製作し
た。これらの工具により、アルミナ砥石のドレッシング
を実施したところ、素材I、J、K、L、Nの工具は3
0分間欠損することなく、さらに継続して使用可能であ
ったが、素材M、Oの工具ではドレッシング開始後、各
々25分および10分で欠損が生じた。These materials were brazed to a cemented carbide holder, and the cutting edge was treated to produce a dressing tool. When dressing alumina grinding wheels using these tools, tools for materials I, J, K, L, and N were 3
Although the tools of materials M and O could be used continuously without any damage for 0 minutes, damage occurred 25 minutes and 10 minutes after the start of dressing, respectively.
【0060】素材Mは、C2 H6 の濃度が高すぎ、
析出した非晶質ダイヤモンドの硬度が2000kg/c
m2 と低かったため、全体の強度が低下したものと推
定された。[0060] Material M has too high a concentration of C2 H6,
The hardness of the precipitated amorphous diamond is 2000 kg/c
It was presumed that the overall strength had decreased because it was as low as m2.
【0061】このように、本発明による多結晶ダイヤモ
ンドは、粒成長が抑制された微粒子からなる緻密で粒状
組織の多結晶体であり、特に高い強度を要求される工具
素材として好適である。[0061] As described above, the polycrystalline diamond according to the present invention is a polycrystalline body with a dense granular structure consisting of fine grains with suppressed grain growth, and is particularly suitable as a tool material that requires high strength.
【図1】低圧気相法により合成されたダイヤモンドの結
晶構造図であり、(a)は六面体あるいは八面体の結晶
形状を有する多結晶ダイヤモンドであり、(b)は(a
)よりも微細な結晶構造を有する双晶ダイヤモンドであ
り、(c)はさらに微細な非晶質ダイヤモンド層を示し
ている。FIG. 1 is a diagram of the crystal structure of diamond synthesized by a low-pressure gas phase method, in which (a) is a polycrystalline diamond with a hexahedral or octahedral crystal shape, and (b) is a
) is a twinned diamond with a finer crystal structure than (c), and (c) shows an even finer amorphous diamond layer.
【図2】この発明の第2の実施例により合成された多結
晶ダイヤモンドの結晶粒径と膜厚との相関図である。FIG. 2 is a correlation diagram between crystal grain size and film thickness of polycrystalline diamond synthesized according to a second embodiment of the present invention.
Claims (20)
とを含み、前記第1の層は、その結晶粒子が六面体また
は八面体のいずれかの形状を有する多結晶ダイヤモンド
層であり、前記第2の層は、前記多結晶ダイヤモンド層
の結晶粒子より粒径の小さい双晶ダイヤモンド層または
非晶質ダイヤモンド層のいずれか一方から構成された、
高靭性多結晶ダイヤモンド。1. A polycrystalline diamond layer comprising a first layer and a second layer stacked on each other, the first layer being a polycrystalline diamond layer whose crystal grains have a hexahedral or octahedral shape. and the second layer is composed of either a twinned diamond layer or an amorphous diamond layer having a grain size smaller than the crystal grains of the polycrystalline diamond layer.
High toughness polycrystalline diamond.
イヤモンド層の結晶粒子の粒子径のほぼ1以上2倍以内
である、請求項1記載の高靭性多結晶ダイヤモンド。2. The high toughness polycrystalline diamond according to claim 1, wherein the thickness of the first layer is approximately 1 to 2 times the grain size of the crystal grains of the polycrystalline diamond layer.
ドの結晶粒子の粒子径は、0.1μm以上10μm以下
である、請求項1または2のいずれかに記載の高靭性多
結晶ダイヤモンド。3. The highly tough polycrystalline diamond according to claim 1, wherein the crystal grains of the polycrystalline diamond in the first layer have a particle size of 0.1 μm or more and 10 μm or less.
の厚みの1/10以上1/2以下である、請求項1ない
し請求項3のいずれかに記載の高靭性多結晶ダイヤモン
ド。4. The high toughness polycrystal according to claim 1, wherein the thickness of the second layer is 1/10 or more and 1/2 or less of the thickness of the first layer. diamond.
に複数層積層されており、最下層と最上層に積層された
層は、前記第1の層を構成する多結晶ダイヤモンド層で
ある、請求項1ないし請求項4のいずれかに記載の高靭
性多結晶ダイヤモンド。5. The first layer and the second layer are laminated in plural layers, and the layers laminated on the bottom layer and the top layer are made of polycrystalline diamond constituting the first layer. The high toughness polycrystalline diamond according to any one of claims 1 to 4, which is a layer.
ンド層の結晶粒子より粒径の小さい双晶ダイヤモンド層
からなる、請求項1または請求項5のいずれかに記載の
高靭性多結晶ダイヤモンド。6. The high toughness polycrystalline diamond according to claim 1, wherein the second layer comprises a twinned diamond layer having a grain size smaller than the crystal grains of the polycrystalline diamond layer. .
粒子径が0.05μm以上8μm以下である、請求項6
記載の高靭性多結晶ダイヤモンド。7. Claim 6, wherein the crystal grains of the twinned diamond layer have a particle size of 0.05 μm or more and 8 μm or less.
High toughness polycrystalline diamond as described.
00μm以下である、請求項5記載の高靭性多結晶ダイ
ヤモンド。8. The thickness of the laminated layers is 50 μm or more3
The highly tough polycrystalline diamond according to claim 5, which has a diameter of 00 μm or less.
ンド層からなる、請求項1または請求項5のいずれかに
記載の高靭性多結晶ダイヤモンド。9. The high toughness polycrystalline diamond according to claim 1, wherein the second layer comprises the amorphous diamond layer.
カース硬度が3000kg/mm2 以上10000k
g/mm2 以下である、請求項9記載の高靭性多結晶
ダイヤモンド。10. The amorphous diamond layer has a Vickers hardness of 3000 kg/mm2 or more and 10000k.
The highly tough polycrystalline diamond according to claim 9, which has a toughness of less than g/mm2.
1の合成条件下でその結晶粒子が六面体または八面体の
いずれかの形状を有する多結晶ダイヤモンドの第1層を
形成する工程と、前記多結晶ダイヤモンドの第1層の表
面上に、低圧気相法を用いて第2の合成条件下で双晶ダ
イヤモンド層または非晶質ダイヤモンド層のいずれか一
方の第2層を形成する工程とを備えた、高靭性多結晶ダ
イヤモンドの製造方法。11. Forming a first layer of polycrystalline diamond, the crystal grains of which have a hexahedral or octahedral shape, on the surface of a substrate using a low-pressure gas phase method under first synthesis conditions. and forming a second layer of either a twinned diamond layer or an amorphous diamond layer on the surface of the first layer of polycrystalline diamond under second synthesis conditions using a low-pressure vapor phase method. A method for producing high toughness polycrystalline diamond, comprising a process.
の形成工程が繰り返して行なわれる、請求項11記載の
高靭性多結晶ダイヤモンドの製造方法。12. The method for producing high-toughness polycrystalline diamond according to claim 11, wherein the step of forming the first layer and the step of forming the second layer are performed repeatedly.
成条件とが10秒以内で変換される、請求項11または
請求項12のいずれかに記載の高靭性多結晶ダイヤモン
ドの製造方法。13. The method for producing high toughness polycrystalline diamond according to claim 11, wherein the first synthesis condition and the second synthesis condition are converted within 10 seconds.
成条件とは前記基材の温度が異なる、請求項11ないし
請求項13のいずれかに記載の高靭性多結晶ダイヤモン
ドの製造方法。14. The method for producing high toughness polycrystalline diamond according to claim 11, wherein the first synthesis condition and the second synthesis condition are different in temperature of the base material.
成条件とは、前記低圧気相法に用いる原料ガス中の有機
炭素化合物の濃度が異なる、請求項11ないし請求項1
4記載の高靭性多結晶ダイヤモンドの製造方法。15. The first synthesis condition and the second synthesis condition differ in the concentration of the organic carbon compound in the raw material gas used in the low-pressure gas phase method.
4. The method for producing high toughness polycrystalline diamond according to 4.
の1ないし2倍となるように合成される、請求項11な
いし請求項15のいずれかに記載の高靭性多結晶ダイヤ
モンドの製造方法。16. The high-toughness polycrystalline diamond according to any one of claims 11 to 15, wherein the first layer is synthesized so that its film thickness is 1 to 2 times the crystal grain size. Production method.
の結晶粒径が0.1μm以上10μm以下となるように
選ばれる、請求項11ないし請求項16のいずれかに記
載の高靭性多結晶ダイヤモンドの製造方法。17. The high toughness according to claim 11, wherein the first synthesis conditions are selected such that the crystal grain size of the first layer is 0.1 μm or more and 10 μm or less. Method of manufacturing polycrystalline diamond.
厚の1/10倍ないし1/2倍となるように形成される
、請求項11ないし請求項17のいずれかに記載の高靭
性多結晶ダイヤモンドの製造方法。18. The second layer is formed to have a thickness that is 1/10 to 1/2 times the thickness of the first layer. A method for producing high-toughness polycrystalline diamond.
.05μm以上8μm以下となるように前記第2の合成
条件が選ばれる、請求項11ないし請求項18のいずれ
かに記載の高靭性多結晶ダイヤモンドの製造方法。19. The grain size of the twinned diamond layer is 0.
.. 19. The method for producing high-toughness polycrystalline diamond according to any one of claims 11 to 18, wherein the second synthesis conditions are selected so that the toughness is 0.05 μm or more and 8 μm or less.
カース硬度が3000kg/cm2 以上10000k
g/cm2 以下となる前記第2の合成条件が選ばれる
、請求項11ないし請求項18のいずれかに記載の高靭
性多結晶ダイヤモンドの製造方法。20. The amorphous diamond layer has a Vickers hardness of 3000 kg/cm2 or more and 10000 k.
19. The method for producing high-toughness polycrystalline diamond according to any one of claims 11 to 18, wherein the second synthesis condition is selected to be less than or equal to g/cm2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3005368A JP2949863B2 (en) | 1991-01-21 | 1991-01-21 | High toughness polycrystalline diamond and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3005368A JP2949863B2 (en) | 1991-01-21 | 1991-01-21 | High toughness polycrystalline diamond and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04236779A true JPH04236779A (en) | 1992-08-25 |
JP2949863B2 JP2949863B2 (en) | 1999-09-20 |
Family
ID=11609229
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3005368A Expired - Lifetime JP2949863B2 (en) | 1991-01-21 | 1991-01-21 | High toughness polycrystalline diamond and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2949863B2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH106222A (en) * | 1996-06-17 | 1998-01-13 | Kyocera Corp | Liquid injection nozzle |
JP2004060037A (en) * | 2002-07-31 | 2004-02-26 | Kobe Steel Ltd | Method for producing diamond and diamond product |
US6780509B2 (en) | 2000-05-27 | 2004-08-24 | Alstom Technology Ltd. | Protective coating for metallic components, metallic component having the coating and method of forming the coating |
JP2007538151A (en) * | 2004-05-21 | 2007-12-27 | ディアッコン ゲーエムベーハー | Diamond coated electrode |
JP2009248249A (en) * | 2008-04-07 | 2009-10-29 | Mitsubishi Materials Corp | Diamond-coated tool having superior chipping resistance and abrasion resistance |
JP2009248228A (en) * | 2008-04-04 | 2009-10-29 | Mitsubishi Materials Corp | Diamond-coated tool having superior chipping resistance and abrasion resistance |
JP2010202957A (en) * | 2009-03-05 | 2010-09-16 | Mitsubishi Materials Corp | Carbon film, production method of carbon film, and cmp pad conditioner |
JP2010221352A (en) * | 2009-03-24 | 2010-10-07 | Mitsubishi Materials Corp | Diamond coated tool exhibiting superior wear resistance in heavy cutting |
JP2010221353A (en) * | 2009-03-24 | 2010-10-07 | Mitsubishi Materials Corp | Diamond coated tool exhibiting superior finished-surface accuracy |
JP2011098424A (en) * | 2009-11-09 | 2011-05-19 | Mitsubishi Materials Corp | Diamond-coated tool exhibiting excellent chipping resistance and excellent wear resistance |
JP2012161873A (en) * | 2011-02-07 | 2012-08-30 | Mitsubishi Materials Corp | Diamond-coated cutting tool |
JP2013252591A (en) * | 2012-06-07 | 2013-12-19 | Union Tool Co | Diamond film for cutting tool |
JP2014009144A (en) * | 2012-07-02 | 2014-01-20 | Sumitomo Electric Ind Ltd | Polycrystalline diamond composite and method for producing the same |
-
1991
- 1991-01-21 JP JP3005368A patent/JP2949863B2/en not_active Expired - Lifetime
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH106222A (en) * | 1996-06-17 | 1998-01-13 | Kyocera Corp | Liquid injection nozzle |
US6780509B2 (en) | 2000-05-27 | 2004-08-24 | Alstom Technology Ltd. | Protective coating for metallic components, metallic component having the coating and method of forming the coating |
JP2004060037A (en) * | 2002-07-31 | 2004-02-26 | Kobe Steel Ltd | Method for producing diamond and diamond product |
JP2007538151A (en) * | 2004-05-21 | 2007-12-27 | ディアッコン ゲーエムベーハー | Diamond coated electrode |
JP2009248228A (en) * | 2008-04-04 | 2009-10-29 | Mitsubishi Materials Corp | Diamond-coated tool having superior chipping resistance and abrasion resistance |
JP2009248249A (en) * | 2008-04-07 | 2009-10-29 | Mitsubishi Materials Corp | Diamond-coated tool having superior chipping resistance and abrasion resistance |
JP2010202957A (en) * | 2009-03-05 | 2010-09-16 | Mitsubishi Materials Corp | Carbon film, production method of carbon film, and cmp pad conditioner |
JP2010221352A (en) * | 2009-03-24 | 2010-10-07 | Mitsubishi Materials Corp | Diamond coated tool exhibiting superior wear resistance in heavy cutting |
JP2010221353A (en) * | 2009-03-24 | 2010-10-07 | Mitsubishi Materials Corp | Diamond coated tool exhibiting superior finished-surface accuracy |
JP2011098424A (en) * | 2009-11-09 | 2011-05-19 | Mitsubishi Materials Corp | Diamond-coated tool exhibiting excellent chipping resistance and excellent wear resistance |
JP2012161873A (en) * | 2011-02-07 | 2012-08-30 | Mitsubishi Materials Corp | Diamond-coated cutting tool |
JP2013252591A (en) * | 2012-06-07 | 2013-12-19 | Union Tool Co | Diamond film for cutting tool |
CN103480878A (en) * | 2012-06-07 | 2014-01-01 | 佑能工具株式会社 | Diamond film for cutting-tools |
JP2014009144A (en) * | 2012-07-02 | 2014-01-20 | Sumitomo Electric Ind Ltd | Polycrystalline diamond composite and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
JP2949863B2 (en) | 1999-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0365218B1 (en) | A polycrystal diamond fluted tool and a process for the production of the same | |
WO1993002022A1 (en) | Diamond-clad hard material and method of making said material | |
KR20050072753A (en) | Method for producing a sintered, supported polycrystalline diamond compact | |
JPH04236779A (en) | High-toughness polycrystalline diamond and production thereof | |
US5204167A (en) | Diamond-coated sintered body excellent in adhesion and process for preparing the same | |
JP2002543993A5 (en) | ||
JPH07315989A (en) | Production of diamond coated member | |
JPH03197677A (en) | Diamond-coated tool and its production | |
JPS59170262A (en) | Surface-coated tool member with superior wear resistance | |
EP0549801A1 (en) | Diamond-covered member and production thereof | |
JP2710287B2 (en) | Polycrystalline diamond for tools | |
JP3397849B2 (en) | Diamond coated cemented carbide tool | |
JPH01317112A (en) | Polycrystalline diamond having high strength and production thereof | |
JP2571821B2 (en) | Method for producing granular polycrystalline diamond film | |
JPH0665745A (en) | Diamond-coated hard material and its production | |
JPH08151297A (en) | Production of diamond | |
JP3235206B2 (en) | Diamond cutting tool and manufacturing method thereof | |
JP2792136B2 (en) | High toughness polycrystalline diamond and method for producing the same | |
JP3353335B2 (en) | Diamond coated hard material and method for producing the same | |
JPH04261703A (en) | Polycrystal diamond cutting tool | |
JPH01225774A (en) | High-hardness polycrystalline diamond tool | |
JPS59166671A (en) | Surface-coated tool member excellent in wear resistance | |
JPH02250966A (en) | Diamond coated sintered body having superior exfoliation resistance and production thereof | |
JPH0557508A (en) | Vapor-phase synthetic diamond coated cutting tool | |
JPH0320467A (en) | Diamond-coated sintered compact excellent in adhesion and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19990608 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080709 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080709 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090709 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090709 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100709 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100709 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110709 Year of fee payment: 12 |